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1 Introduction
Amphiphilic molecules, in particular lipids, are the basic structural element of the membranes
in biological cells. A biomembrane is typically composed of many different lipids, which give
a cell many opportunities to control membrane properties by adjusting the membrane compo-
sition. This can modify the spontaneous curvature and the bending rigidity, and even lead to
phase separation and domain formation of lipids. In addition, a biological membrane contains a
large number of trans-membrane proteins, which control the exchange of water, ions, and small
molecules between the cell plasma and the extracellular space.
Vesicles are cells striped down to the minimum, a membrane enclosing a fluid volume. Vesicles
are therefore ideal model systems to investigate the physical properties of many components of
cells in isolation, without the full complexity of the cellular machinery. Because the systems
are well-defined, their properties can be analyzed and studied much more easily from a theo-
retical perspective. Although vesicles are relatively simple, they are still complex many-body
systems. Simulations therefore play a very important role in elucidating their equilibrium and
dynamic properties. Here, simulation approaches range from the molecular scale, where the
properties of lipids and membrane proteins are studied, over the supramolecular scale, where
the self-assembly of lipids and their phase-behavior can be investigated, to the vesicle scale,
where shapes and deformations due to external forces and fluid flow are studied. Simulations
are also important as the focus of the research is shifting from highly simplified to biologically
more relevant multi-component systems. An important example is red blood cells, which have
a cortical spectrin cytoskeleton attached to lipid-bilayer membrane inside the cell. This gives
the membrane a shear modulus. Moreover, red blood cells do not fluctuate only due to thermal
motion, but their fluctuations also have an active, metabolic component.

Because the physical effects in membranes cover a large range of relevant length- and time-
scales — from the quantum-mechanical behavior of motions in a single molecule and the
hydrogen-bonds between different molecules to the hydrodynamic behavior of vesicles and
cells — that no single computer model can capture them all, compare Fig. 1.
Therefore, several different models, which are suitable to study phenomena on a smaller range
of length scales as illustrated in Fig. 2, have been developed over the last decades:

• Microscopic Membrane Models — On the microscopic scale, all-atom simulations are
required, in which the positions of the atoms of all molecules as well as the interactions
between them are modeled explicitly. The interactions are sometimes treated quantum-
mechanically, but are modeled in most cases using classical force fields. This requires
the development of reliable force fields that allow a quantitative description of specific
structural properties of lipid bilayers, such as area per lipid, volume per lipid, bilayer
thickness, order parameter for their tail orientation, and headgroup hydration. Several
such force fields have been developed and tested in recent years [4,5]. However, Molecu-
lar Dynamics simulations of such models are restricted to a few hundred lipid molecules.
All-atom simulations are indispensable whenever the chemical structure of the participant
molecules is relevant for the phenomena under investigation. For example, the function-
ing of membrane proteins that act as an ion pumps can only be understood on the basis of
such atomistic models.

• Coarse-Grained Membrane Models — If the detailed chemical structure is not relevant
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Fig. 1: Characteristic time and length scales in amphiphile solutions. Physical phenomena
occurring at the various scales are indicated. Different models and simulation techniques are
required to capture the behavior at different scales. Their approximate ranges of validity are
shown by the shaded regions. From Ref. [1].

Fig. 2: Membranes models on different length scales. (a) Atomistic model (from Ref. [2]),
(b) coarse-grained model (from Ref. [3]), (c) solvent-free bilayer model, and (d) triangulated
surface model. Note that the characteristic length in these models is (a) a few Ångstroms, (b),(c)
a few nanometers (from Ref. [?]), and (d) tens to hundreds of nanometers (from Ref. [?]).
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but more generic properties of amphiphilic molecules are to be studied — like the number
of hydrocarbon tails, the chain length of the tails, or mixtures of two different amphiphiles
— then a coarse-grained description can be used, in which several atoms are lumped into
a single unit. These units are typically taken to be Lennard-Jones spheres. In such a
model, water becomes a Lennard-Jones fluid with attractive interactions, and amphiphilic
molecules become short polymer chains with two kinds of monomers, with attractive or
repulsive interactions with the solvent particles and the other monomers [6–8]. The size
of such a bead is of the order of a few water molecules or CH2 groups. Very similar
models, with Lennard-Jones interactions replaced by linear “soft” potentials, have also
been employed intensively in dissipative-particle dynamics (DPD) simulations [9–13].

The coarse-grained modeling can be taken one step further by taking into account the
different chemical nature (and electrical charge) of various head- and tail-groups [14,15].
This allows to go from a more qualitative to a more quantitative description of membrane
properties. Such models allow Molecular Dynamics simulations of few thousand lipids
and make it possible to study the formation, structure, and dynamics of small phospho-
lipid vesicles [14, 16].

• Solvent-Free Membrane Models — The solvent in a coarse-grained model is required
for two reasons. First, it is necessary to stabilize the bilayer structure due to the repulsion
between the solvent and the amphiphile tails. Second, it mediates hydrodynamic inter-
actions between different parts of the membrane. However, the simulation of the motion
of solvent particles consumes a large fraction of the total simulation time. Therefore,
solvent-free membrane models have been designed, which work as well as the models
with solvent when structural and thermodynamic properties are investigated. Additional
interactions between amphiphiles have to be introduced in this case in order to mimic
the hydrophobic interactions with the solvent [17–21]. This approach is advantageous in
the case of membranes in dilute solution, because it reduces the number of molecules by
orders of magnitude. However, the basic length scale is still on the order of magnitude of
the size of the amphiphilic molecules.

• Triangulated Surface Models — The natural length scale of the previous two classes
of membrane models is the size of the head group of a lipid molecule, i.e. roughly 1
nm. This is far too small to describe phenomena on the scale of giant vesicles or cells,
which have a diameter on the order of 10 µm. In this case, a continuum description on the
level of elasticity theory is required. The building blocks in such models are membrane
patches consisting of hundreds or thousands of lipid molecules. In order to make this
model amenable to computer simulations, dynamically-triangulated surfaces are often
employed [22, 23]. The main idea here is to connect membrane “nodes” (or “vertices”)
by a triangular network of bonds. The bond potentials are chosen such as to achieve a
homogeneous distribution of vertices on the membrane. For polymerized membranes, a
fixed connectivity represents the unbreakable bonding between neighboring molecules,
and implies a shear elasticity of the membrane. For fluid membranes, the network itself
has to be dynamic in order to account for possible “flow” of lipids within the membrane.

• Meshless Membrane Models — A different approach to discretize elasticity theory of
a two-dimensional surface embedded in three-dimensional space is to employ an ensem-
ble of membrane nodes without connecting them to form a triangulated mesh. Mesh-
less membrane models use instead pairwise and multi-particle interactions to (i) achieve
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a roughly homogeneous density of nodes on the membrane, and (ii) to favor smoothly
curved membrane conformations [24]. The advantage of meshless membrane models
is that open boundaries, which occur for example in membrane rupture, and topology
changes, like in vesicle fusion, can be very easily described.

2 Membrane Models and Simulation Techniques

2.1 Coarse-Grained Membrane Models
When the detailed chemical structure of the amphiphilic molecules is not important, a coarse-
grained modeling is very useful, where groups of several atoms or molecules are described by
only a single position vector. This is important, since it

• reduces the number of degrees of freedom, and therefore allows either to study the system
over a longer time range, or to study larger system sizes, or both;

• emphasizes the universal aspects, which are common to many different amphiphilic sys-
tems, independent of the detailed chemistry of a particular system.

