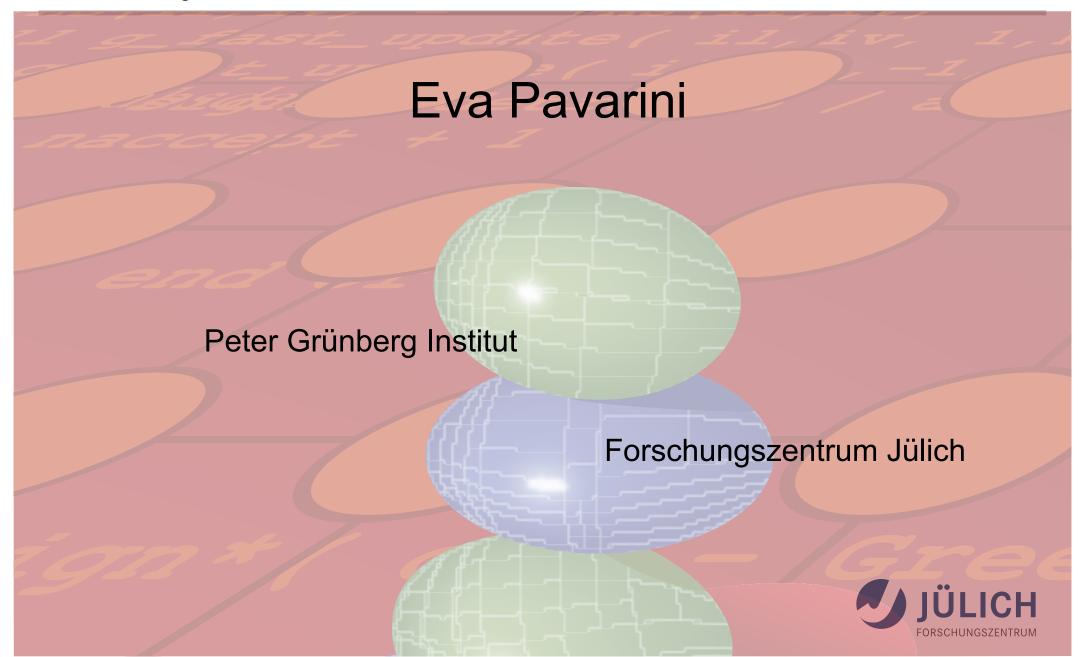
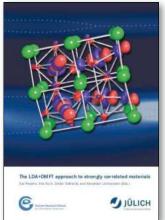
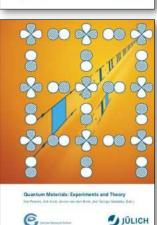
Beyond DFT: DMFT and its extensions

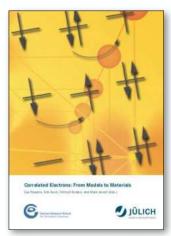


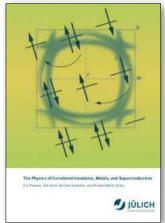
Autumn School on Correlated Electrons

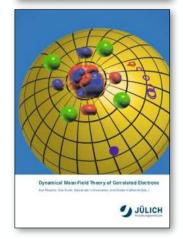
www.cond-mat.de/events/correl.html

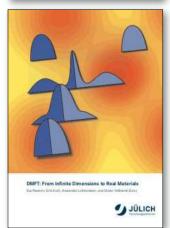


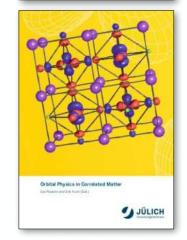


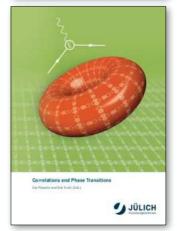


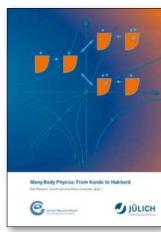


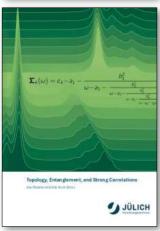






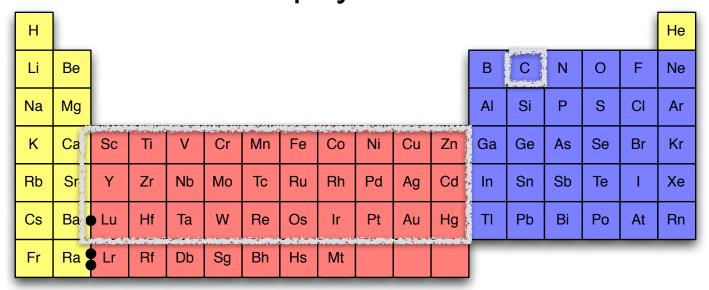


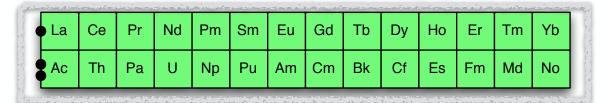




what are correlated materials?

systems for which *single-electron picture* fails *qualitatively* because atomic-like physics survives in the solid





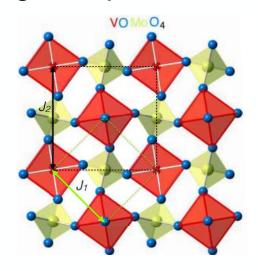
Coulomb-induced metal-insulator transition

heavy-Fermions unconventional superconductivity spin-charge separation

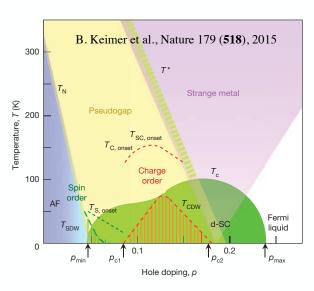
representative Mott systems

single-band systems

magnetic phases & frustration

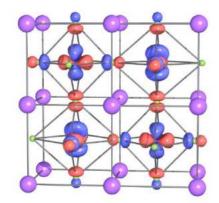


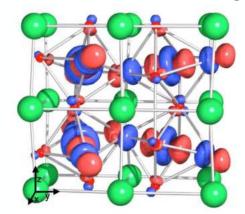
HTSC



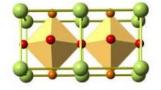
two-band systems (e_g)

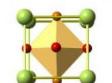
orbital physics and orbital ordering

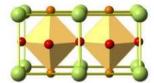




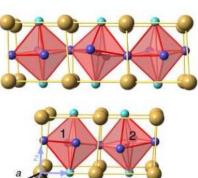
three-band t_{2g} materials

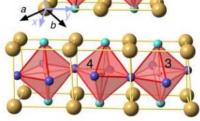


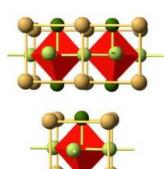


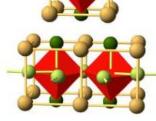


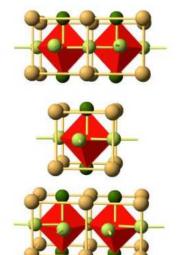
metal











insulator

Hund's metal

orbitally ordered Higgs modes small masses

spin-orbit Mott

organization of the lecture

- I. recap: the many-body problem
- II. Mott systems, Hubbard model and DMFT
- III. DMFT for materials: DFT+DMFT
- IV. two paradigmatic examples

PART 1

recap: the many-body problem

the theory of nearly everything

Born-Oppenheimer approximation, non-relativistic

$$\begin{split} \hat{H}_e &= -\frac{1}{2} \sum_i \nabla_i^2 + \frac{1}{2} \sum_{i \neq i'} \frac{1}{|\mathbf{r}_i - \mathbf{r}_{i'}|} - \sum_{i,n} \frac{Z_n}{|\mathbf{r}_i - \mathbf{R}_n|} + \frac{1}{2} \sum_{n \neq n'} \frac{Z_n Z_{n'}}{|\mathbf{R}_n - \mathbf{R}_{n'}|} \\ & \mathbf{R}_n \quad \text{nuclei} \end{split}$$

$$\hat{H}_e \Psi_{\alpha}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = E_{\alpha} \Psi_{\alpha}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

solution in four steps

the many-body problem

$$\hat{H}_e = \sum_i h(\mathbf{r}_i) + \frac{1}{2} \sum_{i,i'} u(\mathbf{r}_i, \mathbf{r}_{i'})$$
 single-electron two-electron

split Hamiltonian

2 $h(\mathbf{r})\psi_{\lambda}(\mathbf{r}) = \varepsilon_{\lambda}\psi_{\lambda}(\mathbf{r})$

build single-electron complete basis

 $\{\psi_{\lambda}(\mathbf{r})\}$

- $\Phi_{\Lambda=\{\lambda_i\}} = \prod_{i=1,\dots,N} c_{\lambda_i}^\dagger |0\rangle \quad \begin{array}{l} \text{build complete basis of} \\ \text{Slater determinants} \end{array} \quad \{\Phi_{\Lambda}(\mathbf{r})\}$
- $\hat{H}_e \Psi_\alpha(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = E_\alpha \Psi_\alpha(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$

$$\Psi_{\alpha} = \sum_{\Lambda} C^{\alpha}_{\Lambda} \; \Phi_{\Lambda} \quad \ \ \, .. \; \text{and diagonalize...}$$

bad news: the exact solution is not an option

Hilbert space of Slater determinants grows exponentially (or faster)

eigenstates are **typically** combinations of a **very** large number of Slater determinants!

example: 4 determinants per site, 4Ns

the non-interacting many-body problem

$$\hat{H}_e = \sum_i h(\mathbf{r}_i)$$

single-electron

$$2 h(\mathbf{r})\psi_{\lambda}(\mathbf{r}) = \varepsilon_{\lambda}\psi_{\lambda}(\mathbf{r})$$

build single-electron complete basis

$$\{\psi_{\lambda}(\mathbf{r})\}$$

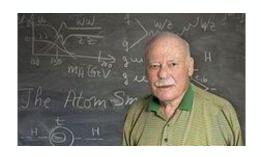
$$\Phi_{\Lambda=\{\lambda_i\}} = \prod_{i=1,\dots,N} c_{\lambda_i}^{\dagger} |0\rangle$$

$$\{\Phi_{\Lambda}({f r})\}$$

all eigenstates are **single** Slater determinants! size of Hilbert space irrelevant

$$E = \sum_{i} \varepsilon_{\lambda_i}$$

good news: it would be anyway useless



H.J. Lipkin

On the other hand, the exact solution of a many-body problem is really irrelevant since it includes a large mass of information about the system which although measurable in principle is never measured in practice.

[..] An incomplete description of the system is considered to be sufficient if these measurable quantities and their behavior are described correctly.

$$\hat{H}_e \Psi_\alpha(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = E_\alpha \Psi_\alpha(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

E. Pavarini and E. Koch, Autumn School on Correlated Electron 2013, Introduction

the many-body problem: more is different

Born-Oppenheimer approximation, non-relativistic

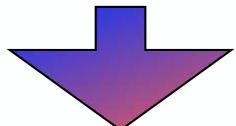
$$\hat{H}_e = \begin{bmatrix} -\frac{1}{2}\sum_i \nabla_i^2 \\ +\frac{1}{2}\sum_{i\neq i'} \frac{1}{|\mathbf{r}_i - \mathbf{r}_{i'}|} \end{bmatrix} - \sum_{i,\alpha} \frac{Z_\alpha}{|\mathbf{r}_i - \mathbf{R}_\alpha|} + \frac{1}{2}\sum_{\alpha\neq\alpha'} \frac{Z_\alpha Z_{\alpha'}}{|\mathbf{R}_\alpha - \mathbf{R}_{\alpha'}|}$$
 i=electrons
$$\alpha = \text{nuclei}$$

simple interactions among many particles can lead to unexpected *emergent* co-operative behavior

emergent energy scales

general theory & many parameters {P}

$$\hat{H}_e = -\frac{1}{2} \sum_{i} \nabla_i^2 + \frac{1}{2} \sum_{i \neq i'} \frac{1}{|\mathbf{r}_i - \mathbf{r}_{i'}|} - \sum_{i,n} \frac{Z_n}{|\mathbf{r}_i - \mathbf{R}_n|} + \frac{1}{2} \sum_{n \neq n'} \frac{Z_n Z_{n'}}{|\mathbf{R}_n - \mathbf{R}_{n'}|}$$



low energy: **simpler model**, effective elementary entities and fewer effective parameters *p*

but
$$p=p(\{P\})$$

e.g., Hubbard model, Heisenberg model

$$\hat{H}_e \Psi_{\alpha}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = E_{\alpha} \Psi_{\alpha}(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

what can be done then?

a way out: density-functional theory

1964

PHYSICAL REVIEW

VOLUME 136, NUMBER 3B

9 NOVEMEBR 1964

Inhomogeneous Electron Gas*

P. HOHENBERGT École Normale Superieure, Paris, France

W. Kohni

École Normale Superieure, Paris, France and Faculté des Sciences, Orsay, France University of California at San Diego, La Jolla, California (Received 18 June 1964)

This paper deals with the ground state of an interacting about on an automat notantial ale). It is proved that there exists a universal functional of the pression $E = \int v(\mathbf{r})n(\mathbf{r})d\mathbf{r} + F[n(\mathbf{r})]$ has as its minimum $v(\mathbf{r})$. The functional $F[n(\mathbf{r})]$ is then discussed for (2) $n(\mathbf{r}) = \varphi(\mathbf{r}/r_0)$ with φ arbitrary and $r_0 \to \infty$. In bot relation energy and linear and higher order electronic also sheds some light on generalized Thomas-Fermi r these methods are presented.

INTRODUCTION

URING the last decade there has been considerable progress in understanding the properties of a homogeneous interacting electron gas. The point of view has been, in general, to regard the electrons as similar to a collection of noninteracting particles with the important additional concept of collective excitations.

On the other hand, there has been in existence since the 1920's a different approach, represented by the Thomas-Fermi method² and its refinements, in which the electronic density $n(\mathbf{r})$ plays a central role and in which the system of electrons is pictured more like a classical liquid. This approach has been useful, up to now, for simple though crude descriptions of inhomogeneous systems like atoms and impurities in metals.

Lately there have been also some important advances along this second line of approach, such as the work of Kompaneets and Paylovskii,3 Kirzhnits,4 Lewis,5 Baraff and Borowitz, Baraff, and DuBois and Kivelson. The present paper represents a contribution in the same area. 1965

PHYSICAL REVIEW

VOLUME 140, NUMBER 4A

15 NOVEMBER 1965

Self-Consistent Equations Including Exchange and Correlation Effects*

W. Kohn and L. J. Sham University of California, San Diego, La Jolla, California (Received 21 June 1965)

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

I. INTRODUCTION

IN recent years a great deal of attention has been I given to the problem of a homogeneous gas of interacting electrons and its properties have been established with a considerable degree of confidence over a wide range of densities. Of course, such a homogeneous gas represents only a mathematical model, since in all real systems (atoms, molecules, solids, etc.) the electronic density is nonuniform.

It is then a matter of interest to see how properties of the homogeneous gas can be utilized in theoretical

In Secs. III and IV, we describe the necessary modifications to deal with the finite-temperature properties and with the spin paramagnetism of an inhomogeneous

Of course, the simple methods which are here proposed in general involve errors. These are of two general origins⁴: a too rapid variation of density and, for finite systems, boundary effects. Refinements aimed at reducing the first type of error are briefly discussed in Appendix II.

II. THE GROUND STATE

the standard model: density-functional theory

$$\hat{H}_e\Psi_\alpha(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)=E_\alpha\Psi_\alpha(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$$

$$n_G(\mathbf{r}), \qquad E_G[n(\mathbf{r})], \qquad \dots$$

(in practice: LDA,GGA,...)

1998: Nobel Prize in Chemistry to Walter Kohn

In my view DFT makes two kinds of contribution to the science of multiparticle quantum systems, including problems of electronic structure of molecules and of condensed matter:

The first is in the area of fundamental understanding. Theoretical chemists and physicists, following the path of the Schroedinger equation, have become accustomed to think in a truncated Hilbert space of single particle orbitals. The spectacular advances achieved in this way attest to the fruitfulness of this perspective. However, when high accuracy is required, so many Slater determinants are required (in some calculations up to $\sim 10^9$!) that comprehension becomes difficult. DFT provides a complementary perspective. It focuses on quantities in the real, 3-dimensional coordinate space, principally on the electron density n(r) of the groundstate. Other quantities of great interest

(from the Nobel lecture)

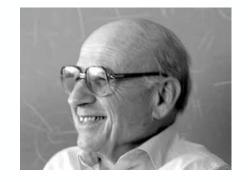
but, how do we calculate the density?