In coarse-grained models, the solvent molecules are usually treated as spherical particles with
attractive Lennard-Jones interactions,

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (1)

where σ is the (effective) hard-core radius. The amphiphilic molecules are modeled as short
polymeric chains with head (H) and tail (T) particles, so that neighboring particles in the chain
interact via the harmonic-spring potential

Uchain(r) = kchain(r − σ)2. (2)

Different geometries of amphiphilic molecules are shown in Fig. 3. Head and head particles
attract each other with the Lennard-Jones potential (1), as well as head and solvent particles.
However, the tail particles have a repulsive interaction with both the head and the solvent par-
ticles. This interaction can be conveniently described by a shifted and truncated Lennard-Jones
potential

ULJ(r) =

{
4ε
[(

σ
r

)12 − (σ
r

)6]
+ ε for r < 21/6σ

0 otherwise

which has the advantage of being continuous and differentiable at the cutoff r = 21/6σ. In this
model, the Newton’s equation of motion for all particle position can be solved by a molecular
dynamics simulation employing the velocity-Verlet algorithm [25].
An alternative approach to simulate coarse-grained membrane models is dissipate-particle dy-
namics (DPD) [9, 11, 26]. An introduction into the DPD simulation technique can be found in
Sec. 2.6. In this case, the Lennard-Jones interactions between particle species are replaced by
the conservative forces

FC
ij = aij (1− rij/r0) r̂ij (3)

for distances rij < r0 and zero otherwise. All conservative forces are taken to be repulsive. Wa-
ter is slightly repelled from the amphiphile head, and is strongly repelled from the amphiphile
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Fig. 3: Typical amphiphilic molecules used in coarse-grained membrane models. The white
particles (H) represent the head group, the black particles (T) the tails. From Ref. [6].

tail, which provides the hydrophobic interaction needed to form bilayers. The amphiphile head
is hydrophilic and therefore repelled somewhat from its tail.
The coarse-grained membrane approach has been used to address a variety of questions recently,
inter alia membrane self-assembly and structure [6–9, 12, 27, 28], the spectrum of thermally
exited membrane fluctuations [7, 8], phase diagrams of lipid bilayers [29], pore formation in
membranes [30–32], domain-formation in multi-component membranes [11], and membrane
fusion [14, 26, 33–35].

2.2 Solvent-Free Membrane Models
Simulations of lipid membranes by molecular dynamics require the calculation of the motion
of a large number of water molecules in addition to the lipid molecules. To simulate a small
patch of a flat membrane with an atomistic model, about 30 water molecules per lipid were
found to be sufficient [2]. However, much more water molecules are needed for simulations of
vesicles, since the formation of a vesicle [see Sec. 3.2 needs a lot of solvent to prevent membrane
interactions through the periodic boundary conditions of the simulation box. Similarly, self-
assembly of amphiphilic molecules in dilute solutions also requires a lot of water molecules.
In solvent-free models, the solvent is not taken into account explicitly. Instead, the hydrophobic
effect is treated by an effective potential between amphiphilic molecules. This reduces the
numerical cost of membrane simulations significantly. In particular, the solvent-free model is
more efficient for simulations which require a large solvent space. A similar approach is also
frequently used in simulations of protein folding.
The first solvent-free model was proposed by Drouffe et al. [36]. In this model, a lipid-bilayer
membrane consists of a single layer of particles. The characteristic length scale is thus the
same as for triangulated-membrane models and the meshless-membrane models discussed in
Secs. 2.3 and 2.4 below, respectively – both of which are indeed solvent-free models also. The
particles in Ref. [36] possess an orientational degree of freedom and interact with each other via
three potentials: a soft-core repulsion, an anisotropic attraction, and a hydrophobic multibody
interaction. Particles have been shown to self-assemble into membrane patches and vesicles
[36]. Recently, solvent-free models have also been developed to describe bilayer membranes,
where the two monolayers are taken into account explicitly [18,19,21,37,38]. There are several
variations of such bilayer models. An amphiphilic molecule is typically modeled as a rigid
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or flexible chain, which consists of one hydrophilic segment and two or three hydrophobic
segments. The molecules interact with each other with pairwise [19, 21, 38] or multibody [18,
36, 37] potentials. One common feature is the requirement of an attractive potential between
hydrophobic segments.
We introduce here one of the bilayer models [37] in more detail. An amphiphilic molecule is
modeled as one hydrophilic segment (j = 1) and two hydrophobic segments (j = 2, 3), which
are separated by a fixed distance σ and are fixed on a line. Amphiphilic molecules (i = 1, .., N )
interact via a repulsive soft-core potential Urep and an attractive “hydrophobic” potential Uhp,
so that the total interaction potential is given by

Uam =
∑
i 6=i′

Urep(σ, |ri,j − ri′,j′|) +
∑
j=2,3

Uhp(ρi,j) (4)

with
Urep(r0, r)/ε = exp{−20(r − r0)/σ}. (5)

The multibody “hydrophobic” interaction is mimicked by a function of the local density of
hydrophobic particles,

ρi,j =
∑

i 6=i′,j′=2,3

wρ(|ri,j − ri′,j′|), (6)

with the weight function wρ(r) = 1/[exp{20(r/σ − 1.9)} + 1]. Thus, ρi,j is the number of
hydrophobic segments in a sphere with a radius of approximately 1.9σ. The multi-particle
potential Uhp(ρ) is then defined by

Uhp(ρ)/ε =


−0.5ρ (ρ < ρ∗ − 1)

0.25(ρ− ρ∗)2 − c (ρ∗ − 1 ≤ ρ < ρ∗)

−c (ρ∗ ≤ ρ)

, (7)

where c = 0.5ρ∗ − 0.25. The values ρ∗ = 10 and 14 are used for j = 2 and 3 (the hydrophobic
segments), respectively. At low density (ρ < ρ∗−1), Uhp(ρ) acts as pair-wise potential−εwρ(r).
It is assumed that at ρ > ρ∗, the hydrophobic segments are shielded by hydrophilic segments
from contact with the solvent molecules and hydrophilic segments of other lipids. Thus, Uhp(ρ)
is constant at higher density (ρ ≥ ρ∗). A similar “hydrophobic” potential is used in other
solvent-free membrane and protein models. This multibody potential is employed in order to
enhance the molecular diffusion in the membrane and to obtain a wide range of stability of a
fluid phase.
A fluid membrane can also be obtained in models with pair-wise attractive potentials only [19,
21,38]. However, the use of density-dependent potentials seems to be advantageous in obtaining
a wide parameter range where the membrane is fluidic.
Meshless membrane models can be studied using Brownian Dynamics and Monte Carlo simu-
lations. In Brownian Dynamics simulations, the motion of the j-th segment of the i-th molecule
follows the underdamped Langevin equation with the constraint of a rigid molecule:

m
d2ri,j
dt2

= −ζ dri,j
dt

+ gi,j(t)−
∂U

∂ri,j
, (8)

wherem and ζ are the mass and the friction constant of the segments of molecules, respectively.
gi,j(t) is a Gaussian white noise and obeys the fluctuation-dissipation theorem.
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A major advantage of meshless membrane models over dynamically triangulated surfaces is
that topological changes are easily possible. However, because the model does not explicitly
take into account solvent molecules, the volume of a vesicle cannot be kept constant. This
is a disadvantage of this type of models. Also, hydrodynamic interactions are not present.
However, these interactions can be taken into account by combining a solvent-free model with
a mesoscopic solvent technique such as multi-particle collision dynamics (MPC) or dissipative
particle dynamics (DPD), as explained in Sec. 2.6.
The solvent-free bilayer models have been applied to a variety of phenomena, such as membrane
fusion and fission [17, 18, 39, 40], pore formation in membranes [19, 41], the adhesion of a
nanoparticle [39], the fluid-gel phase transition [38,41], phase separation of lipids [21], protein
inclusion in membrane [38], and DNA-membrane complexes [42].

2.3 Dynamically-Triangulated Surfaces
The simulation of membranes and vesicles with characteristic sizes on the order of 100 nm to
10 µm is impossible on the basis of a molecular model, since it would require an enormous
number of lipid (and solvent) molecules. Therefore, on this coarse-graining level, a model is
necessary in which the individual lipid molecules are no longer “visible”. Instead, the mem-
brane is described by a mathematical surface with an elastic energy which is most appropriate
on these mesoscopic length scales [43–45]. The shapes and fluctuations of the membrane are
controlled by the curvature elastic energy [46, 47]

Hcurv =

∫
dS
[
γ + 2κ(H − C0)

2 + κ̄K + ...
]
, (9)

where the integral extends over the whole membrane surface. The shape of the membrane is
expressed by the two principal curvatures c1 and c2 — the two eigenvalues of the curvature
tensor [48] — at each point of the membrane, which appear in the Hamiltonian (9) as

H = [c1 + c2]/2 , K = c1c2 , (10)

the mean and Gaussian curvatures, respectively. The parameters of the curvature energy are
the surface tension γ, the bending rigidity κ, the saddle-splay modulus κ̄ and the spontaneous
curvature C0. These elastic constants of the membrane are the only place where the chemistry,
the molecular architecture and the interactions of the constituent lipid and protein molecules
enter into this model.
In order to make this model suitable for simulations, the continuous surface has to be approx-
imated by a network of vertices and bonds, see Fig. 4. A triangular network is usually used
because it provides the most homogeneous and isotropic discretization of the surface [22]. The
simplest potential for the interaction of vertices which are connected by bonds is a tethering
potential,

V (r) =

{
0 if r < `0
∞ otherwise

(11)

which causes the particles to behave as tethered by a string.
When hard spheres of diameter σ0 are placed on the vertices, and the bond lengths `0 are re-
stricted to be `0 ≤

√
3σ0, the surface is self-avoiding, since an arbitrary sphere does not fit

through the holes of the network, so that no interpenetration of different parts of the network is
possible.
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σi,j
i

j

θ2

θ1

σi

A B

Fig. 4: Geometry of triangulated surfaces. (A) Bond length and dual lattice, see text. (B) Bond
flip in dynamic triangulations.