Kohn-Sham auxiliary Hamiltonian

$$\hat{h}_e = \sum_i \left[-\frac{1}{2} \nabla_i^2 + v_R(\boldsymbol{r}_i) \right] = \sum_i \hat{h}_e(\boldsymbol{r}_i)$$

$$v_R(\mathbf{r}) = -\sum_{\alpha} \frac{Z_{\alpha}}{|\mathbf{r} - \mathbf{R}_{\alpha}|} + \int \frac{d\mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} + \frac{\delta E_{\mathrm{xc}}[n]}{\delta n} = v_{en}(\mathbf{r}) + v_H(\mathbf{r}) + v_{xc}(\mathbf{r})$$

Hartree exchange-correlation



Walter Kohn

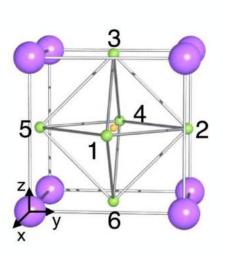
a non-interacting problem with the same electron density of the original many-electron problem

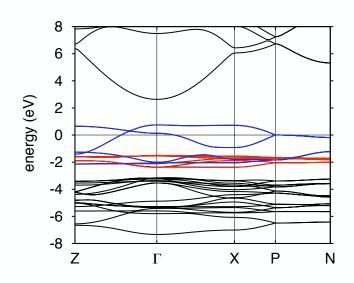
Nobel Prize in Chemistry (1998)

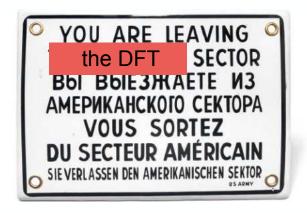
unexpected successes of DFT

Kohn-Sham band-structures work well as

approximated elementary excitations

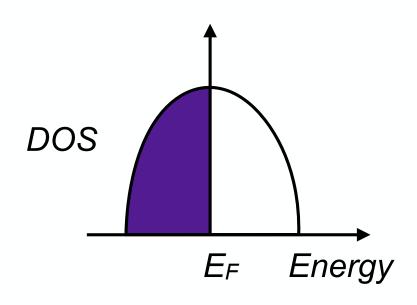


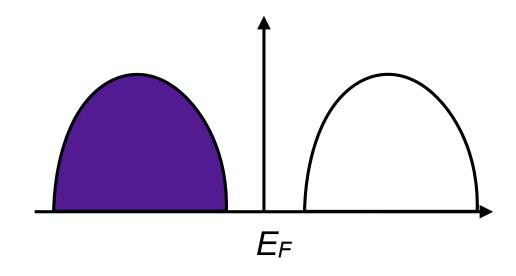




material trends, prediction

remarkably, it works well in many cases!





metal (e.g., Cu, Na)

band partially filled

insulator (e.g. diamond)

band full

why? mean-field-like model or Fermi-liquid theory

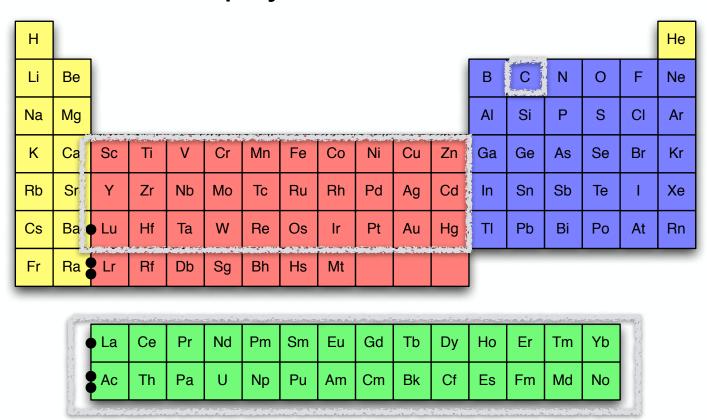
$$\hat{H}_e = \sum_i h(\mathbf{r}_i) + \frac{1}{2} \sum_{i,i'} u(\mathbf{r}_i, \mathbf{r}_{i'})$$

$$\hat{H}_e \sim \sum_i ilde{h}(\mathbf{r}_i)$$
 Kohn Sham

- correct symmetry
- average long-range Coulomb effect
- very good ground-state density
- sum rules

what are correlated materials?

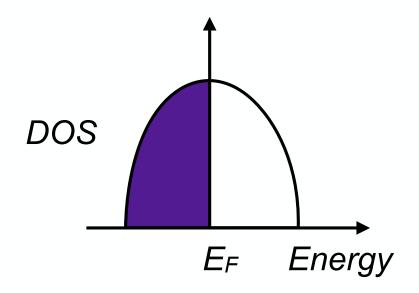
systems for which the single-electron picture fails qualitatively atomic-like physics survives in the solid



atomic-like = local Coulomb repulsion

deep problems: Mott systems

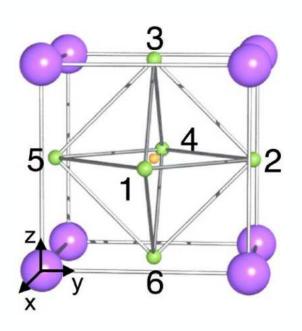
single-electron picture: band partially filled, it should be a metal

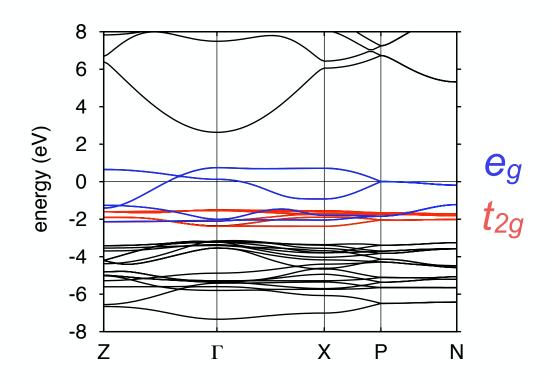


but experimentally there is an **excitation** gap that can be explained by **local** electron-electron repulsion

deep problems: Mott systems

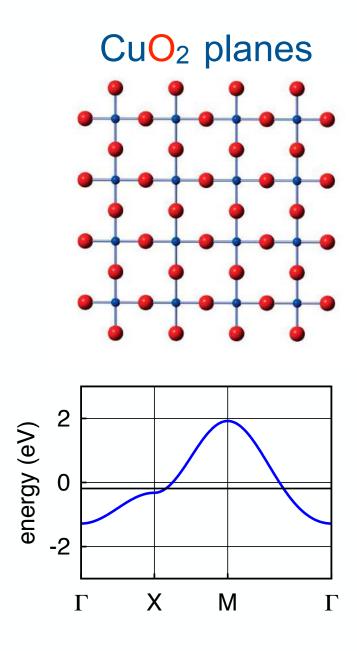
KCuF₃

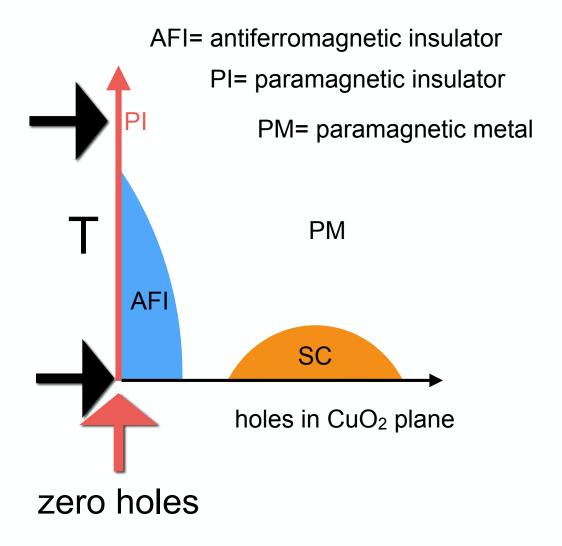




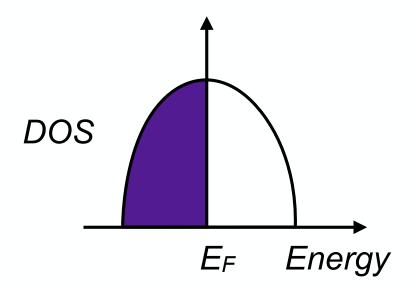
Experiments: insulator. Above 40 K a paramagnetic insulator

high-T_c superconducting cuprates





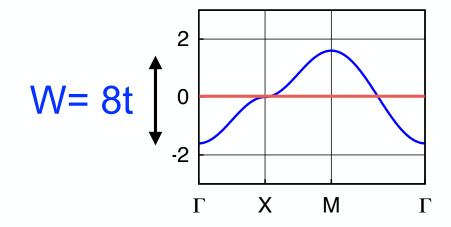
why does the single-electron picture fails?



cuprates: tight-biding model

CuO₂ planes

Kramers degeneracy: Fermi level in the center of band

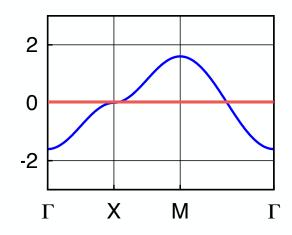


$$\varepsilon_{\mathbf{k}} = -2t[\cos k_x + \cos k_y]$$

$$\hat{H} = \varepsilon_d \sum_i \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - t \sum_{\langle ii' \rangle} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i'\sigma} = \varepsilon_d \sum_k \sum_{\sigma} c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_k \sum_{\sigma} \varepsilon_{\mathbf{k}} c_{k\sigma}^{\dagger} c_{k'\sigma}$$

modify potential but keep symmetry

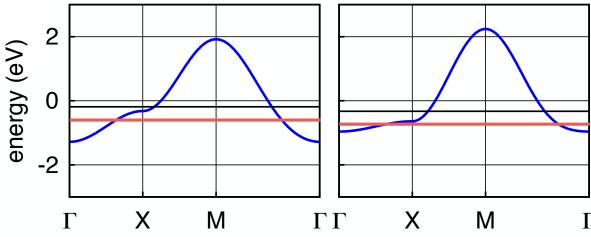




$$t'/t = =0.2$$

$$t'/t = = 0.4$$

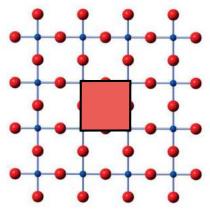
but since Kramers degeneracy stays we always have a metal..

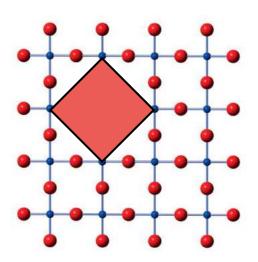


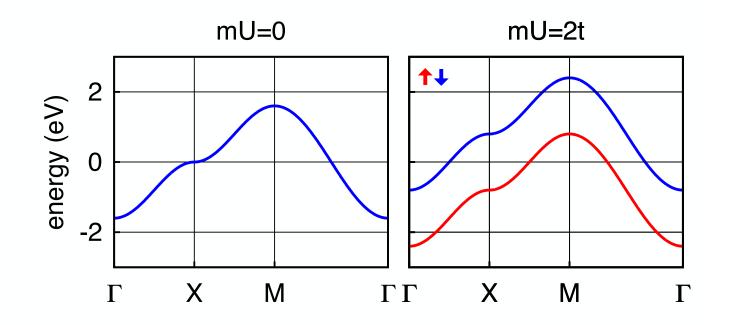
"symmetry protected"

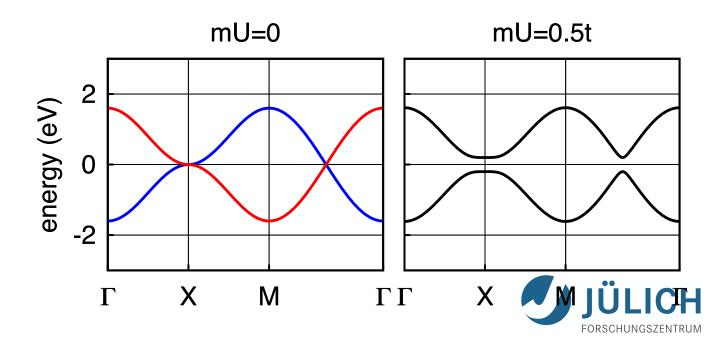
to open a gap we must lower the symmetry

ferro



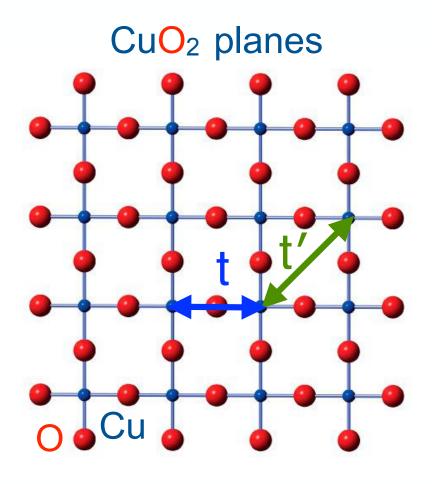


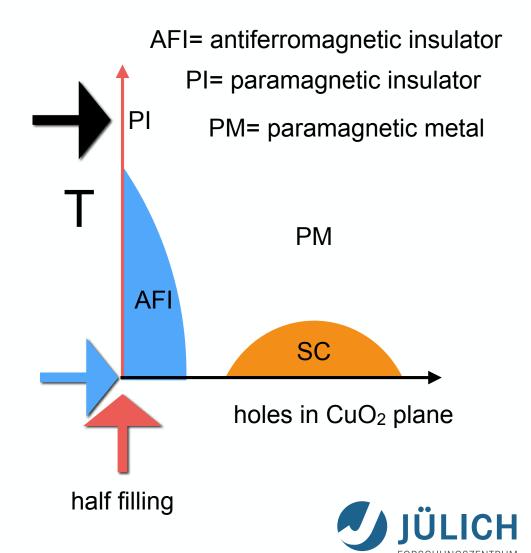




high-T_c superconducting cuprates

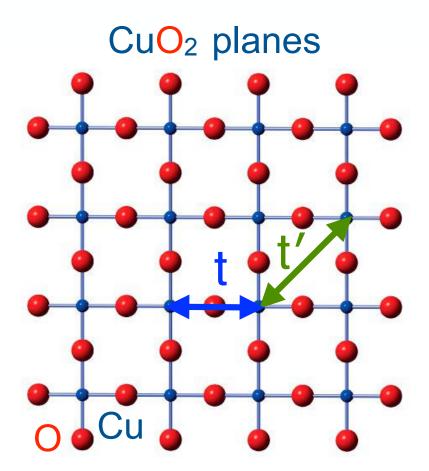
phase diagram

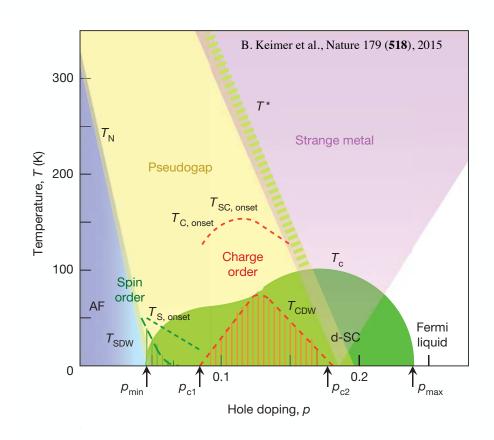




high-T_c superconducting cuprates

phase diagram

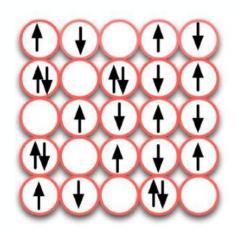




PART 2

Mott transition, Hubbard model and DMFT

the paradigmatic model



Hubbard model

half filling

$$\hat{H} = \varepsilon_d \sum_{i} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - t \sum_{\langle ii' \rangle} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i'\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

U/W=0: metal

$$m^* \to \infty$$

 $\Delta E \rightarrow U - W$

W/U=0: insulator

metal with heavy quasiparticles (large masses)

insulator with increasing gap

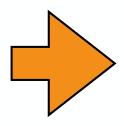
effective masses

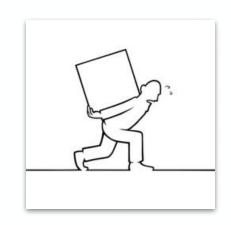
2 October, speed: 50 m ~ 30 seconds

effective masses

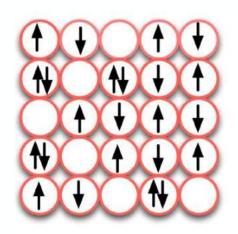
Rosenmontag, speed: 50 m ~ 30 minutes

.. but also on a normal day if carrying a very big weight





the paradigmatic model



Hubbard model

half filling

$$\hat{H} = \varepsilon_d \sum_{i} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - t \sum_{\langle ii' \rangle} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i'\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

U/W=0: metal

$$m^* \to \infty$$

 $\Delta E \rightarrow U - W$

W/U=0: insulator

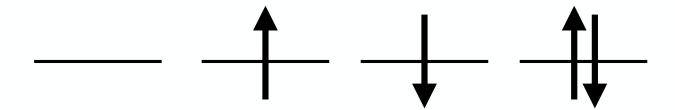
metal with heavy quasiparticles (large masses)

insulator with increasing gap

bad news: the exact solution is not an option

Hilbert space of Slater determinants grows exponentially (or faster)

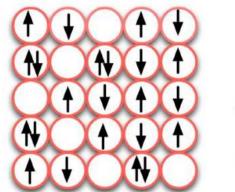
example: 4 determinants per site, 4^{Ns}



1989-1992: dynamical mean-field theory

Hubbard model

$$\hat{H} = \varepsilon_d \sum_{i} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - t \sum_{\langle ii' \rangle} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i'\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$



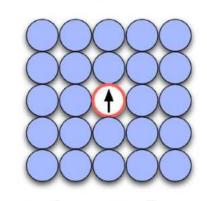
 $G^{i,j}$

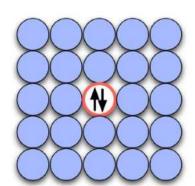
 H^{LDA}

 $U^{i,i}$

self-consistent quantum-impurity model







$$\mathcal{G}^{-1} = G^{-1} + \Sigma$$
$$G = G^{i,i}$$

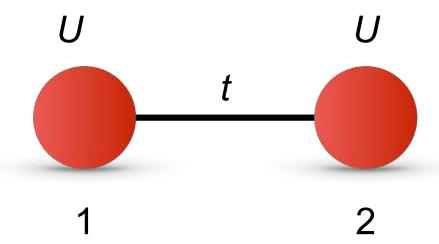
k-independent self-energy

exact in the infinite coordination number limit

how does it work?

example: Hubbard dimer

$$\hat{H} = \varepsilon_d \sum_{i\sigma} \hat{n}_{i\sigma} - t \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$



half filling: N=2

this is a toy model: coordination number is one

all analytic results are in lecture notes of Autumn School

finite t: exact diagonalization

half filling (N=2)

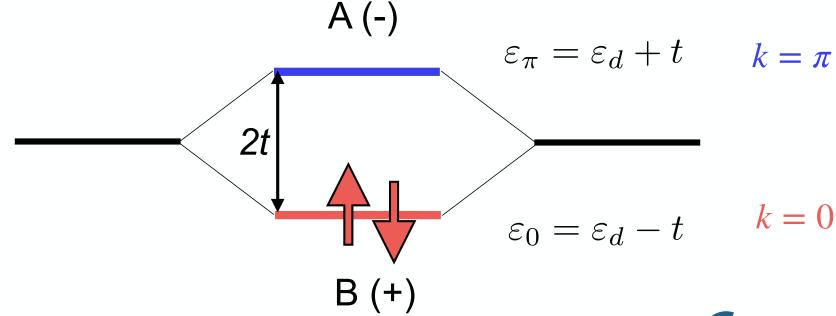
$ 2,S,S_z\rangle_{\alpha}$	$E_{\alpha}(2,S)$	$d_{\alpha}(2,S)$
$ 2,0,0\rangle_{+} = b_1 2,0,0\rangle_{0} - \frac{b_2}{\sqrt{2}}(2,0,0\rangle_{1} + 2,0,0\rangle_{2})$	$2\varepsilon_d + \frac{U}{2} + \frac{1}{4}\left(U + 2\Delta(t, \frac{U}{2})\right)$	1
$ 2,0,0\rangle_o = \frac{1}{\sqrt{2}} (2,0,0\rangle_1 - 2,0,0\rangle_2)$	$2\varepsilon_d + U$	1
$ 2,1,m\rangle_o = 2,1,m\rangle$	$2\varepsilon_d + \frac{U}{2}$	3
$ 2,0,0\rangle_{-} = b_2 2,0,0\rangle_{0} + \frac{b_1}{\sqrt{2}}(2,0,0\rangle_{1} + 2,0,0\rangle_{2})$	$2\varepsilon_d + \frac{U}{2} + \frac{1}{4}\left(U - 2\Delta(t, \frac{U}{2})\right)$	1

$$\Delta(t, U) = \sqrt{U^2 + 16t^2}$$

U=0: bonding and antibonding

change from **site** to **k** representation

$$c_{k\sigma} = \frac{1}{\sqrt{2}} \left(c_{1\uparrow} \mp c_{2\uparrow} \right)$$
 $\varepsilon_k = \varepsilon_d - t \cos(k)$



local Green function

$$i\nu_n \longrightarrow \omega + i\delta$$

Lehmann representation

$$G_{ii,\sigma}(i\nu_n) = \frac{1}{Z} \sum_{nn'N} e^{-\beta(E_n(N) - \mu N)} \left[\frac{|\langle n'N - 1|c_{i\sigma}|nN\rangle|^2}{i\nu_n - [E_n(N) - E_{n'}(N - 1) - \mu]} + \frac{|\langle n'N + 1|c_{i\sigma}^{\dagger}|nN\rangle|^2}{i\nu_n - [E_{n'}(N + 1) - E_n(N) - \mu]} \right],$$

we need all N, N+1 and N-1 states

N= number of electrons

finite t: exact diagonalization

N=1,3

$$|1, S, S_z\rangle_{\alpha}$$
 $E_{\alpha}(1, S) d_{\alpha}(1, S)$ $|1, 1/2, \sigma\rangle_{+} = \frac{1}{\sqrt{2}} (|1, 1/2, \sigma\rangle_{1} - |1, 1/2, \sigma\rangle_{2})$ $\varepsilon_{d} + t$ 2 $|1, 1/2, \sigma\rangle_{-} = \frac{1}{\sqrt{2}} (|1, 1/2, \sigma\rangle_{1} + |1, 1/2, \sigma\rangle_{2})$ $\varepsilon_{d} - t$ 2

$$|3, S, S_z\rangle_{\alpha} \qquad E_{\alpha}(3) \qquad d_{\alpha}(3, S)$$

$$|3, 1/2, \sigma\rangle_{+} = \frac{1}{\sqrt{2}} (|1, 1/2, \sigma\rangle_{1} + |1, 1/2, \sigma\rangle_{2}) \qquad 3\varepsilon_{d} + U + t \qquad 2$$

$$|3, 1/2, \sigma\rangle_{-} = \frac{1}{\sqrt{2}} (|1, 1/2, \sigma\rangle_{1} - |1, 1/2, \sigma\rangle_{2}) \qquad 3\varepsilon_{d} + U - t \qquad 2$$

the local Green function

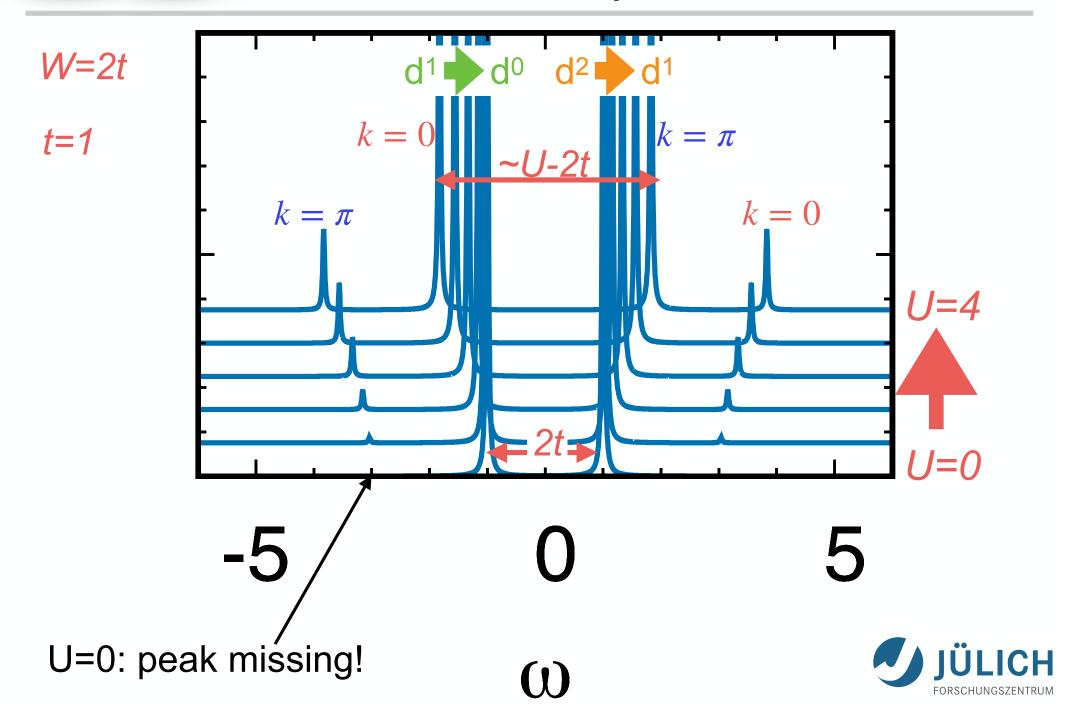
$$i\nu_n \longrightarrow \omega + i\delta$$

$i\nu_n \longrightarrow \omega + i\delta$ Lehmann representation

$$\begin{aligned} \operatorname{d}^{1} & \operatorname{d}^{0} \\ |\langle 1|c_{\sigma}|2\rangle|^{2} \end{aligned} \qquad \mu = \varepsilon_{d} + \frac{U}{2} \\ G_{i,i}^{\sigma}(i\nu_{n}) &= \frac{1}{4} \left(\frac{1+w(t,U)}{i\nu_{n} - (E_{0}(2)-\varepsilon_{d}+t-\mu)} + \frac{1-w(t,U)}{i\nu_{n} - (E_{0}(2)-\varepsilon_{d}-t-\mu)} \right) \\ &= \frac{|\langle 3|c_{\sigma}^{\dagger}|2\rangle|^{2}}{|i\nu_{n} - (-E_{0}(2)+U+3\varepsilon_{d}+t-\mu)} + \frac{1+w(t,U)}{i\nu_{n} - (-E_{0}(2)+U+3\varepsilon_{d}-t-\mu)} \right) \end{aligned}$$

$$E(3)-E(2)$$

the exact local spectral function



the local Green function

$$i\nu_n \longrightarrow \omega + i\delta$$

$i\nu_n \longrightarrow \omega + i\delta$ Lehmann representation

$$d^1 \rightarrow d^0$$

$$\mu = \varepsilon_d + \frac{U}{2}$$

$$K = 0$$

$$G_{i,i}^{\sigma}(i\nu_n) = \frac{1}{4} \left(\frac{1 + w(t, U)}{i\nu_n - (E_0(2) - \varepsilon_d + t - \mu)} + \frac{1 - w(t, U)}{i\nu_n - (E_0(2) - \varepsilon_d - t - \mu)} \right)$$

$$\frac{1 - w(t, U)}{i\nu_n - (E_0(2) - \varepsilon_d - t - \mu)}$$

$$k = 0 k = \pi$$

$$+ \frac{1 - w(t, U)}{i\nu_n - (-E_0(2) + U + 3\varepsilon_d + t - \mu)} + \frac{1 + w(t, U)}{i\nu_n - (-E_0(2) + U + 3\varepsilon_d - t - \mu)}$$

$$k = \pi$$

$$+ \frac{1 + w(t, U)}{i\nu_n - \left(-E_0(2) + U + 3\varepsilon_d - t - \mu\right)}$$

self-energy: local and non-local

$$G_{11}^{\sigma}(i\nu_n) = \frac{1}{2} \sum_{k} \frac{1}{i\nu_n - (\varepsilon_k + \Sigma^{\sigma}(k, i\nu_n) - \mu)}$$

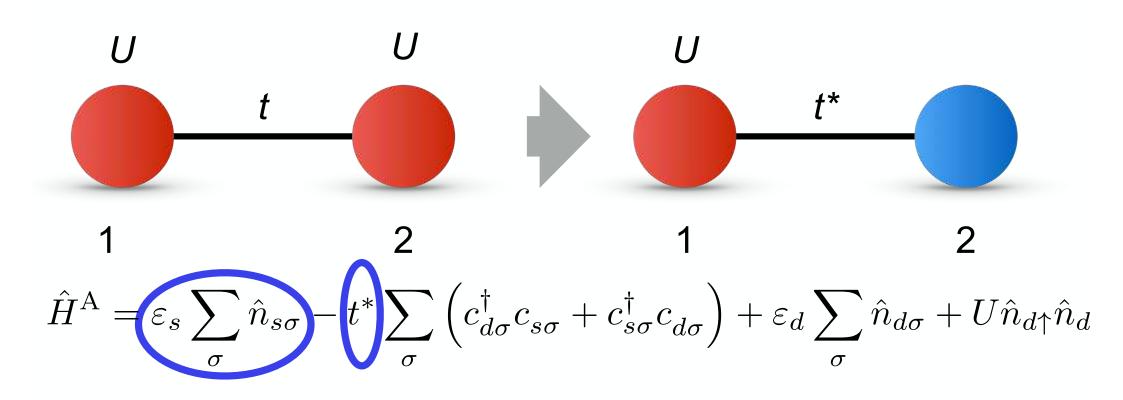
$$\varepsilon_k = \varepsilon_d - t\cos(k)$$

$$\sum_{l} \mathcal{\Sigma}_{l}^{\sigma}(i\nu_{n}) = \frac{1}{2} \left(\mathcal{\Sigma}^{\sigma}(\pi, i\nu_{n}) + \mathcal{\Sigma}^{\sigma}(0, i\nu_{n}) \right) = \frac{U}{2} + \frac{U^{2}}{4} \frac{i\nu_{n} + \mu - \varepsilon_{d} - \frac{U}{2}}{(i\nu_{n} + \mu - \varepsilon_{d} - \frac{U}{2})^{2} - (3t)^{2}}$$

$$\Delta \sum_{l} \Delta \Sigma_{l}^{\sigma}(i\nu_{n}) = \frac{1}{2} \left(\Sigma^{\sigma}(\pi, i\nu_{n}) - \Sigma^{\sigma}(0, i\nu_{n}) \right) = \frac{U^{2}}{4} \frac{3t}{(i\nu_{n} + \mu - \varepsilon_{d} - \frac{U}{2})^{2} - (3t)^{2}}$$

map to a quantum impurity model

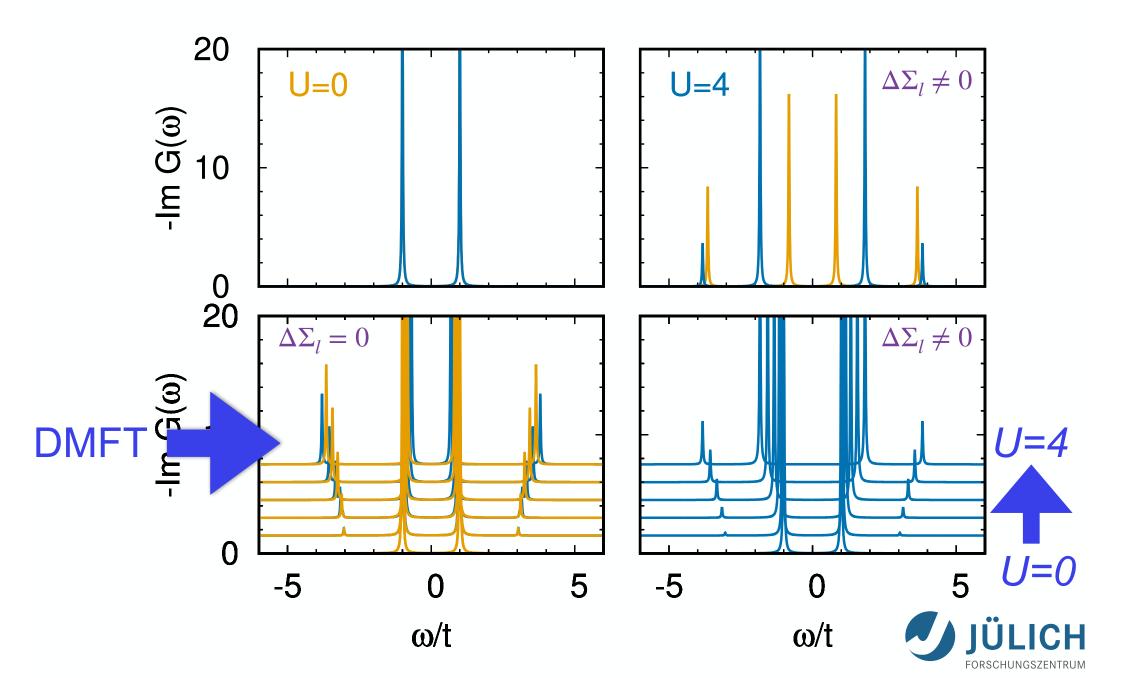
the Anderson molecule



~ same local self-energy?