The energy, which appears in the Boltzmann weight, is the curvature energy, which can be
discretized in different ways [22, 49]. The most commonly used form is [50, 51]

Eb = λb
∑
<ij>

(1− ni · nj) (12)

where ni and nj are the normal vectors of neighboring triangles, and the sum runs over all pairs
of neighboring triangles. The coupling constant λb in Eq. (12) is related to the bending rigidity
and saddle-splay modulus by κ =

√
3λb/2 and κ̄ = −κ, respectively [49, 52].

The discretization (12) of the curvature energy is not without problems, as discussed in Ref. [49].
In particular, the discretization [49, 53]

Eb =
κ

2

∑
i

1

σi

∑
j(i)

σi,jri,j
ri,j


2

(13)

has been found to give reliable results in comparison with the continuum expression (9). Here,
the sum over j(i) is over the neighbors of a vertex i which are connected by tethers. The bond
vector between the vertices i and j is ri,j = ri− rj , and ri,j = |ri,j|, as illustrated in Fig. 4. The
length of a bond in the dual lattice is σi,j = ri,j[cot(θ1)+cot(θ2)]/2, where the angles θ1 and θ2
are opposite to bond ij in the two triangles sharing this bond. Finally, σi = 0.25

∑
j(i) σi,jri,j is

the area of the dual cell of vertex i.
Vesicles with the energy above can be modeled using Monte Carlo method, where one step
consists of a random displacement of a randomly selected vertex. This step is accepted with the
probability determined by the Boltzmann weight, see Eq. (12), as long as the vertices remain
within the maximum bond lengths with their neighbors. In molecular dynamics simulations,
smooth bond potentials are usually employed, see Ref. [54].

Polymerized Membranes — Membranes, in which neighboring particles are chemically linked
together are called polymerized. Examples of such membranes are the graphite monolayers
which are found in fullerenes, or the polymer network attached to the inside of the lipid mem-
branes of red blood cells.
Triangulated surface models for polymerized membranes have first been suggested and studied
in the 1980s using Monte Carlo [50, 51, 55, 56] and Molecular Dynamics [54] simulations.
Since then, the properties of triangulated surfaces of fixed triangulation have been investigated
intensively, see e.g. the reviews of Ref. [22, 23].
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Fluid Membranes — For a study of fluid membranes, the connectivity of the membrane ver-
tices cannot remain fixed during the simulation, because otherwise a diffusion of vertices within
the membrane is not possible. Therefore, dynamically triangulated surfaces [57–59] have to be
used in this case. The essential step of the dynamic triangulation procedure is shown in Fig. 4B.
Among the four vertices of two neighboring triangles, the “diagonal” bond is switched from one
of the two possible positions to the other. This bond-switching is only allowed if the vertices
remain connected to at least three neighbors after the switch. Also, the distance between the
newly connected vertices has to be smaller than the maximum bond length. This bond flip has
the advantages that [22, 23]
• it is local, i.e. only the vertices of two neighboring triangles are involved, and
• it guarantees that the network retains its two-dimensional connectivity during the whole sim-
ulation run. Dynamically triangulated network models of fluid membranes have been applied
in recent years to investigate a variety of systems and phenomena, such as phase separation and
budding of two-component vesicles [11,60–62], vesicles with membranes containing curvature-
inducing nematogens and membrane tubulation [63, 64], defect scars on flexible vesicles with
crystalline order [65], the conformation of charged vesicles [66], particle adhesion to vesi-
cles [67–69], complex formation between a mixed fluid vesicle and a charged colloid [70],
vesicle adhesion to surfaces [71], sponge phases [72, 73], and vesicles in shear [74, 75] and
capillary flows [76, 77].

2.4 Meshless Membrane Models
The membrane conformation is described by the positions of N particles, which are the mem-
brane “nodes”. These particles either have no internal degrees of freedom [78] or can be char-
acterized by an orientation vector [36]. Models of membrane particles with orientation vector
are very similar in spirit to the solvent-free models described in Sec. 2.2 above. Therefore, we
focus here on meshless membrane models with particles without internal degrees of freedom,
which can be understood as meshless discretization of the curvature energy. The model is well
suited to study, for example, vesicle dynamics accompanied by topological changes.
In the model of Ref. [78], the membrane particles interact with each other via a potential

U = ε(Urep + Uatt) + kαUα, (14)

which consists of a repulsive soft-core potential Urep with a diameter σ, an attractive potential
Uatt, and a curvature potential Uα. All three potentials only depend on the positions ri of the
particles. The curvature potential is based on the moving least-squares (MLS) method [79, 80].
We briefly outline here the essential aspects of this simulation technique
The MLS method is a least-squares fit of the membrane shape, weighted locally around each
particle [78–80]. A Gaussian function is employed as a weight function [78]

wmls(ri,j) =

{
exp(

(ri,j/σ)
2

(ri,j/rcc)n−1) (ri,j < rcc)

0 (ri,j ≥ rcc)
(15)

where ri,j is the distance between particles i and j. This function is smoothly cut off at ri,j = rcc.
Here, the parameters n = 12 and rcc = 3σ have been employed.
In the first-order MLS method, a plane is fitted locally to the particle positions by minimizing

Λ1(ri) =
1

w0

∑
j

{n(rj − r0)}2wmls(ri,j), (16)
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where the sum is over all points (including i itself) and w0 ≡
∑

j wmls(ri,j) is a normalization
factor. The normal vector n of the plane and the point r0 on the plane are fitting parameters.
The minimum of Λ1 is given by Λmin

1 = λ1 when r0 is the weighted center of mass rG =∑
j rjwmls(ri,j)/w0 and n is collinear with the eigenvector u1 of the lowest eigenvalue λ1 of the

weighted gyration tensor, aαβ =
∑

j(αj − αG)(βj − βG)wmls(ri,j), where α, β = x, y, z and
λ1 ≤ λ2 ≤ λ3.
We now define the degree of deviation from a plane, the aplanarity, as

αpl =
9Dw

TwMw

=
9λ1λ2λ3

(λ1 + λ2 + λ3)(λ1λ2 + λ2λ3 + λ3λ1)
, (17)

where Dw and Tw are determinant and trace of the weighted gyration tensor, respectively, and
Mw is the sum of its three minors, Mw = axxayy + ayyazz + azzaxx − a2xy − a2yz − a2zx.
The aplanarity αpl takes values in the interval [0, 1] and represents the degree of deviation from
a plane. This quantity acts like λ1 for λ1 � λ2, λ3, since αpl ' 9λ1/(λ2 + λ3) in this limit.
Therefore, the curvature potential is defined as

Uα =
∑
i

αpl(ri), (18)

where αpl(ri) = 0 when the i-th particle has two or less particles within the cutoff distance
ri,j < rcc. This potential increases with increasing deviation of the shape of the neighbor-
hood of a particle from a plane, and favors the formation of quasi-two-dimensional membrane
aggregates.
The particles interact with each other in the quasi-two-dimensional membrane surface via the
potentials Urep and Uatt. These interaction potentials are necessary to obtain a homogeneous
particle density in the membrane plane, and to avoid the membrane from rupturing and falling
apart [78]. The particles have an excluded-volume interaction via the repulsive potential

Urep =
∑
i<j

exp(−20(ri,j/σ − 1) +B)fcut(ri,j/σ), (19)

with a cutoff function [78]

fcut(s) =

{
exp{A(1 + 1

(|s|/scut)n−1)} (s < scut)

0 (s ≥ scut)
(20)

The factor A in Eq. (20) is determined such that fcut(shalf) = 0.5. In Eq. (19), the parameters
n = 12, A = 1, and scut = 1.2 were used in Ref. [78].
The attractive interaction mimics the “hydrophobic” interaction. Uatt is a potential of the local
density of particles,

ρi =
∑
j 6=i

fcut(ri,j/σ), (21)

with the parameters n = 12 and scut = shalf +0.3 in fcut. Here, ρi is the number of particles in a
sphere whose radius is approximately ratt = shalfσ. The density-dependent attractive potential
Uatt is given by

Uatt =
∑
i

0.25 ln[1 + exp{−4(ρi − ρ∗)}]− C, (22)
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Fig. 5: Equilibrium membrane shapes obtained using various energy minimization techniques.
(a) A cube-like nanoparticle adhered with one face to a triangulated membrane. Reprinted with
permission from Ref. [81]. (b) Shapes of a vesicle with reduced volume v = 0.88 adhered to
a planar subtrate with adhesion strength w = 13.5 for various pulling forces, calculated using
shape equations. Reprinted with permission from Ref. [82]. (c) Adaptively refined mesh for
a vesicle shape calculation using a phase field model; the membrane shape can be extracted
using isocontours. Reprinted with permission from Ref. [83].

where C = 0.25 ln{1 + exp(4ρ∗)}. For ρi < ρ∗, the potential is approximately Uatt ' −ρi and
therefore acts like a pair potential with Uatt ' −

∑
i<j 2fcut(ri,j/σ). For ρi > ρ∗, this function

saturates to the constant −C. Thus, it is a pairwise potential with cutoff at densities higher than
ρi > ρ∗. A convenient choice of parameters is ratt/σ = 1.8 and ρ∗ = 6.

2.5 Calculating Shapes–from Vesicles to Shells

Large vesicles can be simulated using a relatively small number of degrees of freedom using
meshless and triangulated membrane models. While for dynamic simulations usually homoge-
neous discretizations are beneficial, using energy minimisation and triangulated surfaces very
accurate results can be achieved by alternate refinement and minimisation steps and by adapt-
ing the triangulation to the local membrane curvature [84]. Therefore, membrane shapes with
locally very different curvatures can be studied using energy minimization techniques that are
challenging for dynamic simulation techniques, such as wrapping of ellipsoidal, cube-like, and
rod-like nanoparticles [81, 85]. Compared with other methods to calculate equilibrium shapes,
such as numerical solution of shape equations [82, 86, 87] and phase-field models [83], trian-
gulation is a very versatile technique [23]. In particular for giant vesicles, the finite interface
width that is used in phase-field models to describe the membrane requires large system sizes in
order to obtain a realistic vesicle size compared with the membrane thickness. In experiments,
a membrane thickness of 5 nm is negligible at the µm length scale of the vesicle, which is well
approximated by the mathematical surface used to model the membrane in triangulation tech-
niques. Energy minimization using shape equations usually exploits cylindrical symmetry of
the system, which limits its range of applicability. Examples for systems that have been studied
using these three techniques are shown in Fig. 5.
Fig. 6 illustrates the minimization process to obtain an oblate vesicle with reduced volume
v = 0.62 modeled by a triangulated membrane using the freely available software package
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Fig. 6: Vesicle shape determination via energy minimization using triangulated membranes.
Starting from a cuboid (a), a first minimization step evolves the shape towards an oblate vesicle
(b). The final shape of the oblate vesicle with reduced volume v=0.62 is shown in (c). The
calculations have been performed using ”Surface Evolver” [88].

Fig. 7: Shapes for membranes with shear modulus: (a) Echinocytic shape of a red blood cell
obtained using energy minimization. Reprinted with permission from Ref. [89]. Shapes of an
initially sperical shell that have been deflated by the same volume (b) quickly and (c) slowly
obtained using Monte Carlo simulations. Reprinted with permission from Ref. [90].

”Surface Evolver” [88]. The system is set up manually using only eight vertices, twelve edges,
and six facets in a cuboidal arrangement. An automatic initial refinement step adds additional
vertices, edges, and facets, see Fig. 6 (a). A first energy minimization step using a steepest
descent method deforms the shape of the initial structure, see Fig. 6 (b). In order to evolve the
system towards the minimal energy state efficiently, it is important not refine too much as long as
the membrane shape is still far from the vesicle’s equilibrium shape. After several refinement
and minimization steps, energy and shape of the oblate vesicle are obtained, see Fig. 6 (c).
Not only membrane mechanics, but also an osmotic pressure that fixes a certain volume of
the vesicle and a fixed area of the vesicle can be taken into account using harmonic contraints
and can be fixed very accurately if energy minimization techniques are used. Here, the total
membrane area is the sum of the areas of all triangles, while the volume can be calculated with
the help of the triple product of the position vector of a membrane vertex and of two vectors
that connect this vertex with other membrane vertices.
Equilibrium shapes can also be calculated for more complex membranes than homogeneous
lipid bilayers that are governed by bending rigidity only, for example for vesicles formed by
a lipid bilayer membrane with a finite preferred curvature of the membrane, e.g. induced by
an area difference between the two monolayers that form the bilayer. Vesicle shapes have
been shown to depend on both, reduced volume of the cell and area difference [87]. In the
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area-difference elasticity model, the preferred membrane curvature is taken into account by an
additional energy contribution [91],

EADE =
πkADE

2Ah2
(∆A−∆A0)

2 , (23)

where kADE is a constant of the order 1, A is the total membrane area of the vesicle, h is
the thickness of the lipid bilayer, ∆A is the actual area difference between the two monolay-
ers of the bilayer membrane, and ∆A0 is the optimal area difference. Ref. [87] reviews in
particular calculations of vesicle shapes using shape equations in detail. While the shapes of
cylindrically-symmetric vesicles, for which the membrane mechanics is governed by bending
rigidity and spontaneous curvature only, are often calculated using shape equations, using tri-
angulated membranes a shear modulus for polymerized membranes and defect structures for
crystalline membranes can be taken into account. The complex membrane of red blood cells
consists of a lipid bilayer supported by a network of entropic springs, the biochemically well-
defined spectrin cytoskeleton [92–95], see also subsections 3.7 and 3.8. These can be modeled
using a complex membrane that consists of a fluid membrane with bending rigidity next to a
polymerised membrane with shear modulus [96]. Using a membrane model that takes into ac-
count bending rigidity of the lipid bilayer membrane, shear elasticity of the cytoskeleton, and an
area-difference elasticity, a large variety of experimentally-observed shapes of red blood cells
can be reproduced [89].
In particular, spiculated echinocytic shapes of red blood cells can only be obtained if the mem-
brane is modeled with both bending and shear modulus, see Fig. 7 (a) and Ref. [89]. For red
blood cells the ratio of shear to bending modulus is characterised by the Föppl-von K’arm’an
number, Γ = Y D2/κ = 2662, with Young’s modulus Y , bending rigidity κ, D =

√
ARBC/π,

where ARBC is the surface area of the red blood cell [97]. For red blood cells with a thin spec-
trin cytoskeleton, Y ≈ 4µ, where µ is the shear modulus of the membrane. An even stronger
dominance of the shear elasticity takes us from cells to shells, where the shape is not only de-
termined by its minimal energy, but also by the pathway and dynamics how the deformation has
been achieved [90]. Figures 7 (b) and (c) show shells that have been compressed fast or slow
using Monte Carlo simulations with the same volume change. Only the shape obtained with
slow compression is close to a minimal-energy shape of the vesicle.