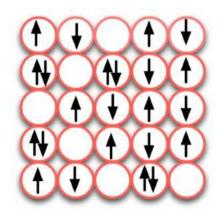
find value of ε_s solution: $\varepsilon_s = \varepsilon_d + U/2 = \mu$, $t^* = t$

DMFT for the Hubbard dimer



DMFT for the one-band Hubbard model

$$\hat{H} = \varepsilon_d \sum_{i} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - t \sum_{\langle ii' \rangle} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i'\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

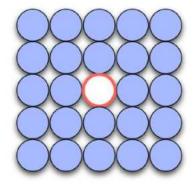


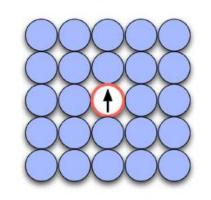
$$G^{i,j}$$

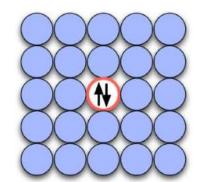
 H^{LDA}

 $U^{i,i}$

self-consistent quantum-impurity model





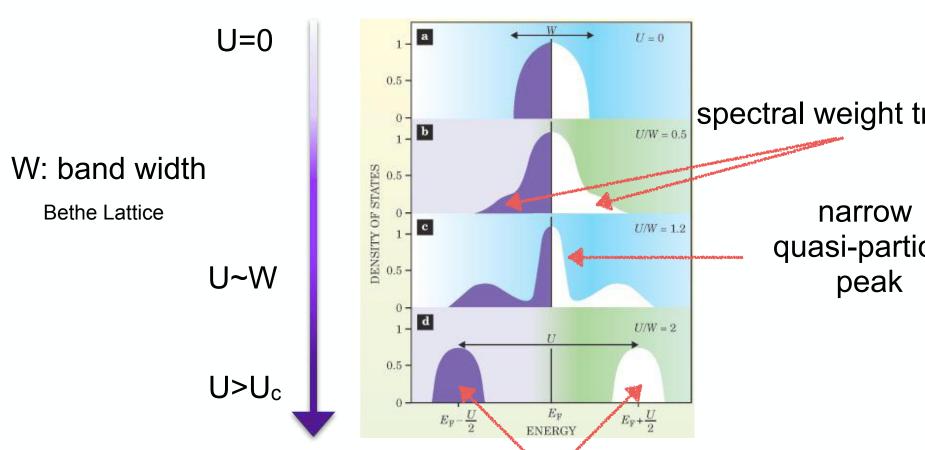


$$\mathcal{G}^{-1} = G^{-1} + \Sigma$$
$$G = G^{i,i}$$

QIP: QMC, NRG, DMRG, ED, Lanczos...

dynamical mean-field theory

$$\hat{H} = \varepsilon_d \sum_{i} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - t \sum_{\langle ii' \rangle} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i'\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$



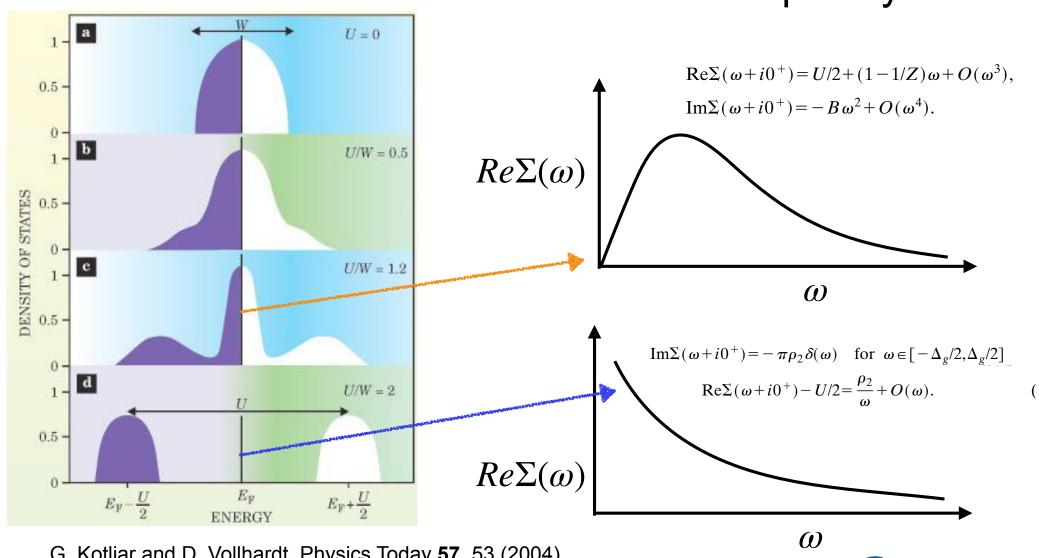
spectral weight transfer

quasi-particle

Hubbard bands

dynamical mean-field theory

low frequency



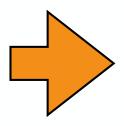
G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)

effective masses

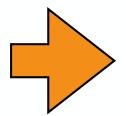
$$G_{\mathbf{k}}(\omega) \sim \frac{1}{\omega - (\varepsilon_{\mathbf{k}} - \mu + \Sigma_{R}(\omega) + i\Sigma_{I}(\omega))}$$

U finite

low frequency expansion of self-energy



$$G_{\mathbf{k}}(\omega) \sim \frac{1}{\omega - (\varepsilon_{\mathbf{k}} - \mu + \omega(1 - 1/Z) - iB\omega^2)}$$

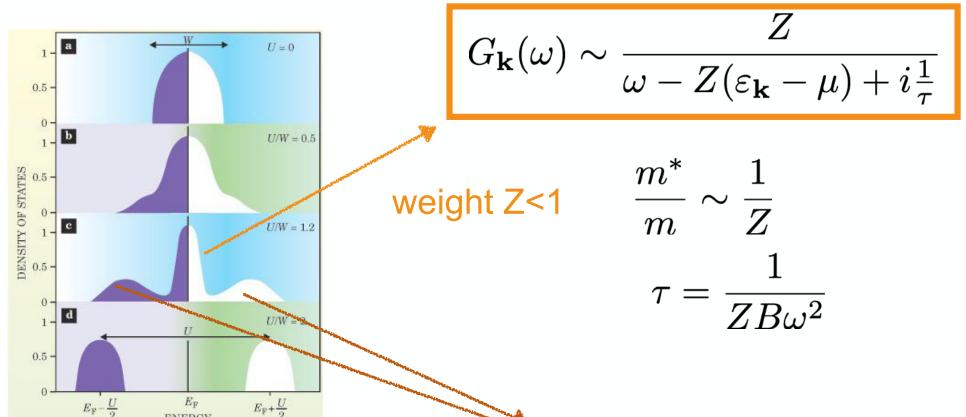


$$G_{\mathbf{k}}(\omega) \sim rac{Z}{\omega - Z(arepsilon_{\mathbf{k}} - \mu) + irac{1}{ au}}$$

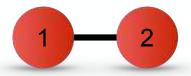
effective masses and lifetime

$$G_{\mathbf{k}}^{0}(\omega) \sim \frac{1}{\omega - (\varepsilon_{\mathbf{k}} - \mu) + i\delta}$$

$$\tau = \infty$$
 $m^*/m = 1$

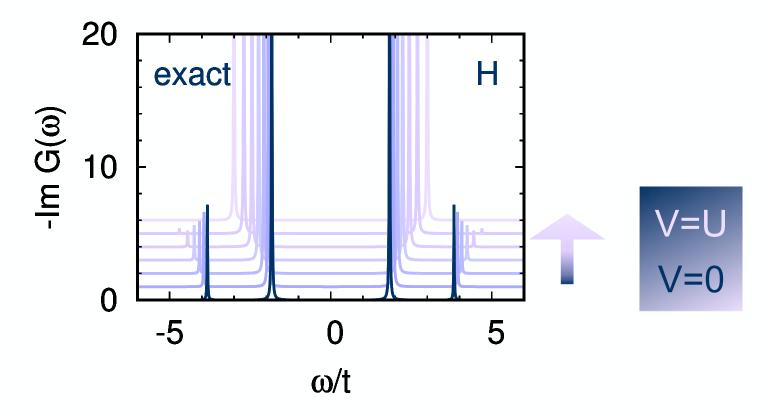


weight 1-Z



why a **local** Hubbard U?

$$\hat{H} = \varepsilon_d \sum_{i\sigma} \hat{n}_{i\sigma} - t \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) + U \sum_{i=1,2} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + V \sum_{\sigma\sigma'} \hat{n}_{1\sigma} \hat{n}_{2\sigma'}$$



non-local V makes it less correlated

what about materials?

are there one-band systems?

(systems well described by one-band Hubbard model)

and how do we know?

the starting point: DFT band-structures

high-T_c superconducting cuprates

VOLUME 87, NUMBER 4

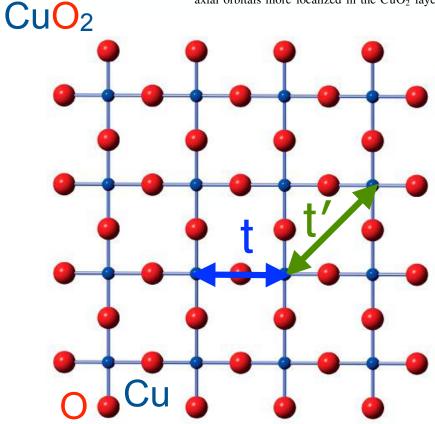
PHYSICAL REVIEW LETTERS

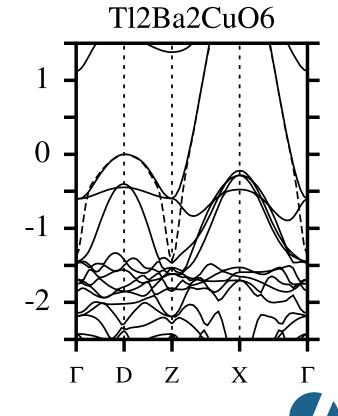
23 July 2001

Band-Structure Trend in Hole-Doped Cuprates and Correlation with $T_{c\, \rm max}$

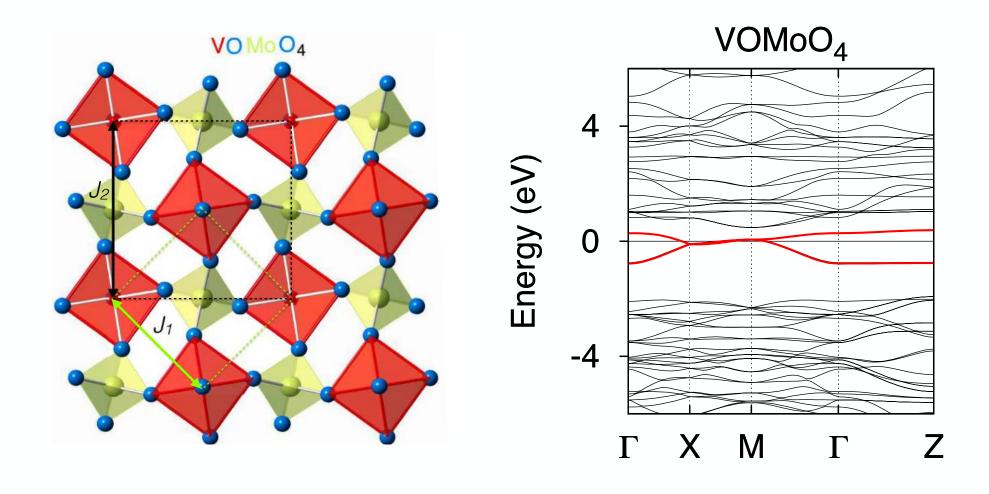
E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,[†] O. Jepsen, and O. K. Andersen *Max-Planck-Institut für Festkörperforschung, D-70506 Stuttgart, Germany* (Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped high-temperature superconductors, we have identified the range of the intralayer hopping as the essential, material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between $Cu \, 4s$, apical-oxygen $2p_z$, and farther orbitals. Materials with higher $T_{c \, max}$ have larger hopping ranges and axial orbitals more localized in the CuO_2 layers.



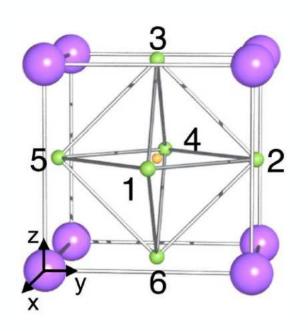


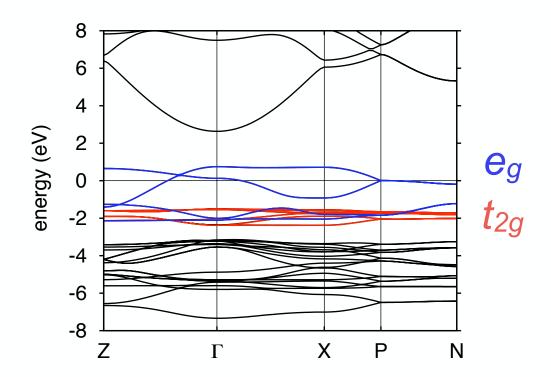
one-band systems: VOMoO4



correlated materials: not only W/U

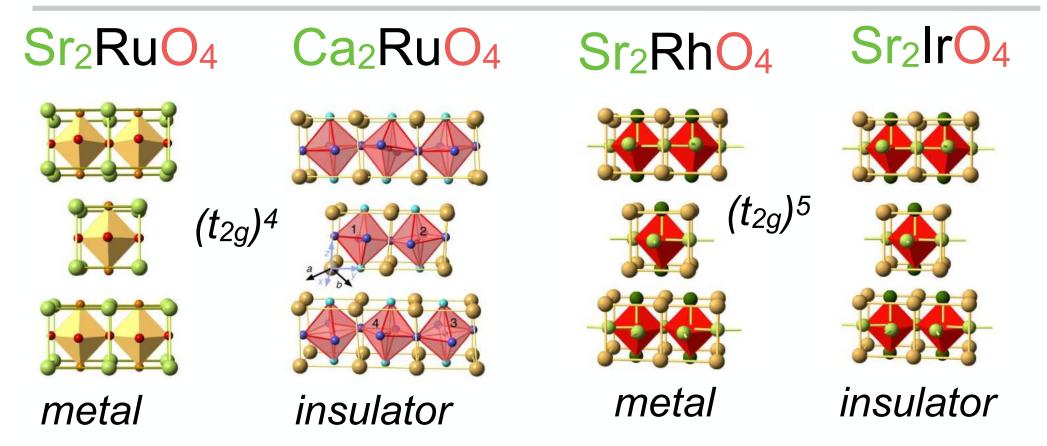
orbital physics: interplay of spin, orbital, charge, lattice degrees of freedom and correlations



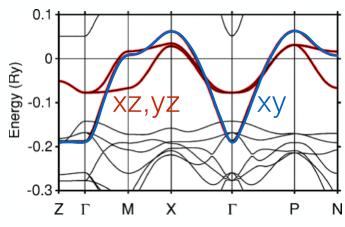


Experiments: insulator. Above 40 K a paramagnetic insulator

correlated materials: not only W/U



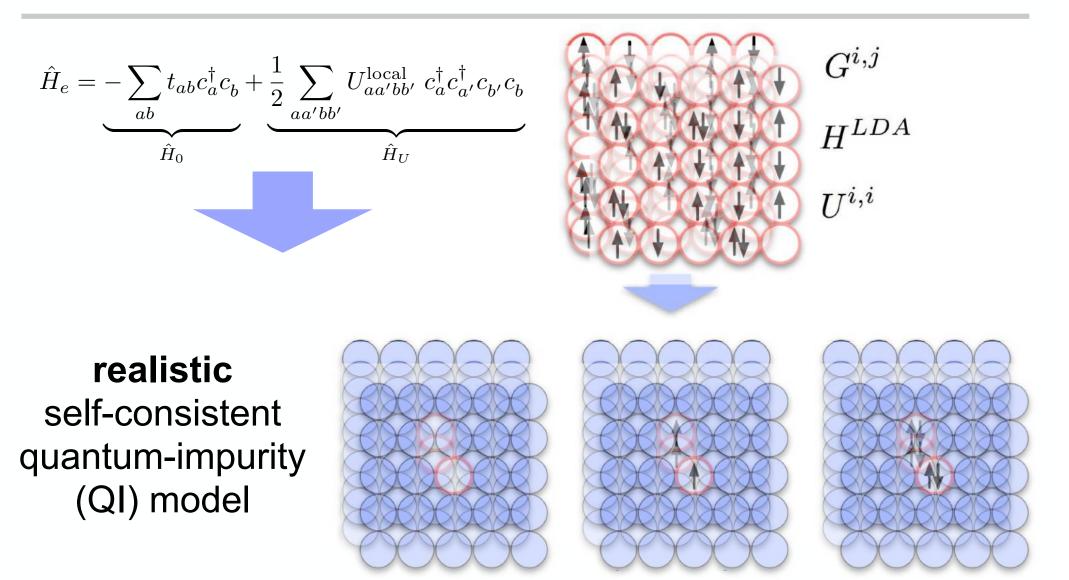
orbital physics: interplay of spin, orbital, charge, lattice degrees of freedom and correlations



PART 3

DMFT for Materials: DFT+DMFT

DMFT for materials (multi-orbital systems)



we need 1. **minimal** material-specific models and 2. **flexible and efficient** solvers

1. minimal models: DFT-based Wannier functions

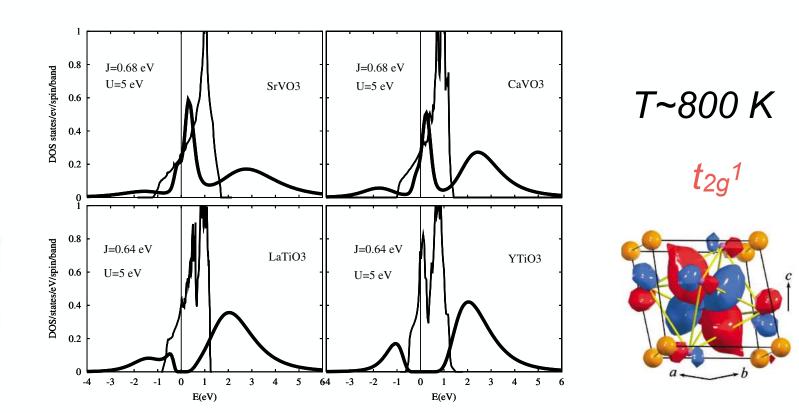
VOLUME 92, NUMBER 17

PHYSICAL REVIEW LETTERS

week ending 30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic $3d^1$ Perovskites

E. Pavarini, ¹ S. Biermann, ² A. Poteryaev, ³ A. I. Lichtenstein, ³ A. Georges, ² and O. K. Andersen ⁴



small crystal-field+hoppings play key role

 Δ =200-300 meV

2. flexible and efficient solvers: our package

$$H = - \sum_{ii'} \sum_{mm'} \sum_{\sigma} t^{ii'}_{mm'} c^{\dagger}_{im\sigma} c_{i'm'\sigma}$$

self-energy matrix in spin-orbital space

$$+ U \sum_{im} n_{im\uparrow} n_{im\downarrow} + \frac{1}{2} \sum_{im} (U - 2J - im) \frac{1}{2} \sum_{im} (U - 2J - im) \frac{1}{2} \frac{1}{$$

$$+ \frac{1}{2} \sum_{im \neq m'\sigma\sigma'} (U - 2J - J\delta_{\sigma\sigma'}) n_{im\sigma} n_{im'\sigma'}$$