2.6 Modeling Hydrodynamics
Vesicles, as well as cells, are typically studied in an aqueous environment. To describe dynamics
and the behaviour under flow, hydrodynamics and hydrodynamic interactions have to be taken
into account. Modeling fluid flow of a Newtonian solvent is often performed using the Navier-
Stokes (NS) equation or its modifications [98]. The NS equation for an incompressible fluid is
given by

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u,

∇ · u = 0,

(24)

where u is the local fluid velocity, ρ is the density, p is the pressure, and ν is the kinematic
viscosity. These equations are derived using conservation laws and continuum assumption. For
instance, the upper part in Eq. (24) corresponds to the conservation of momentum, while the
lower part represents mass conservation and is referred to as an incompressibility condition.
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A standard approach to solve partial differential equations such as Eq. (24) is to use various
discretization techniques (e.g., finite difference, finite volume, finite element) in combination
with proper initial and boundary conditions. This class of numerical methods is often referred to
as computational fluid dynamics and represents rather well-established numerical techniques.
However, in continuum approaches the inclusion of features present at the micro- and meso-
scale (e.g., thermal fluctuations) is a non-trivial task.
Another class of efficient numerical approaches for modeling fluid dynamics includes particle-
based Lagrangian methods such as molecular dynamics (MD) [25], dissipative particle dynam-
ics (DPD) [99, 100], multi-particle collision dynamics (MPCD) [101, 102], and smoothed par-
ticle hydrodynamics (SPH) [103, 104]. Microscopic modeling at the atomistic scale is often
performed using MD, while the other aforementioned methods correspond to mesoscopic ap-
proaches. In these approaches, a fluid is represented by a number of particles which interact with
each other through specified forces (in MD, DPD, and SPH) or collisions (in MPC). Through
the conservation of local and global quantities such as mass and momentum, all these methods
provide proper hydrodynamic interactions at large enough length scales. Even though particle-
based approaches are generally more expensive computationally than continuum techniques,
they often allow a rather straightforward incorporation of desired micro- and mesoscopic fea-
tures. This advantage often favors the use of particle-based methods in modeling complex fluids
at the micro- and meso-scale over conventional computational fluid dynamics.
Due to the importance of particle-based approaches for simulations of the (hydro)dynamics of
vesicles, we briefly describe the basic algorithms of two hydrodynamics techniques (DPD and
MPCD) in a little more detail. In DPD, the conservative forces between different particles i and
j are assumed to be of the form

FC
ij = aij (1− rij/r0) r̂ij (25)

for distances rij < r0 and zero otherwise. This guarantees that potentials are smooth, and
relatively large time steps can be used in the integration of the equations of motion. Similarly,
the dissipative friction forces are taken to be

FD
ij = γij (1− rij/r0)2 (r̂ij · vij) r̂ij (26)

for distances rij < r0 and zero otherwise, where vij = vi−vj is their relative velocity. Finally,
there are thermal random forces which follow from the fluctuation-dissipation theorem [100].
In MPCD, the fluid consists of point particles which have no conservative interactions. The
dynamics proceeds in two alternating steps. In the streaming step, particles move ballistically
for a time interval δt, Then, all particles are sorted into the cells of a cubic lattice, which defines
the collision environment. All fluid particles within one collision cell exchange momentum,
for example by a random exchange of momentum increments, such that the total momentum
of each cell is conserved. The fluid particles interact with the membrane in two ways. First,
the membrane vertices are included in the MPC collision procedure. Second, for triangulated
surfaces, the fluid particles are scattered with a bounce-back rule from membrane triangles.
These interactions together ensure that the fluid satisfies a no-slip boundary condition on the
membrane.
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Fig. 8: Self-assembly of a bilayer membrane in a mixture of HT4 amphiphiles and solvent
particles. The solvent particles are nearly transparent. The initial configuration, which is
not shown, consists of a random mixture of 100 amphiphiles and 840 solvent particles. The
configurations are snapshots which illustrate the time evolution of the structure. After about 105

molecular dynamics (MD) time steps, the amphiphiles form a cylindrical micelle, which spans
the simulation box horizontally. This state is metastable for some time, before it transforms into
a stable bilayer structure. From Ref. [7].

3 Applications

3.1 Self-Assembly of Micelles and Bilayers

The self-assembly of amphiphilic molecules in aqueous solution into a large variety of different
structures is their most important property [43,105]. The type of structures found depends very
much on the amphiphile concentration, but also on the amphiphile architecture and environ-
mental conditions, such as temperature, salt concentration, etc.
At very small amphiphile concentrations, the amphiphiles are molecularly dispersed, since the
translational entropy dominates over any interaction energy. Only when a minimal concentra-
tion — the critical micelle concentration (CMC) is exceeded, the amphiphiles aggregate into
small droplets called micelles, in which the hydrocarbon tails are shielded from water contact
by a layer of head groups. The typical size of a spherical micelle is therefore determined by the
length of the amphiphilic molecules. In some systems, when the size of the head group is larger
than the tail, micelles can grow into long cylindrical rods which are called cylindrical micelles.
On the other hand, when head and tail of the amphiphiles have roughly the same size, micelles
can grow into two-dimensional bilayer patches. This can happen at still small amphiphile con-
centrations (above the CMC). In this case, the patch does not grow indefinitely in the lateral
directions, because the rim of the patch is energetically less favorable than the interior. This can
be understood as a line tension of the rim. Since the rim energy grows linearly with the radius of
the patch, at some point the flat bilayer becomes less favorable than a closed membrane shape
or a vesicle, see Sec. 3.2 below. In contrast to micelles, vesicles can be much larger than the
length of an amphiphile. At considerably higher amphiphile concentrations, micelles, bilayers,
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Fig. 9: Snapshots of vesicle formation from an initially planar membrane patch, for kBT/ε =
0.5 and N = 1000. Time is measured in units of τ0 = ζσ2/ε, where the mass m = 1 and the
friction constant ζ = 1 of segments are fixed. Red spheres and yellow cylinders represent the
hydrophilic and hydrophobic segments of amphiphilic molecules, respectively.

or vesicles can pack together to form three-dimensional order phases, such as cubic micellar
crystals, or lamellar phases in which bilayers form a stack in one direction.
Many aspects of this self-assembly process have been studied by simulations. For example, the
formation of a bilayer from an initially random mixture of amphiphiles and water, as obtained
from MD simulations of the coarse-grained Lennard-Jones model in Sec. 2.1, is shown in Fig. 8.
It shows the formation of a transient cylindrical micelle structure, which transforms after some
time into a stable bilayer state. Note that due to the finite box size, the amphiphile concentration
is rather large, so that this bilayer should be considered as a part of a lamellar phase.

3.2 Vesicle Formation
Amphiphilic molecules spontaneously form vesicles at N = 1000 and kBT/ε ≤ 0.9. When
the initial state is a random distribution of molecules, amphiphiles aggregate into spherical or
disk-shaped micelles, which assemble and reform into vesicles. When the initial state is a
flat bilayer membrane, the membrane undulates by thermal fluctuations, and then bends into a
vesicle through a bowl-shaped conformation to reduce the length of the membrane edge (see
Fig.9). The closed-bilayer vesicles are equilibrium states under these conditions.
The vesicle exhibits a clear bilayer structure (see Fig. 9) and is in a fluid phase. Molecules in
vesicles diffuse laterally: the lateral diffusion constant is 0.004 at kBT/ε = 0.2. The unit length
σ corresponds to ∼ 1nm. The unit time step τ0 corresponds to ∼ 1ns when the lateral diffusion
constant is assumed to correspond to that of phospholipid at 30◦C, ∼ 10−7cm2/s. The area
per molecule in membranes is 2σ2 and is larger than the experimental data for lipid molecules:
0.4 ∼ 0.8nm2. A few lipid molecules are coarse-grained to one rigid molecule.
This model is designed for simulations of fluid membranes, since it has a wide temperature
range where the fluid phase is stable, and a very low critical micelle concentration (CMC).
The membrane properties can be varied easily by a modification of the model parameters and
functional forms of the potentials. Other solvent-free models, with pair-interactions only, have
been used, for example, to study gel and crystalline phases [21, 38]. Thus, the solvent-free
model can be adjusted depending on the type of physical problem under investigation.
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Fig. 10: Fluctuation modes of thermally exited membrane deformations. (a) Fluctuation spec-
trum S = 〈|h(q)|2〉 as a function of the dimensionless wave number q. The largest wave number
is determined by the box size and corresponds to q = 1. The dotted lines show the expected
power-law behavior due to undulations (small q) and protrusions (large q), respectively. (b)
Typical configuration of a bilayer membrane composed of 1152 HT4 amphiphiles. At small
scales, individual molecules protrude from the bilayer. At large scales, the bilayer looks like an
elastic, smoothly curved sheet. The basic length scale λ represents the range of the Lennard-
Jones potential. From Ref. [7].