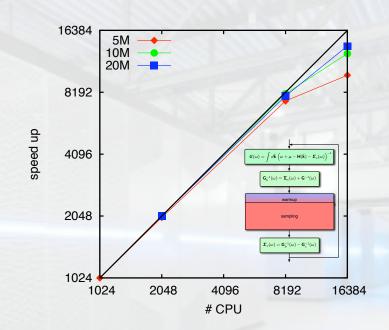
$$-J\sum_{m\neq m'}(c_{m\uparrow}^{\dagger}c_{m'\downarrow}^{\dagger}c_{m'\uparrow}c_{m\downarrow}+c_{m\uparrow}^{\dagger}c_{m\downarrow}^{\dagger}c_{m'\uparrow}c_{m'\downarrow})$$

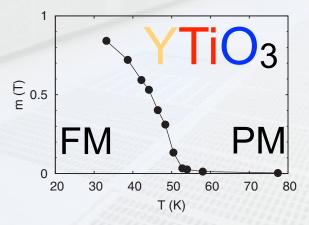
DMFT and cDMFT

generalized quantum impurity solvers:

general HF QMC general CT-INT QMC general CT-HYB QMC

- ◆ CT-INT: E. Gorelov et al, PRL 104, 226410 (2010)
- ◆ CT-INT+SO: G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)





build minimal material-specific models

the many-body problem

$$\hat{H}_e = -\frac{1}{2} \sum_{i} \nabla_i^2 + \frac{1}{2} \sum_{i \neq i'} \frac{1}{|\mathbf{r}_i - \mathbf{r}_{i'}|} - \sum_{i,\alpha} \frac{Z_{\alpha}}{|\mathbf{r}_i - \mathbf{R}_{\alpha}|} + \frac{1}{2} \sum_{\alpha \neq \alpha'} \frac{Z_{\alpha}Z_{\alpha'}}{|\mathbf{R}_{\alpha} - \mathbf{R}_{\alpha'}|}$$

electronic Hamiltonian in 2nd quantization

$$\hat{H}_e = \underbrace{-\sum_{ab} t_{ab} c_a^{\dagger} c_b}_{\hat{H}_0} + \underbrace{\frac{1}{2} \sum_{aa'bb'} U_{aa'bb'} c_a^{\dagger} c_{a'}^{\dagger} c_{b'} c_b}_{\hat{H}_U}$$

complete one-electron basis set!

the quantum many-body problem

$$\hat{H}_e = \underbrace{-\sum_{ab} t_{ab} c_a^{\dagger} c_b}_{\hat{H}_0} + \underbrace{\frac{1}{2} \sum_{aa'bb'} U_{aa'bb'} c_a^{\dagger} c_{a'}^{\dagger} c_{b'} c_b}_{\hat{H}_U}$$

hopping integrals

$$t_{ab} = -\int d\mathbf{r} \,\overline{\phi_a}(\mathbf{r}) \left(-\frac{1}{2} \nabla^2 - \sum_{\alpha} \frac{Z_{\alpha}}{|\mathbf{r} - \mathbf{R}_{\alpha}|} \right) \phi_b(\mathbf{r})$$

$$v_{\text{en}}(\mathbf{r})$$

$$U_{aa'bb'} = \int d\mathbf{r}_2 \int d\mathbf{r}_2 \, \overline{\phi_a}(\mathbf{r}_1) \, \overline{\phi_{a'}}(\mathbf{r}_2) \, \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \, \phi_{b'}(\mathbf{r}_2) \, \phi_b(\mathbf{r}_1)$$

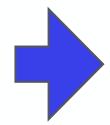
Coulomb integrals

1. basis choice

in theory all basis are identical

$$\hat{H}_e = -\sum_{ab} t_{ab} c_a^{\dagger} c_b + \underbrace{\frac{1}{2} \sum_{aa'bb'} U_{aa'bb'} c_a^{\dagger} c_{a'}^{\dagger} c_{b'} c_b}_{\hat{H}_U}$$

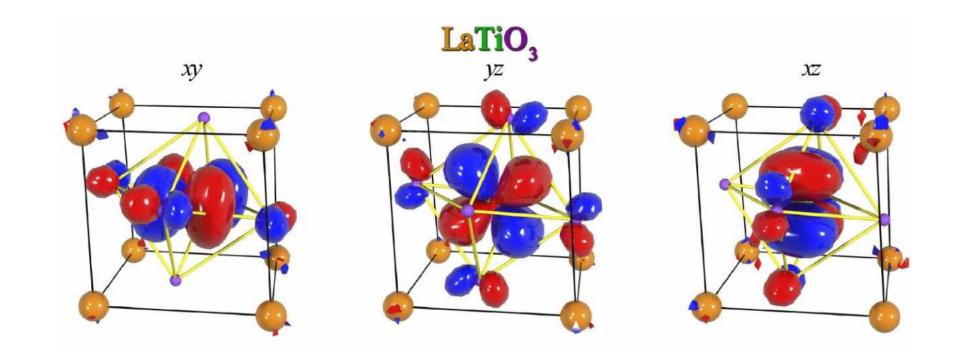
in practice some bases are better than others



DFT-based (Kohn-Sham) Wannier functions

Wannier functions: Fourier transform of Bloch states

why Kohn-Sham Wannier functions?

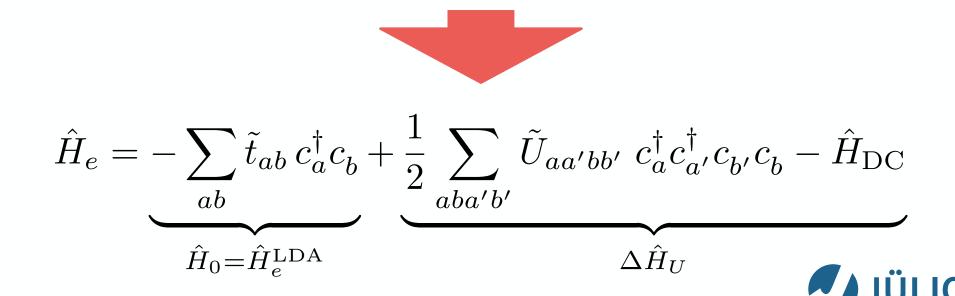


localized, orthogonal, span bands exactly carry information on lattice and chemistry

a price to pay: double-counting correction

$$\hat{H}_e = -\sum_{ab} t_{ab} c_a^{\dagger} c_b + \underbrace{\frac{1}{2} \sum_{aa'bb'} U_{aa'bb'} c_a^{\dagger} c_{a'}^{\dagger} c_{b'} c_b}_{\hat{H}_U}$$

Kohn-Sham Wannier orbitals



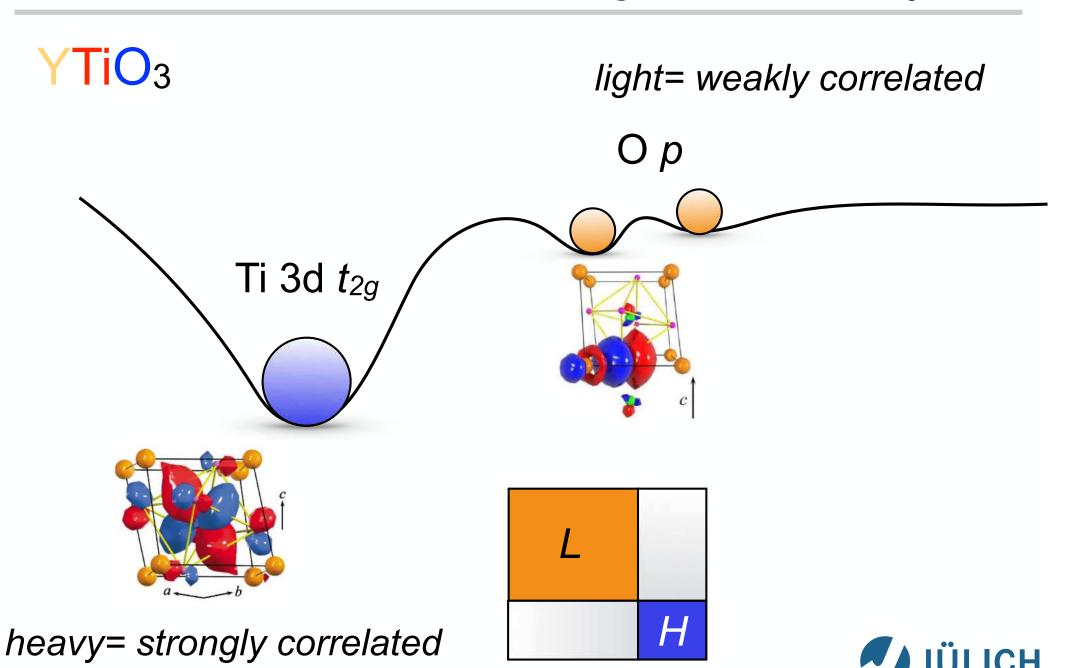
a price to pay: double-counting correction

$$\tilde{t}_{ab} = -\int d\mathbf{r} \, \overline{\phi_a^{\text{KS}}}(\mathbf{r}) \Big(-\frac{1}{2} \nabla^2 + v_{\text{R}}(\mathbf{r}) \Big) \phi_b^{\text{KS}}(\mathbf{r})$$

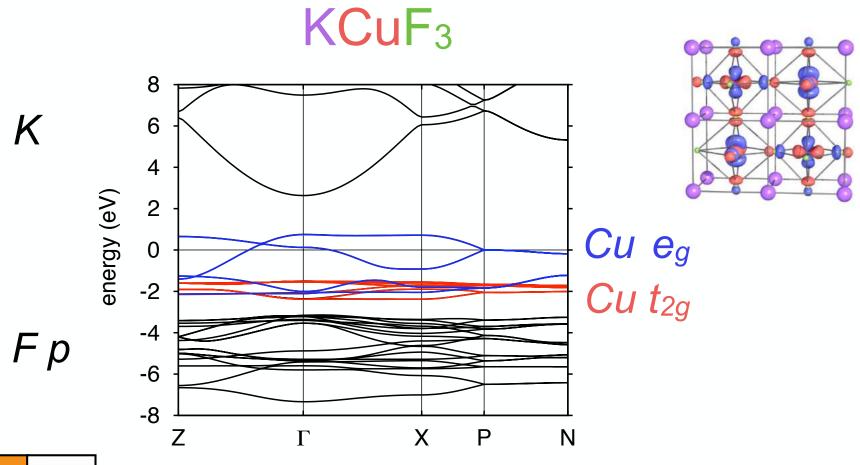
$$v_R(m{r}) = -\sum_{lpha} rac{Z_{lpha}}{|m{r} - m{R}_{lpha}|} + \int dm{r}' rac{n(m{r}')}{|m{r} - m{r}'|} + rac{\delta E_{ ext{xc}}[n]}{\delta n} = 0$$

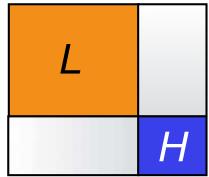
Hartree exchange-correlation

2. divide electrons in *light* and *heavy*



which electrons are *heavy*?

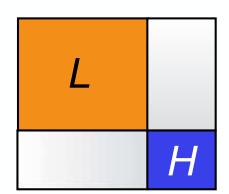


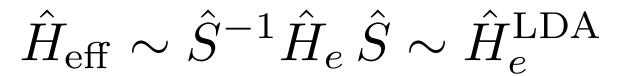


typically bands from partially filled d/f shells at the Fermi level

weakly-correlated or light electrons

$$\hat{H}_e = -\sum_{ab} \tilde{t}_{ab} c_a^{\dagger} c_b + \underbrace{\frac{1}{2} \sum_{aba'b'} \tilde{C}_{ac'bb'} c_a^{\dagger} c_{a'}^{\dagger} c_{a'} c_b - \hat{H}_{DC}}_{\hat{H}_0 = \hat{H}_e^{LDA}}$$





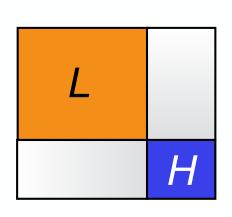
strongly-correlated or heavy electrons

Hubbard-like approximation

$$\hat{H}_e = -\sum_{ab} \tilde{t}_{ab} c_a^{\dagger} c_b + \frac{1}{2} \sum_{aba'b'} \tilde{U}_{aa'bb'} c_a^{\dagger} c_{a'}^{\dagger} c_{b'} c_b - \hat{H}_{DC}$$

$$\hat{H}_0 = \hat{H}_e^{LDA}$$

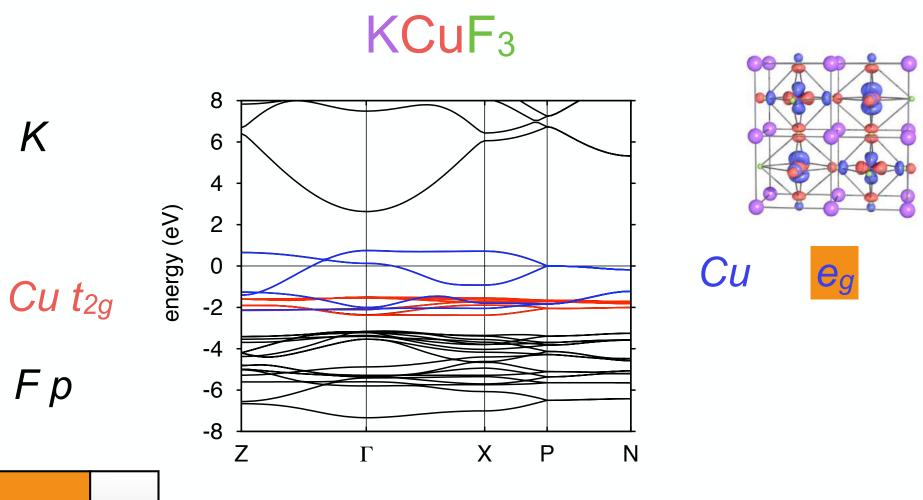
$$\Delta \hat{H}_U$$



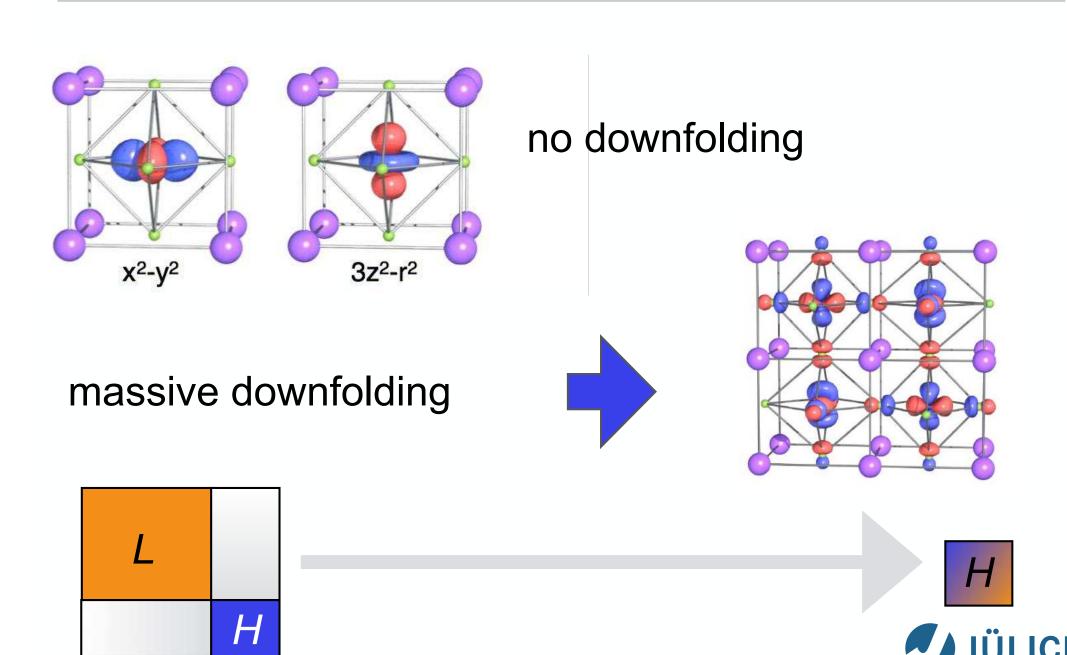
$$\hat{H}_{\text{eff}} \sim \hat{S}^{-1} \hat{H}_e \, \hat{S} \sim \hat{H}_{\text{Hubbard-like}}$$

$$\hat{H}_{e} = -\sum_{ab} \tilde{t}_{ab} c_{a}^{\dagger} c_{b} + \underbrace{\frac{1}{2} \sum_{aba'b'} \tilde{U}_{aa'bb'}^{\text{local}} c_{a}^{\dagger} c_{b'}^{\dagger} c_{b'} c_{b} - \hat{H}_{\text{DC}}^{\text{local}}}_{\Delta \hat{H}_{U}}$$