3.3 Thermal Membrane Fluctuations
Thermal fluctuations of the lipid molecules in a membrane lead to two types of thermal excita-
tions, see Fig. 10b. On short length scales, the lipid molecules are not perfectly aligned and do
not have their heads all in the same plane, but there are small vertical displacements between
neighbors. These thermal motions are called protrusion modes. On length scales much larger
than the bilayer thickness, there is a collective excitation where the whole membrane displays
a wave-like deformation, which is called an undulation mode. The amplitudes are accessible
experimentally, for example by scattering techniques.
In order to determine the spectrum of fluctuation modes of a membrane in simulations, a scalar
height variable h(r) is introduced, which measures the deviation of the local position of the am-
phiphile head from a planar reference state (Monge parametrization). The fluctuation spectrum
is then obtained from the correlation function

S(q) ≡ 〈|h(q)|2〉, (27)

where
h(q) =

1

N

∑
i=1

h(ri) exp(iq · ri) , (28)

is the two-dimensional Fourier-transform of the height-field h(r) with N being the number of
amphiphiles.
The results are shown in Fig. 10 (a). For small wave numbers q, the spectrum shows a q−4 decay,
which is characteristic for surfaces which are governed by the curvature elasticity. The ampli-
tude of this power law is the (inverse) bending rigidity, which can thereby be extracted from the
simulations. This behavior should be compared with the spectrum of a surface governed by the
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surface tension (as the air-water interface), where the spectrum decays as q−2 for small wave
numbers. The spectrum for large wave numbers, on the other hand, follows a q−2 power-law.
It is no coincidence that this is the same power law as for surfaces with surface tension, since
the energy of the protrusion modes is proportional to the hydrophobic area exposed to the water
when the amphiphiles “stick their head out” of the bilayer.
Measurements of the undulation spectrum of quasi-spherical vesicles is one of the standard
experimental approaches to determine the bending rigidity of bilayers. In this case, the radial
membrane displacements (from the center of the vesicle) are expanded in spherical harmonics
Ylm(Ω) as

r(Ω) = R0

[
1 +

lM∑
l=0

l∑
m=−l

ulmYlm(Ω)

]
(29)

at the solid angle Ω = (θ, ϕ). The spectrum of undulation modes is predicted to be

〈|ulm|2〉 =
kBT

κ

1

(l + 2)(l − 1)[l(l + 1) +Q]
(30)

where Q = 2(C0R0)
2 − 4C0R0 + γR2

0/κ, with spontaneous curvature C0. This result implies
that

• the spectrum is governed by the bending rigidity for large l, and decays like κ−1l−4

• the spectrum is governed by the “membrane tension” for small l, and decays like σl−2

• the spontaneous curvature C0 cannot be measured in this approach, because it only ap-
pears in combination with the membrane tension.

However, spontaneous curvature plays the key role in determining the morphology of biomem-
branes, lipid vesicles, and polymersomes; it is crucial for maintaining the spatial organization
of, and traffic between, cellular organelles and the plasma membrane; and finally, it is believed
that it controls the functional state of certain integral membrane proteins and membrane fusion
competence. Therefore, it is very important to have a simple, straightforward procedure for the
direct determination of the spontaneous curvature and bending modulus. Flicker spectroscopy
of non-spherical vesicles avoids the shortcomings of analysis of undulations of quasi-spherical
vesicles discussed above, by utilizing results of Monte Carlo simulations of dynamically trian-
gulated vesicles for a wide range of reduced volumes and spontaneous curvatures to extract the
elastic parameters of the membrane from experimental flicker spectroscopy data [106].
In experiments, fluctuating prolate vesicles are stabilized by gravity - due to a small density
difference of the solvent inside and outside the vesicle – on the bottom of a microchamber.
The focal plane of a microscope is adjusted to include the long axis of the vesicle, and shape
contours are recorded [107], see Fig. 11 (a). Choosing a coordinate system in which the x
coordinate lies along the long axis of the vesicle, the 2D contours are then represented in polar
coordinates as

r(ϕ) = r0

[
1 +

∑
n

an cos(nϕ) + bn sin(nϕ)

]
. (31)

The mean values 〈an〉 describe the mean vesicle shape; for the oriented contours, 〈bn〉 = 0. The
mean-square amplitudes 〈(an − 〈an〉)2〉 measure the thermal fluctuations of the vesicles about
their mean shape.
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The simulated vesicles are analyzed in the same way as the vesicles in experiments, see Fig. 11 (b).
With increasing c̄0, a transition from an oblate to a prolate shape is observed, which leads to
a pronounced increase of 〈a2〉 and 〈a4〉. The oblate-to-prolate transition is reflected in a sharp
peak of the fluctuations in a2, see Fig. 11 (c). By fitting the experimental data for the averages
and variances of a2, a3, a4, and a5 to the simulation results, the parameters κ, c̄0, and v can be
extracted simultaneously for a single vesicle [106].
This method has been employed to measure electrostatically induced spontaneous curvature of
SOPC vesicles. It has been suggested that a change in pH induces membrane curvature via the
association of hydroxyl ions with the trimethyl-ammonium group of the phosphatidylcholine
molecule [108]. The results of the flicker analysis, as described above, are shown in Fig. 11(D).
A strong change in spontaneous curvature at a constant bending modulus κ = 32kBT is ob-
tained. Indeed, the bending modulus of SOPC should not change considerably since electro-
static contributions to the elastic modulus are expected to be small. Note that the reduced
volume of the vesicle is also found to be constant, as it should be. The large increase in the
spontaneous curvature can be understood by considering the balance of the electro-static free
energy and the intrinsic bending energy of the membrane.

3.4 High-Genus Vesicles and Gaussian Saddle-Splay Modulus
Usually, vesicles with genus g = 0 that have the topology of a spherical vesicle are investigated.
However, also toroidal vesicles with genus g = 1 are experimentally observed, as well as
vesicles with high genus and many handles. Also, in biological cells organelles with high genus
membranes exist. For example, the nuclear membrane and the endoplasmic reticulum (ER) are
connected and together form complicated shapes. The nucleus is wrapped by two lipid bilayer
membranes connected by many lipid pores, and the ER can have a sponge-like structure. The
genus of the vesicle is controlled by the Gaussian saddle-splay modulus of the membrane, high
values for κ̄ favour formation of high-genus vesicles. For a fixed genus, computer simulations
of vesicles do not have to take into account the value of κ̄ because of the Gauss-Bonnet theorem:
the integral over the Gaussian curvature of a closed vesicle depends only on its topology. Shape
fluctuations, however, are controlled by the bending rigidity and the area difference between
the monolayers of the lipid bilayer. Fig. 12 shows a collection of experimental and simulation
figures for vesicles with genus g ≥ 1 and finite values of the area-difference elasticity; all
computer simulations have been performed using Monte Carlo simulations and triangulated
membranes [109, 110].
Because the Gaussian saddle splay modulus of a membrane only affects the vesicle topology
and not its shape fluctuations, its value is often not well known. Other systems besides vesicles
with topology changes for which κ̄ is important are phase-separated multi-component mem-
branes [111, 112] and membranes with open edges [113, 114]. Such systems can therefore be
used to determine the value of κ̄ using experiments or computer simulations. Recently, molec-
ular dynamics simulations for partially-bent circular membrane patches have been performed
using coarse-grained lipid models [113, 114]. If membrane patch sizes are chosen such that
an energy barrier between the initial patch and a closed vesicle exists, from multiple simula-
tions the probability for closing can be measured and used to determine ξ = γR/(2κ + κ̄),
where R is the initial radius and γ is the edge tension of the patch. In case all other parame-
ters are known for a particular system, e. g. κ from analyzing the fluctuations as described in
Sec. 3.3 or from simulations of membrane tethers [115, 116] and the edge tension from pore
formation [117, 118], κ̄ can be extracted from the measurement of ξ. For DMPC membranes
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Fig. 11: (A) Phase contrast micrograph of a vesicle (v = 0.828) sedimented on a glas sub-
strate. The scale bar corresponds to 5µm. (B) Simulation snapshot (v = 0.825, c̄0 = −0.28).
(C) Simulated mean-square amplitude 〈∆a22〉 of shape fluctuations as a function of the effective
spontaneous curvature c̄0. Note the peak at the prolate-to-oblate transition. Three different val-
ues of the reduced volume v are shown, as indicated. The other parameters in the simulations
are κ/kBT = 25, kADE = 0.9, and g = 0.37. [??? Gerhard: please check!] (D) Spontaneous
curvature c̄0 for g = 0.8. Note that the reduced volume and bending modulus, which are given
in brackets, (v, κ), remain constant. v, c0, and κ are obtained simultaneously via compari-
son of the experimental data to the Monte Carlo simulations. Reprinted with permission from
Ref. [106].
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Fig. 12: High-genus vesicles. Microscopy images and simulation snapshots for vesicles with
(a) g = 1 and (b) g = 2. The lengths of the scale bars are equal to 10µm. Reprinted with per-
mission from Ref. [109]. (c) Simulation shapshots for g = 5 vesicles. Reprinted with permission
from Ref. [110].

modeled using the MARTINI force field, γ = 40.49 ± 0.34 pN , κ = (16.6 ± 0.5)10−20J ,
κ̄ = (−17.3 ± 1.0)10−20J , and therefore κ̄/κ = −1/04 ± 0.03 have been determined using
simulatin data [114].

3.5 Complex Membranes, Inclusions, and Bud Formation
Membranes of giant vesicles do not have to be homogeneous lipid-bilayer membranes, but
can be multi-component membranes that are more complex. For instance, curvature-inducing
inclusions–e.g. proteins or spherical caps of viruses [119–121], or polymers anchored only to
one monolayer [122–125]–induce an effective spontaneous curvature of the membrane. While
it is well known that curved inclusions on a planar membrane mutually repell each other [126,
127], an effective attraction is found for curved inclusions on a vesicle. The optimal vesicle
radius is [120]

R ≈ (cosα)/(πσ sin2 α)(1/ri) (32)

for a vesicle with
n ≈ (4 cos2 α)/(πσ sin4 α)(1/r2i ) (33)

inclusions. Here, ri is the curvature radius of the inclusion, α is the opening angle of the spher-
ical cap, and σ is the number density of inclusions on the total membrane area. This optimal
radius corresponds to an effective spontaneous curvature for the inclusion-decorated membrane
of c0 = 1/R. The reasoning is that around each curved inclusion a catenoidal membrane patch
with vanishing curvature energy forms. The energy of a vesicle covered with curved inclusions
at low density is therefore E = 8πκ(1 − Scat/Ssph), where Scat/Ssph is the area fraction of
the vesicle which is covered with inclusions and catenoidal patches, see Fig.13 (b). At opti-
mal inclusion density, the vesicle is entirely covered by curved inclusions with their catenoidal
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Fig. 13: (a) A spherical vesicle with curved proteins modeled by a triangulated membrane and
simulated using the Monte Carlo technique. The proteins are described by specific angle be-
tween the membrane normal and the adjacent edges of a triangle, the base length of these edges,
and the angles between them. An initially sperical vesicle with 120 proteins (top) relaxes to a
three branched tubular structure. Reprinted with permission from Ref. [119]. (b) and (c): Vesi-
cle decorated with curved inclusions at (b) low and (c) optimal inclusion density. Around each
inclusion, the membrane can be modeled by segments of the catenoid minimal surface (white).
At optimal density the bending energy of the vesicle vanishes. Reprinted with permission from
Ref. [120].

patches, see Fig. 13 (c). Computer simulations of coarse-grained lipid bilayer membranes with
spherical caps impressively show the dynamics of bud formation starting with planar membrane
patches [121]. Using Monte Carlo simulations with triangulated membranes, the deformation
of an initially spherical vesicle into a three-armed star-shaped vesicle has been simulated, see
Fig. 13 (a) and Ref. [119].

Giant vesicles decorated with curved proteins are a special case for giant vesicles with complex
membranes. The large range of relevant length scales from several nanometers for the com-
ponents of the complex membrane to several micrometers for the giant vesicles makes such
systems extremely challenging to be studied using a single simulation. Instead, a two-step ap-
proach can be applied where both length scales are decoupled. In a first step, effective curvature
elastic properties of complex membrane are calculated using analytical calculations or computer
simulations for small model systems, e.g. membrane patches. In a second step, these effec-
tive curvature-elastic properties are used to simulate giant vesicles with the help of triangulated
membranes that are well suited for the micrometer scale. Common examples for complex mem-
branes are biological membranes that usually contain a mixture of charged and uncharged lipids
and proteins and that may be decorated by a glycocalix. In particular membranes decorated with
polymers have been investigated in various studies [122–125,128–135], see Fig. 14 (a) and (b).
While the absolute value of the induced changes of the curvature-elastic constants due to cer-
tain components in complex membranes can often be tuned by adjusting their density, how they
affect bending rigidity and Gaussian saddle splay modulus in a coupled way is specific for each
mechanism. Fig. 14 (c) shows the ratios ∆κ/∆κ̄ extracted for added charges [134], polymers
embedded into the membrane [129], membrane-grafted ideal and self-avoiding linear polymer
chains, polymer brushes, and star polymers [122,123,123–125,128,130–133,135]. In particular
star polymers allow to change κ and κ̄ in a different way depending on the functionality of the
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Fig. 14: (a) Simulation snapshot of a tethered membrane with fixed connectivity decorated with
end-grafted linear polymers with 64 monomers. Reprinted with permission from Ref. [128]. (b)
Simulation snapshot of a symmetric diblock-copolymer attached to a fluid membrane. Reprinted
with permission from Ref. [123]. (c) Various modifications change the elastic constants of
a lipid bilayer membranes, κ and κ̄. The ratio of the changes ∆κ/∆κ̄ is specific for each
mechanism [122, 129–134]. As indicated by the horizontal arrow, using star polymers a wide
range of ratios κ/κ̄ can be accessed. Reprinted with permission from Ref. [122].

star.

3.6 Vesicles in Capillary Flow
The deformability and dynamics of vesicles under flow through narrow channels and capil-
laries plays an important role in determining their behavior in microfluidic devices. Vesicles
can be simulated in capillary flow using a combination of the dynamically-triangulated sur-
face model (see Sec. 2.3) and mesoscale hydrodynamics simulation techniques (see Sec. 2.6).
The triangulated-network model has to be slightly modified in order to combine it with one of
mesoscale hydrodynamics simulation techniques. Since the temporal evolution of the positions
of the membrane vertices is determined by Newton’s equation of motion, soft pairwise poten-
tials have to be employed for the tether-bond and excluded volume. The volume V and surface
area S of a vesicle are kept constant by constraint potentials. The membrane viscosity can be
varied by changing the bond-flip rate, where the membrane viscosity increases with decreasing
number of bond-flips per time step [74, 75].
Simulation results for fluid and elastic (polymerized) vesicles in a cylindrical channel are dis-
played in Fig. 15 for two different flow velocities [76]. Simulations are performed for discocyte
shapes (at rest) and the reduced volume V ∗ = V/(4πR3

s/3) = 0.59, where Rs =
√
S/4π is the

effective vesicle radius. At this reduced volume, a biconcave discocyte is the equilibrium vesi-
cle shape, and a prolate ellipsoid and stomatocyte are metastable in the absence of flow [136];
therefore, vesicle shapes should be very sensitive to flow at this particular reduced volume.
Under typical experimental conditions of capillary flows, the Reynolds number Re= ρvvesRs/η0
is very small, typically Re ' 10−2, where vves is the mean velocity of the vesicle. Therefore,
parameters are chosen such that Re < 1 in all simulations. Both fluid and elastic vesicles retain
their discoidal shapes in slow capillary flows (see Fig. 15(a)). The vesicles align the longest
axis of the gyration tensor with the flow direction, even if their initial conformations are coaxial
with the capillary. The discoidal shape is elongated in the flow direction and its front-rear
symmetry is broken, but the biconcave dimples and the mirror symmetry with respect to the
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Fig. 15: Snapshots of vesicles in capillary flow (with bending rigidity κ/kBT = 20), for a
capillary radius of Rcap = 1.4R0. (a) Fluid vesicle with a discoidal shape at the mean fluid
velocity vmτ/Rcap = 41, both side and top views. The results are scaled with the intrinsic
relaxation time τ = η0R

3
cap/kBT . (b) Fluid vesicle with a prolate shape at vmτ/Rcap = 69. (c)

Elastic vesicle (RBC model) with a parachute shape at vmτ/Rcap = 218 (with shear modulus
µR2