3. how much do we downfold?



dowfolding level and Wannier orbitals



4. double-counting correction

$$\hat{H}_{e} = \underbrace{-\sum_{ab} \tilde{t}_{ab} c_{a}^{\dagger} c_{b}}_{\hat{H}_{0} = \hat{H}_{e}^{\mathrm{LDA}}} + \underbrace{\frac{1}{2} \sum_{aba'b'} \tilde{U}_{aa'bb'}^{\mathrm{local}} c_{a}^{\dagger} c_{b'}^{\dagger} c_{b'} c_{b} - \hat{H}_{\mathrm{DC}}^{\mathrm{local}}}_{\Delta \hat{H}_{U}}$$

for massive downfolding (e.g., one band)
= shift of chemical potential

massive downfolding: DC correction

around mean-field approximation

$$\hat{H}_{U} = U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

$$\hat{H}_{DC} = U \sum_{i} \left(\hat{n}_{i\uparrow} \bar{n}_{i\downarrow} + \bar{n}_{i\uparrow} \hat{n}_{i\downarrow} - \bar{n}_{i\uparrow} \bar{n}_{i\downarrow} \right)$$

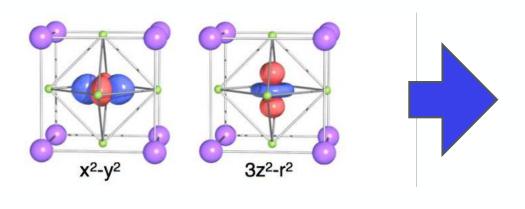
$$\bar{n}_{i\sigma} = n/2$$

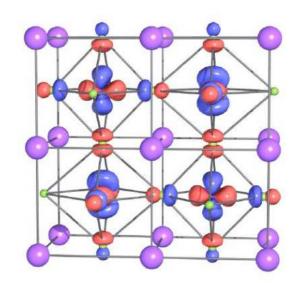
$$\hat{H}_{DC} = \frac{n}{2}U\sum_{i}\left(\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow} - \frac{n}{2}\right) = \delta\mu\hat{N} - \text{const}$$

5. the Coulomb integrals: screening

$$U_{aa'bb'} = \int d\mathbf{r}_2 \int d\mathbf{r}_2 \, \overline{\phi_a}(\mathbf{r}_1) \, \overline{\phi_{a'}}(\mathbf{r}_2) \, \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \, \phi_{b'}(\mathbf{r}_2) \, \phi_b(\mathbf{r}_1)$$

bare Coulomb integrals





5. the Coulomb integrals: screening

$$U_{aa'bb'} = \int d\mathbf{r}_2 \int d\mathbf{r}_2 \, \overline{\phi_a}(\mathbf{r}_1) \, \overline{\phi_{a'}}(\mathbf{r}_2) \, \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \, \phi_{b'}(\mathbf{r}_2) \, \phi_b(\mathbf{r}_1)$$

bare Coulomb integrals

however, screening effects

$$U_{bare} \rightarrow U_{screened}$$

(approximate schemes: cLDA, cRPA)

cRPA

$$U_{aa'bb'} = \int d\mathbf{r}_2 \int d\mathbf{r}_2 \, \overline{\phi_a}(\mathbf{r}_1) \, \overline{\phi_{a'}}(\mathbf{r}_2) \, W(\mathbf{r}_1 - \mathbf{r}_2) \, \phi_{b'}(\mathbf{r}_2) \, \phi_b(\mathbf{r}_1)$$

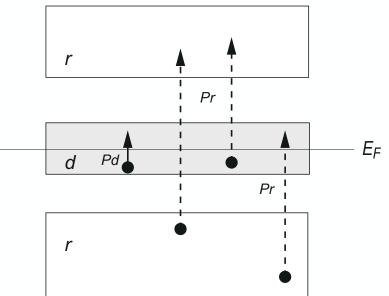
screened Coulomb integrals

$$W = \frac{U}{1 - UP_r}$$

$$P=P_d+P_r$$
 polarization function

$$P = P^0$$

$$P^{0}(\mathbf{r}, \mathbf{r}'; \omega) = -2 \sum_{i}^{\text{occ}} \sum_{j}^{\text{unocc}} \left(\frac{f_{ij}(\mathbf{r}, \mathbf{r}')}{\omega + (\varepsilon_{j} - \varepsilon_{i} - i\delta)} - \frac{f_{ij}^{*}(\mathbf{r}, \mathbf{r}')}{\omega - (\varepsilon_{j} - \varepsilon_{i} - i\delta)} \right),$$



t_{2g} or e_g only models, spherical Coulomb

$$\hat{H}_e = -\sum_{ab} \tilde{t}_{ab} c_a^{\dagger} c_b + \frac{1}{2} \sum_{aba'b'} \tilde{U}_{aa'bb'} c_a^{\dagger} c_{a'}^{\dagger} c_{b'} c_b - \hat{H}_{DC}$$

$$\hat{H}_0 = \hat{H}_a^{LDA}$$

$$\Delta \hat{H}_U$$

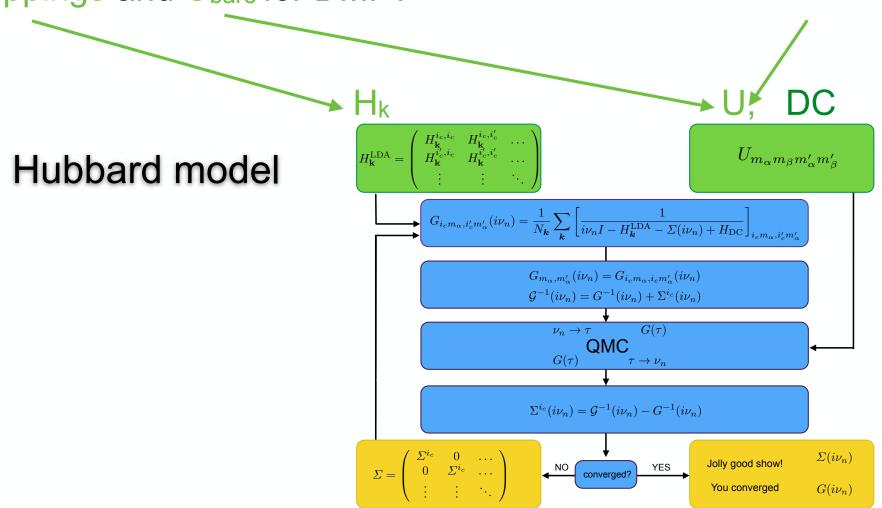
Hund's rule J

$$\begin{split} \hat{H} &= -\sum_{\sigma} \sum_{i \neq i'} \sum_{mm'} t_{m,m'}^{i,i'} c_{im\sigma}^{\dagger} c_{i'm'\sigma} \\ &+ U \sum_{i \ m} \hat{n}_{im\uparrow} \hat{n}_{im\downarrow} + \frac{1}{2} \sum_{\substack{i \sigma \sigma' \\ m \neq m'}} (U - 2J - J \delta_{\sigma,\sigma'}) \, \hat{n}_{im\sigma} \hat{n}_{im'\sigma'} \\ &- J \sum_{i \ m \neq m'} \left(c_{im\uparrow}^{\dagger} c_{im\downarrow}^{\dagger} c_{im'\uparrow} c_{im'\downarrow} + c_{im\uparrow}^{\dagger} c_{im\downarrow} c_{im'\downarrow}^{\dagger} c_{im'\uparrow} \right) \end{split}$$

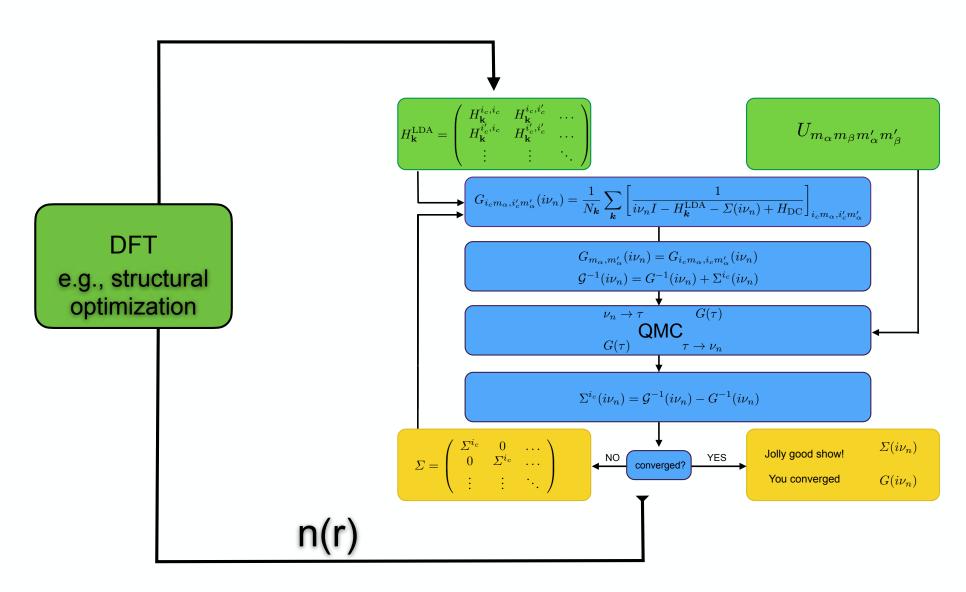
collecting everything together

heavy electrons: hoppings and U_{bare} for DMFT light electrons:

Kohn-Sham bands and screening



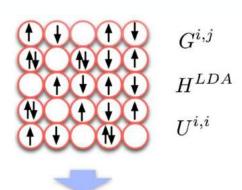
charge self-consistency



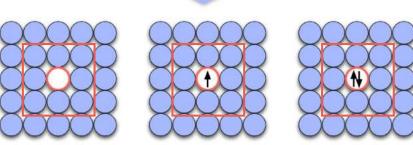
non-local effects: cluster extensions

in DMFT we can account for spatial long-range correlations

but not for short-range correlations



cluster DMFT



cluster in k space: DCA

does it work? yes! details matter

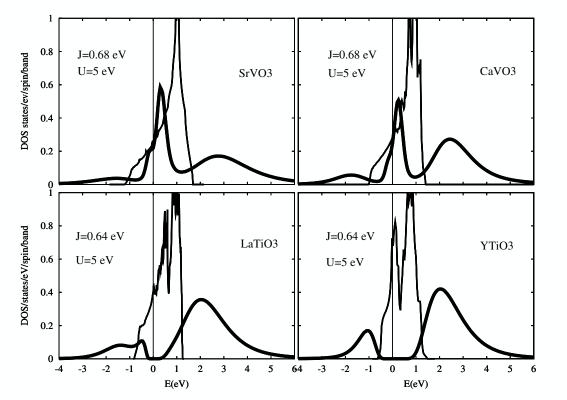
VOLUME 92, NUMBER 17

PHYSICAL REVIEW LETTERS

week ending 30 APRIL 2004

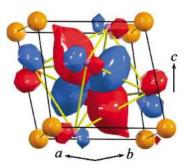
Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic $3d^1$ Perovskites

E. Pavarini, ¹ S. Biermann, ² A. Poteryaev, ³ A. I. Lichtenstein, ³ A. Georges, ² and O. K. Andersen ⁴



T~800 K

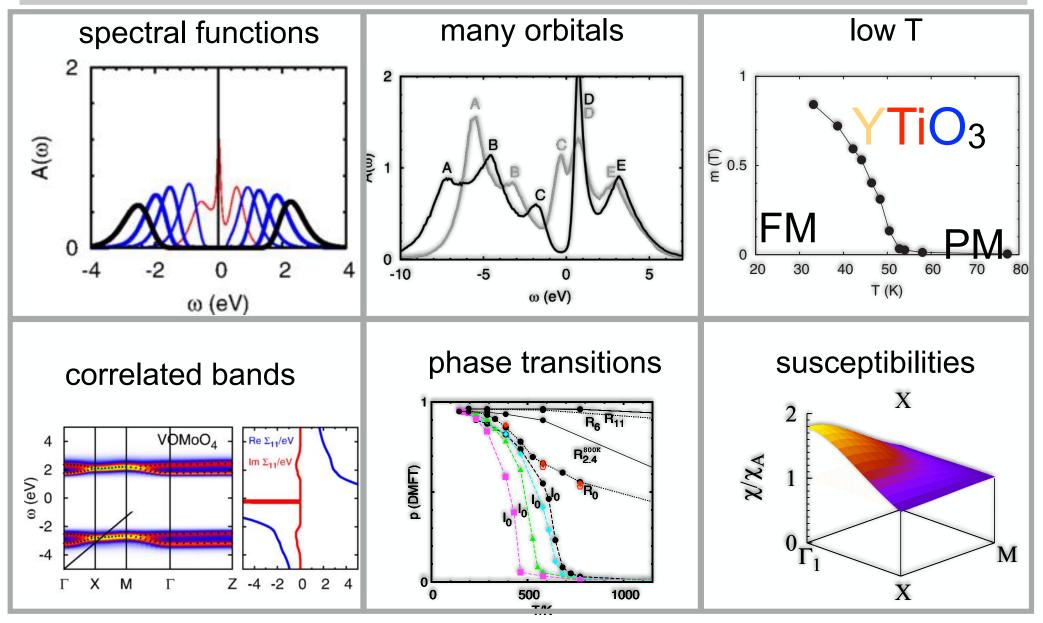
 t_{2g}^{1}



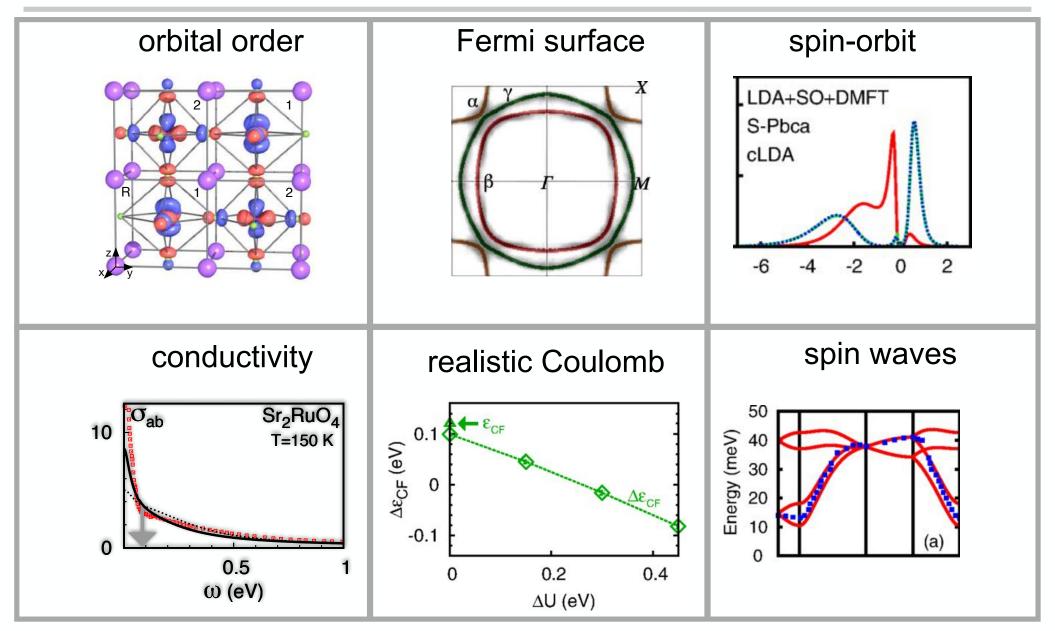
small crystal-field+hoppings play key role

 Δ =200-300 meV

what can we do so far?



what can we do so far?



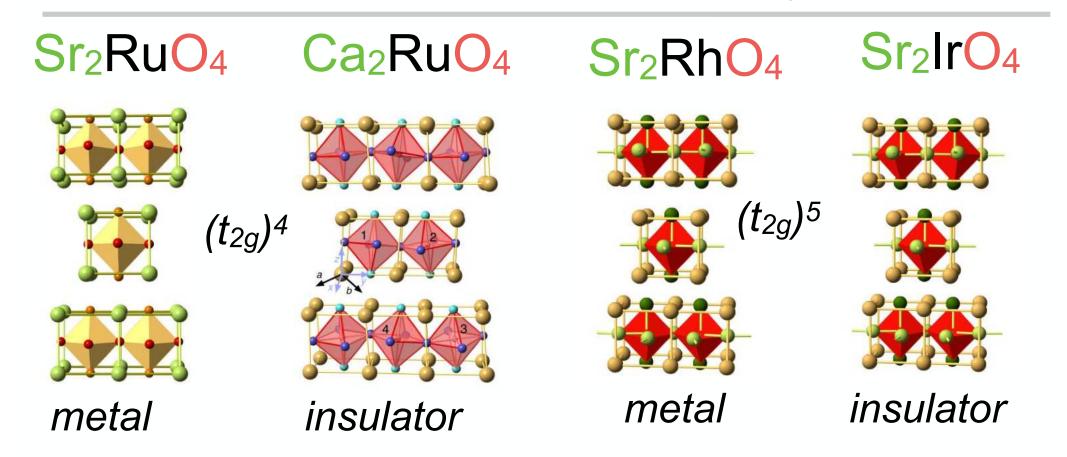
PART 4

two paradigmatic examples

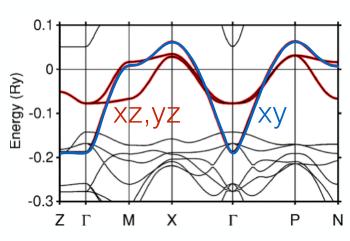
- (a) Sr₂RuO₄ and its family: modeling evolution and unifying picture
- (b) origin of orbital ordering: two theories, same prediction

Sr₂RuO₄ and its family: what is the minimal model?

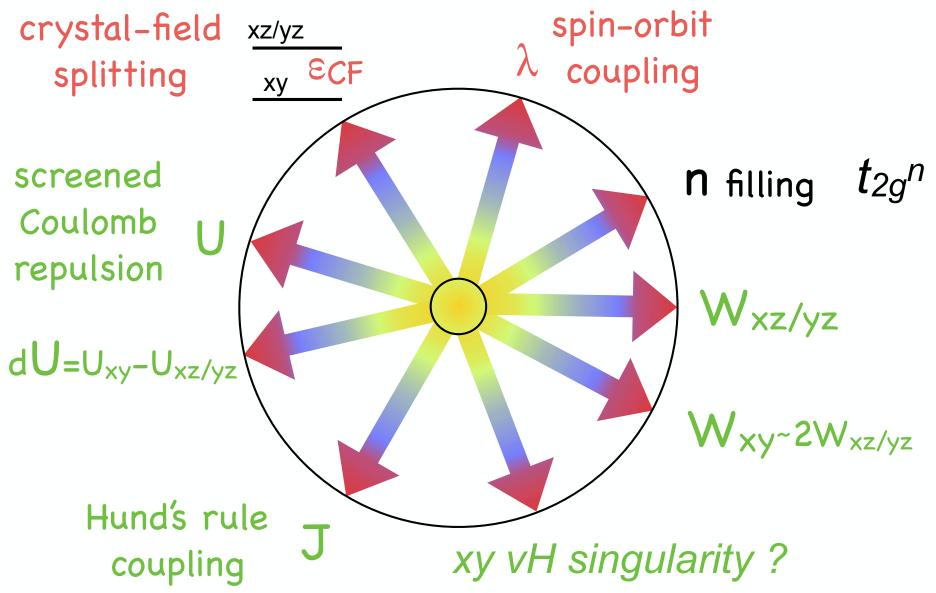
correlated materials: not only W/U



orbital physics: interplay of spin, orbital, charge, lattice degrees of freedom in the presence of correlations

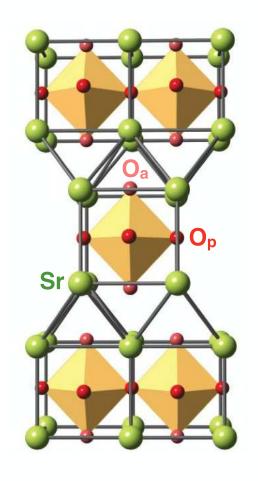


many energy scales are similar

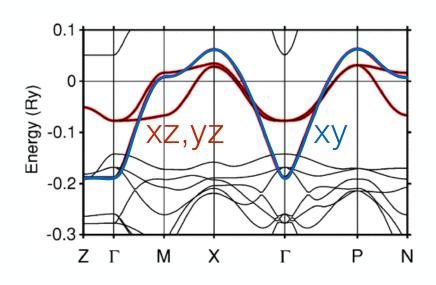


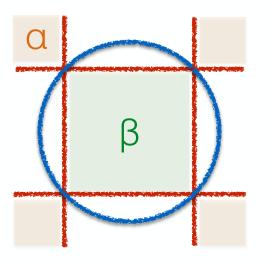
minimal model evolved with time

Sr₂RuO₄: Fermi surface riddle



Ru t_{2g}^4 $W_{xy} \sim 2W_{xz/yz}$

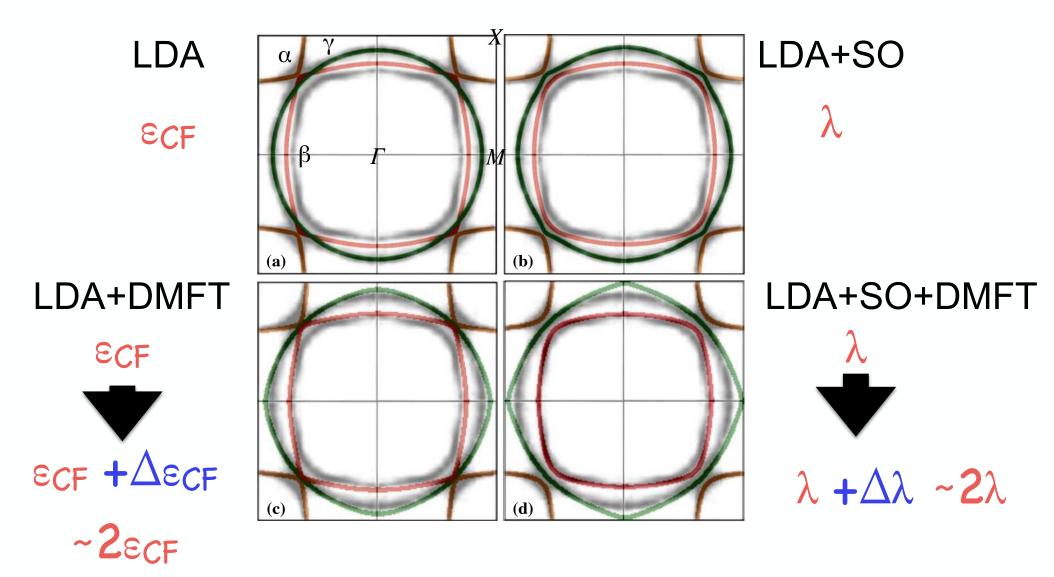




Fermi surface

correlations do not improve agreement

experiments (grey map): A. Damascelli et al., Phys. Rev. Lett. 85, 5194 (2000)



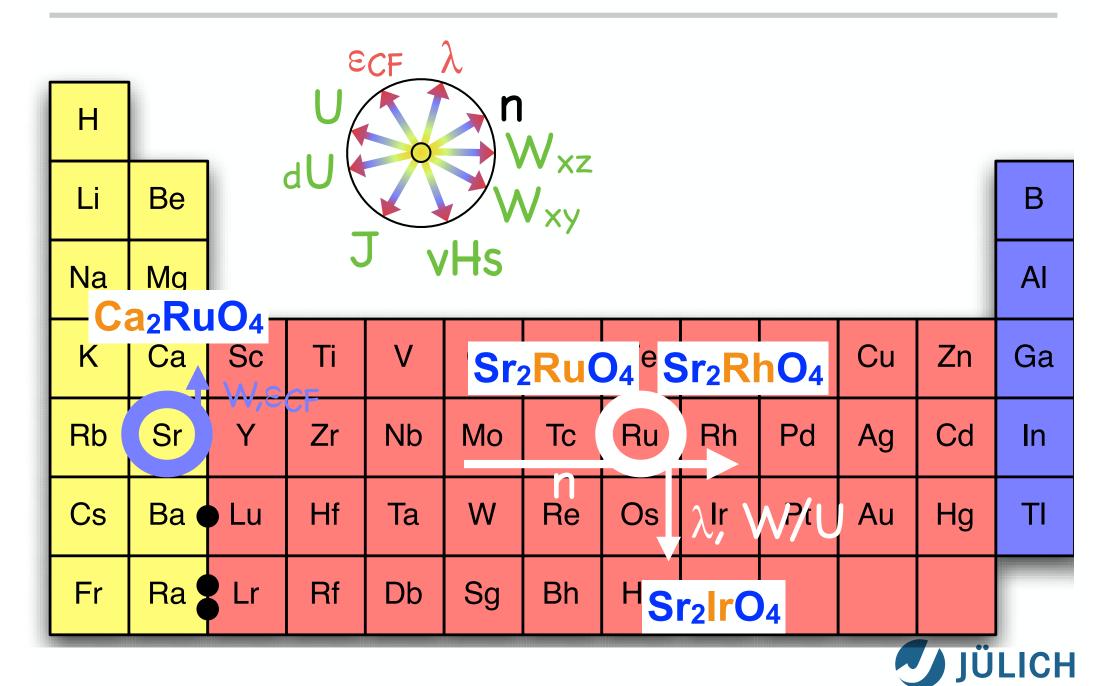
? a crucial mechanism is still missing?

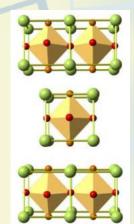
the bare Coulomb interaction is spherical dU

but the **screened** interaction has the symmetry of the site

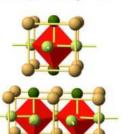
$$\epsilon_{CF} + \Delta' \epsilon_{CF} \sim \epsilon_{CF}$$

the Sr₂RuO₄ family: exploit complexity





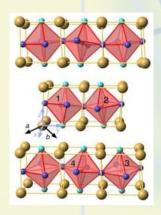
correlated metal m_{xy}>m_{xz/yz}



weakly correlated metal

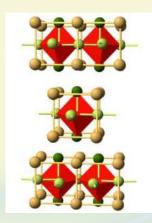
only 2-bands xz/yz at Fermi surface

Ca₂RuO₄



small gap insulator xy-orbital order spin-orbit important only for magnetism

Sr₂IrO₄



spin-orbit Mott insulator small gap

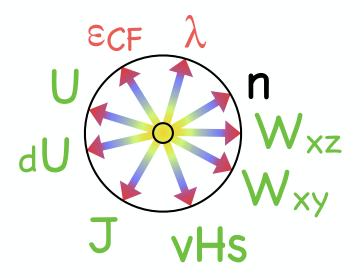
j=1/2 orbital order only 1-band half-fillled

 $(t_{2g})^4$

can we build a unifying picture?

yes!

ε_{CF} changes natural occupations build map of CF (ε_{CF}) effects!



PHYSICAL REVIEW LETTERS 132, 236505 (2024)

Map of Crystal-Field Effects in Correlated Layered t_{2g}^n Perovskites

Neda Samani, ¹ Guoren Zhang, ^{1,2,3} and Eva Pavarini, ^{1,4}

¹Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

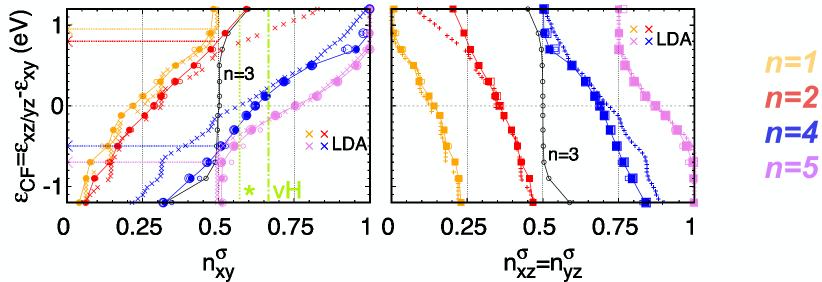
²School of Physics and Technology, Nantong University, Nantong 226019, People's Republic of China

³Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

⁴JARA High-Performance Computing, Forschungszentrum Jülich, Germany

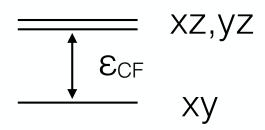
ε_{CF} changes natural occupations

$$\lambda = 0$$
 natural orbitals=xy,xz/yz



CF splitting

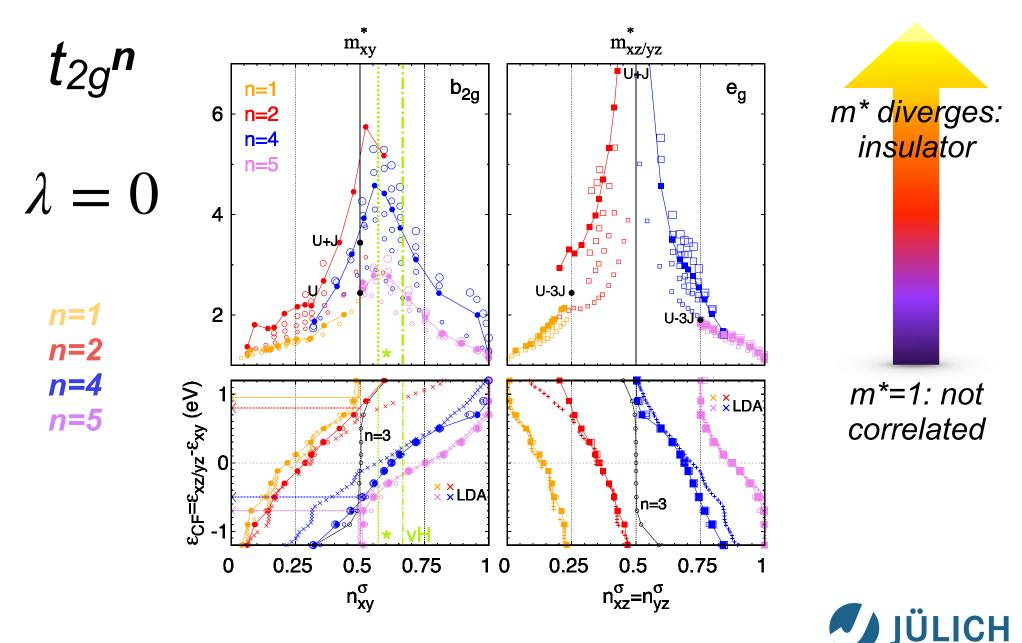
 $n=n_{xy}+2n_{xz/yz}$



crosses: U=0

closed symbols: finite U

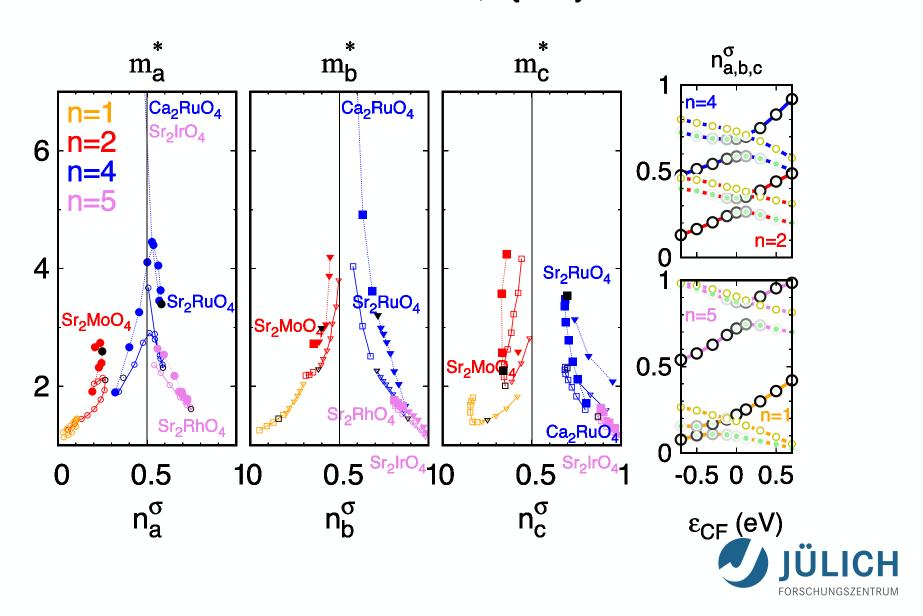
map of crystal-field splitting: effective masses



moderate (realistic) U,J, fixed U/W

switch on moderate spin-orbit coupling

λ as in Sr₂RuO₄ (4d)



what is the origin of orbital ordering in materials?

two theories, same experimental results

spontaneous ordering of orbitals

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii

P. N. Lebedev Physics Institute
(Submitted November 13, 1972)

Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

Exchange interaction in magnetic substances containing ions with orbital degeneracy is considered. It is shown that, among with spin ordering, superexchange also results in cooperative ordering of Jahn-Teller ion orbitals, which, generally speaking, occurs at a higher temperature and is accompanied by distortion of the lattice (which is a secondary effect here). Concrete studies are performed for substances with a perovskite structure (KCuF₃, LaMnO₃, MnF₃). The effective spin Hamiltonian is obtained for these substances and the properties of the ground state are investigated. The orbital and magnetic structures obtained in this way without taking into account interaction with the lattice are in accord with the structures observed experimentally. The approach employed also permits one to explain the strong anisotropy of the magnetic properties of these compounds and to obtain a reasonable estimate for the critical temperatures.

KCuF₃

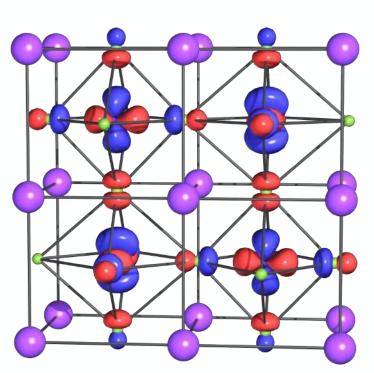
LaMnO₃

$$H_{SE}^{ii'} = J_{SS}S_i \cdot S_{i'} + J_{OO}O_iO_{i'} + J_{SO}(O_iO_{i'})(S_i \cdot S_{i'})$$

the secondary effect

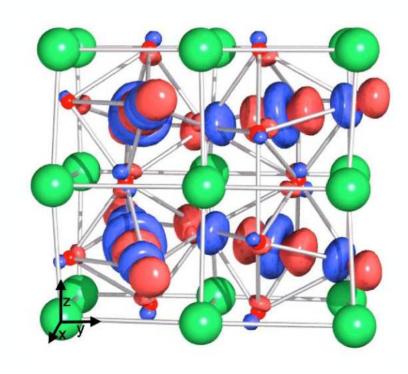
co-operative Jahn-Teller-like distortion

KCuF₃



 $t_{2g}^6 e_g^3$ G-type OO

LaMnO₃



 $t_{2g}^3e_g^1$

C-type OO

orbital ordering and orbital physics

CORRELATED ELECTRON SYSTEMS

Orbital Physics in Transition-Metal Oxides

Y. Tokura^{1,2} and N. Nagaosa¹

An electron in a solid, that is, bound to or nearly localized on the atomic site, has three attributes: charge, spin, and orbital. Th represents the shape of the electron cloud in solid. In transition oxides with anisotropic-shaped d-orbital electrons, the Coulomb tion between the electrons (strong electron correlation effection importance for understanding their metal-insulator transitions a erties such as high-temperature superconductivity and colossal toresistance. The orbital degree of freedom occasionally plays a tant role in these phenomena, and its correlation and/or order transition causes a variety of phenomena through strong coup charge, spin, and lattice dynamics. An overview is given here "orbital physics," which will be a key concept for the science a nology of correlated electrons.

103, 067205 (2009)

PHYSICAL RE

Magnetically Hidden Order of Kra

George Jackeli* and Giniyat Khaliullin

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany (Received 10 June 2009; published 7 August 2009)

We formulate and study an effective Hamiltonian for low-energy Kramers doublets of d^1 ions on a square lattice. We find that the system exhibits a magnetically hidden order in which the expectation values of the local spin and orbital moments both vanish. The order parameter responsible for a timereversal symmetry breaking has a composite nature and is a spin-orbital analog of a magnetic octupole. We argue that such a hidden order is realized in the layered perovskite Sr₂VO₄.

DOI: 10.1103/PhysRevLett.103.067205

PACS numbers: 75.30.Et, 71.70.Ej, 75.10.Jm

Electronic reconstruction at

an interface between a Mott

insulator and a band in

Department of Physics, Columbia University 538

Surface science is an important and we

materials science involving the study

Satoshi Okamoto & Andrew J. Millis

New York 10027, USA

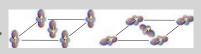
TRANSITION METAL OXIDES

The discovery that the rotation of the orbital arrangement in manganites induces ferroelectricity exposes an intriguing phase transition that could serve as a blueprint for novel applications.

BERNHARD KEIMER

is at the May Planck Institute for Solid State Rese e-mail: B.Keimer@fkf.mpg.de

ransition metal oxides have fascinated scientists since the 1950s, when the newly developed technique of neutron diffraction was used to show that the compound La_{1-x}Ca_xMnO₃ exhibits a rich show that the compound La_{1-x} variety of structural and magnetic phases as the Ca concentration is tuned. The fascination has increased in the wake of the discovery of high-temperature superconductivity in a chemically similar compound



VOLUME 85, NUMBER 18

PHYSICAL REVIEW LETTERS

rviv org/pdf/0911 3379 🔻

30 OCTOBER 2000

[PDF] 1 Metal-Insulator Transition and Orbital Order in ... - arXiv....

rhital f the ...

er in ...

Orbital Liquid in Three-Dimensional Mott Insulator: LaTiO₃

G. Khaliullin^{1,2} and S. Maekawa²

¹Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany ²Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan (Received 5 June 2000)

ni pocket, the

of spin and orbital states in Mott insulator LaTiO3. The spin-orbital superexchange (t_{2g}) ions in cubic crystal suffers from a pathological degeneracy of orbital states Quantum effects remove this degeneracy and result in the formation of the coherent the orbital moment of t_{2g} level is fully quenched. We find a finite gap for orbital isordered state of local degrees of freedom on unfrustrated, simple cubic lattice is al liquid state naturally explains observed anomalies of LaTiO3.

es of spin and

PRL 99, 156401 (2007)

Superexchange Interaction in Orbitally Fluctuating RVO₃

PHYSICAL REVIEW LETTERS

J.-S. Zhou and J. B. Goodenough

Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA

J.-O. Yan

Ames Laboratory, Ames, Iowa 50011, USA

Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 18 May 2007; published 8 October 2007)

▼I ScienceDirect ▼

CTOBER 2007

etal oxides

les, and yet its.

ülich, Germany). Orbital

dv - ScienceDirect

ingular lattice system ueen et al. [Phys.

tion-metal ...

fornia, Los Angeles 🔻

Dy ∠ INUSSINOV - CITED DY 80 - Related articles

resonant X-ray scattering techniques in which the 3d orbital order is detected by its

ECS Journal of Solid State Science and Technology, 2022 11 054004 2162-8777/2022/11(5)/054004/16/\$40.00 © 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited

Review—Orbital Physics: Glorious Past, Bright Future

D. I. Khomskii²

II. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany

Transition metal (TM) compounds present a very big class of materials with quite diverse properties. There and systems with insulator-metal transitions among them; most magnetic systems are TM compounds; t superconductors among them. Their very rich properties are largely determined by the strong interplay freedom: charge; spin; orbital; lattice. Orbital effects play a very important role in these systems—and not of of this field, initiated by Goodenough almost 70 years ago, turned out to be very fruitful and produced a lot this short review I discuss the basics of orbital physics and summarize the main achievements in th Goodenough played a pivotal role, and which are nowadays widely used to explain many properties of TM of part of the text I discuss novel developments and perspectives in orbital physics, which is still a very a constantly producing new surprises.

© 2022 The Electrochemical Society ("ECS"), Published on behalf of ECS by IOP Publishing Limited, [DO ac6906]

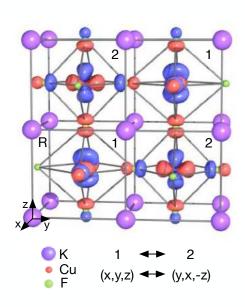
but there is the Jahn-Teller theorem

Crystal Distortion in Magnetic Compounds

JUNJIRO KANAMORI*

Institute for the Study of Metals, University of Chicago, Chicago 37, Illinois

The crystal distortion which arises from the Jahn-Teller effect is discussed in several examples. In the case of compounds containing Cu²+ or Mn³+ at octahedral sites, the lowest orbital level of these ions is doubly degenerate in the undistorted structure, and there is no spin-orbit coupling in this level. It is shown that, introducing a fictitious spin to specify the degenerate orbital states, we can discuss the problem by analogy with the magnetic problems. The "ferromagnetic" and "antiferromagnetic" distortions are discussed in detail. The transition from the distorted to the undistorted structure is of the first kind for the former and of the second kind for the latter. Higher approximations are discussed briefly. In compounds like FeO, CoO, and CuCr₂O₄, the lowest orbital level is triply degenerate, and the spin-orbit coupling is present in this level. In this case the distortion is dependent on the magnitude of the spin-orbit coupling relative to the strength of the Jahn-Teller effect term. The distortion at absolute zero temperature and its temperature dependence are discussed.

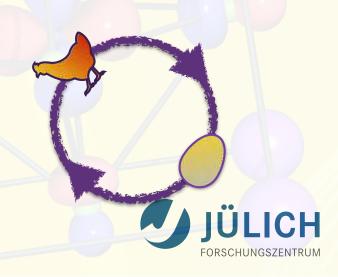


$$E_0 + \Delta/2$$
 Δ_{CF} e_g states θ

$$|\theta\rangle = \sin\frac{\theta}{2}|3z^2 - 1\rangle + \cos\frac{\theta}{2}|x^2 - y^2\rangle$$

are there true Kugel-Khomskii materials?

a chicken-and-egg problem



solution of chicken and egg problem

PRL 101, 266405 (2008)

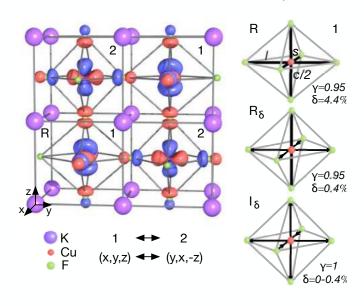
PHYSICAL REVIEW LETTERS

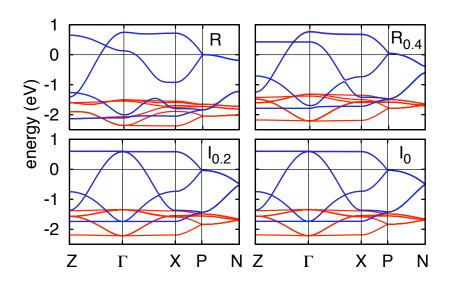
week ending 31 DECEMBER 2008

Mechanism for Orbital Ordering in KCuF₃

E. Pavarini, ¹ E. Koch, ¹ and A. I. Lichtenstein ²

¹Institut für Festkörperforschung and Institute for Advanced Simulation, Forschungzentrum Jülich, 52425 Jülich, Germany ²Institute of Theoretical Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany (Received 18 August 2008; published 31 December 2008)



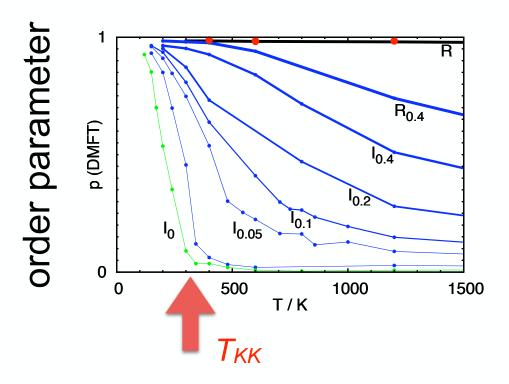


to single out KK effects:

- (i) progressively reduce distortion (hence CF splitting)
- (ii) calculate order parameter vs temperature

KK SE large but not sufficient alone

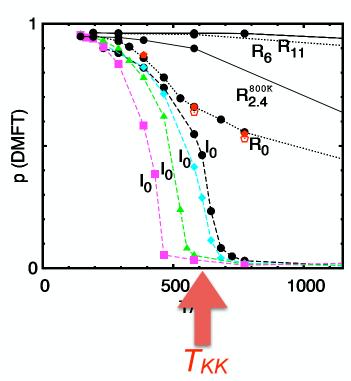
KCuF₃



Phys. Rev. Lett. **101**, 266405 (2008)

 $T_{KK} \sim 350 \text{ K} \ll T_{OO} \sim 1400 \text{ K}$

LaMnO₃



Phys. Rev. Lett. **104**, 086402 (2010)

 T_{KK} ~600 K « T_{OO} ~ 1200 K

RVO_{3} , t_{2g}^{2} : a unique series

PRL **99,** 156401 (2007)

PHYSICAL REVIEW LETTERS

week ending 12 OCTOBER 2007

Superexchange Interaction in Orbitally Fluctuating RVO₃

J.-S. Zhou and J. B. Goodenough

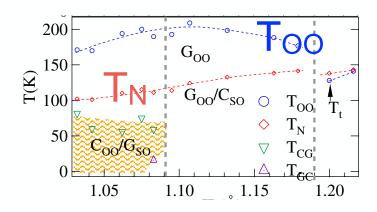
Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA

J.-Q. Yan

Ames Laboratory, Ames, Iowa 50011, USA

Y. Ren

Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA (Received 18 May 2007; published 8 October 2007)

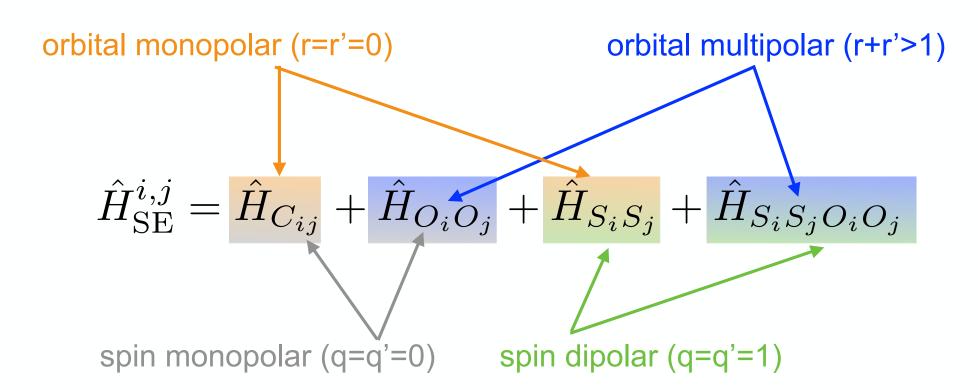


LaVO₃

 R_{l} =ionic radius

multipolar super-exchange expansion

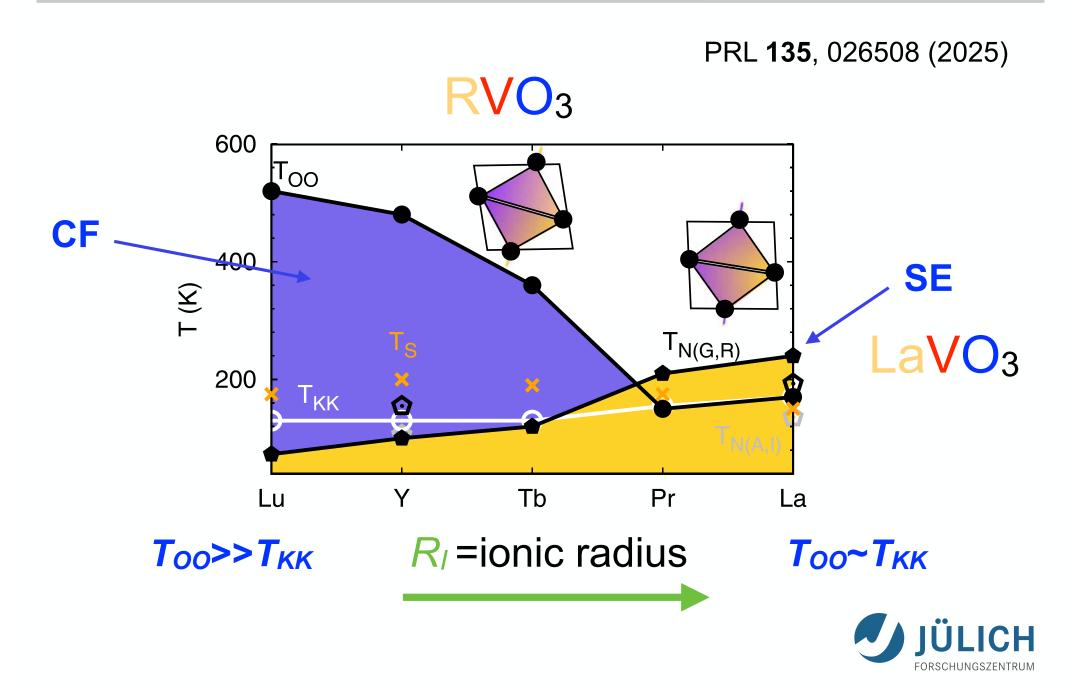
$$\hat{H}_{\mathrm{SE}}^{i,j} = \sum_{qq'} \sum_{\nu\nu'} \sum_{rr'} \sum_{\mu\mu'} \hat{\tau}_i^{r\mu;q\nu} D_{r\mu,r'\mu'}^{ij;q\nu} \hat{\tau}_j^{r'\mu';q\nu}$$
 r: orbital rank q:spin rank



S_iS_j term main contribution to T_N!

PRB **102**, 035113 (2020); PRB **106**, 115110 (2022); PRL **135**, 026508 (2025)

LaVO₃: a true Kugel-Khomskii system

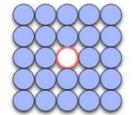


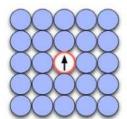
V: conclusions

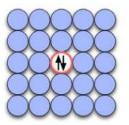
DFT+DMFT

dimer

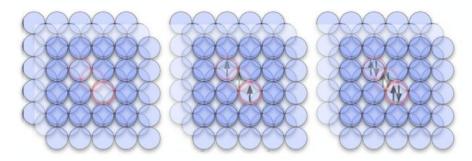
one band







multiband

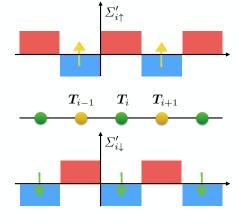


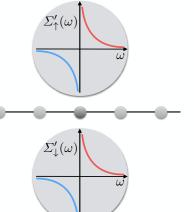
strong-correlations are local

DFT+U vs DFT+DMFT

Hartree-Fock

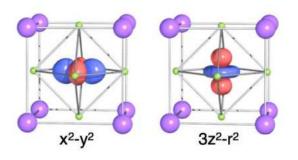
DMFT



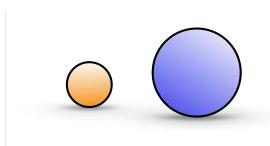


DFT+DMFT

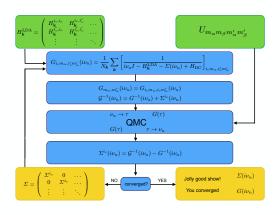
basis choice



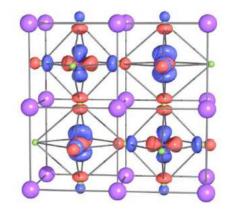
light & heavy electrons



DMFT



downfolding, localization, double counting & screening



understanding materials