0/kBT = 110). The membrane consists of Nmb = 500 vertices. The blue arrows represent
the velocity field of the solvent. The upper front quarter of the vesicle in (c) is removed to allow
a look into the interior; the black circles indicate the lines where the membrane has been cut in
this procedure. Thick black lines indicate the walls of the cylindrical capillary.
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plane determined by the two eigenvectors of the gyration tensor with the largest eigenvalues are
retained. For larger mean fluid velocity, a fluid vesicle transits into a prolate ellipsoidal shape
(see Fig. 15(b)), since this shape change reduces the flow resistance. An elastic vesicle transits
into a parachute shape, (see Fig. 15(c)), since the shear elasticity of the membrane prevents the
elongation of the vesicle into a prolate shape in this case.
Even more interesting in comparison to homogeneous cylindrical (or rectangular) channels are
structured channels, in which the channel cross-section varies periodically along the channel. In
such structured channels the vesicle shape is no longer stationary, so that the internal dynamics
of a vesicle can be probed. This allows to explore the behavior of vesicles in more complex
flow geometries, as it can be realized quite easily in modern microfluidic devives.
Snapshots of vesicles under flow through zig-zag channels are shown in Fig. 16(A). These
snapshots already demonstrate that the vesicles deform periodically, as they move from wide
to narrow regions of channel, and back [77]. The reason is that the flow velocity is fast in
the narrow parts, and slow in the wide parts of the channel. Therefore, the vesicle becomes
elongated as it approaches the narrow parts, and shortened as it enters the wide parts. However,
this behavior is only observed for flexible vesicles, with a small bending rigidity κ∗ � 1, with
κ∗ = κLy/(ηR

3
V vm), where vm is the mean flow velocity (and RV is the effective vesicle radius

related to the vesicle volume). For stiff vesicles, with κ∗ � 1, flow forces are too small to
overcome the deformation energy costs. In this case, the vesicle adjusts to the compressional
force when it enters the wide region by tilting its long axis away from the channel axis, as shown
in Fig. 16(B). These results indicate that a lot of unexpected behaviors are to be discovered in
complex flow geometries.

3.7 Red Blood Cells – Membrane Fluctuations
Red blood cells take the concept of vesicles as model systems one step further towards complex
biological cells. These cells are still comparatively simple with a well-defined polymerized
membrane attached to the lipid bilayer, the cortical spectrin cytoskeleton. Similarly to vesicles,
red blood cells are easy abundant and much easier to handle than cells with a 3D cytoskeleton.
A healthy human red blood cell (RBC) has a biconcave shape with an average diameter of about
8 µm [137]. Its membrane consists of a lipid bilayer with an attached cytoskeleton formed by
a network of the protein spectrin linked by short filaments of actin. The membrane’s shear
elasticity supplied by the spectrin network constitutes the main difference between RBCs and
giant vesicles. The presence of shear elasticity in a RBC membrane significantly affects its
behavior and response to various external fields in comparison to vesicles.
One of the interesting measurements for RBCs or vesicles is membrane fluctuations, since they
should be directly associated with the membrane characteristics and properties of cytosol and
suspending media. RBC membrane fluctuations have been measured in a number of exper-
iments including RBC edge flicker microscopy [138, 139] and tracking of beads attached to
the RBC [140, 141]. In contrast to fluctuation measurements on vesicles, see section 3.3, the
interpretation of these measurements for RBCs often leads to rather disparate outcomes. For
instance, the results of measuring RBC edge fluctuations [138] have suggested a vanishing (or
nearly negligible) effect of membrane shear elasticity, while experiments on RBC deformation
with optical tweezers [142, 143] clearly identify a finite shear elasticity. Furthermore, the in-
terpretation of fluctuation measurements in Ref. [141] has resulted in very high (unrealistic)
values for the effective viscosity of the fluid. These differences are likely to originate from
the approximations used in analytical models which are mainly derived for planar lipid bilayer
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Fig. 16: (A) Sequence of snapshots (at equal time intervals) of vesicles with reduced volume
v = 0.96 and RS/Ly = 0.21 (where RS is the effective vesicle radius related to the membrane
area) moving through a structured microchannel, where Ly is the average channel width. (B)
Dynamics of a quasi-spherical vesicle at reduced volume v = 0.988. Dependence of the tilt
angle θ of a vesicle on κ∗, for Lx/Ly = 4 (where Lx is the periodicity length along the channel)
and ay = 0.5 (which is the amplitude of the wall sawtooth, such that the maxima and minima are
located at y = (1± ay)Ly/2). Here, 〈sin2(2θ)〉 describes the deviation from symmetric shape.
The insets show sliced snapshots of vesicles in the xy-plane for κ∗ = 0.01 and κ∗ = 50. Solid
and dashed lines indicate shapes of extremal elongation or tilt. Also, maximum vesicle lengths
in the x, y, and z directions as a function of the center-of-mass position xG, for κ∗ = 0.01
and ay = 0.5. Solid and dashed lines represent results for Lx/Ly = 4 and Lx/Ly = 16,
respectively. From Ref. [77].
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Fig. 17: Simulations of RBC membrane fluctuations. (a) Simulation set-up mimicking the ex-
perimental conditions with a red blood cell and four beads attached. Three beads (marked by
crosses) are used as handles via a harmonic potential, whereas the fourth probe bead (marked
by a two-headed arrow) is either sinusoidally driven to measure the mechanical response or left
free to monitor its fluctuations. (b) Comparison of the power spectral density (PSD) of a system
with passive thermal fluctuations and the corresponding system with an activity generated by
random kicks at the membrane.

membranes such as the model in Eq. (30).
Recently, it has been recognized that cell activity (e.g., metabolic) through the consumption of
adenosine triphosphate (ATP) contributes to measured flickering for RBCs. The effect of ATP
on membrane fluctuations has been investigated in a number of experiments [141, 144–148]
with contradicting outcomes. RBC fluctuations have been reported to depend on the viscosity
of suspending media [144], which points toward out-of-equilibrium contributions. The stud-
ies with ATP depletion [141, 146] have shown that membrane fluctuations decrease; however,
during the ATP depletion process there is no guarantee that RBCs are not subject to changes
in membrane elasticity. In contrast, other investigations [145, 147] have questioned the effect
of ATP on measured flickering. Recent work [148] has provided compelling evidence for cell
activity by testing directly the fluctuation-dissipation relation, which is valid for any system in
equilibrium. A violation of the fluctuationdissipation relation has been shown using a setup
illustrated in Fig. 17(a). In this setup, the three handle beads are held by a harmonic potential
in simulations mimicking optical tweezers in experiments, whereas the probe bead is moved
sinusoidally to determine the mechanical response function. The free fluctuations of the probe
bead are measured separately in simulations and experiments. Simulations have closely mim-
icked experimental conditions [148] and were used to quantitatively extract RBC membrane
properties including shear elasticity, bending rigidity, and membrane viscosity. To simulate ac-
tive processes, random active forces acting normally on membrane vertices were added. Figure
??(b) shows the power spectral density (PSD) of a passive system, where thermal fluctuations
of the probe bead were monitored, and the corresponding system with the activity model. PSD
is the Fourier transform of the trajectory of the probe bead. Clearly, certain frequencies are
enhanced in case of an active process, which is in quantitative agreement with the experimental
observations [148]. The combination of experiments, simulations, and theory has allowed the
quantification of active fluctuations and the characterization of properties and kinetics of cell’s
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(a) (b)

Fig. 18: Simulation snapshots of a RBC in tube flow (from left to right). (a) an off-center slipper
cell shape and (b) a parachute shape. From Ref. [97].

activity [148].

3.8 Red Blood Cells in Flow
The behavior of RBCs in microcirculation plays an important role in blood flow resistance and
in the cell partitioning within a microvascular network. Therefore, a number of investigations
have focused on the understanding of RBC deformation and dynamics in simple flows such as
shear and Poiseuille flow. RBCs are very similar by construction to polymerized vesicles. Most
of available experiments with single RBCs were performed in suspending fluids with a relatively
high viscosity, often much larger than that of blood plasma. This allows the imposition of high
enough fluid stresses on RBCs, while keeping the corresponding shear rates under a certain
limit, which is often imposed by used experimental instruments (e.g., rheometer). However,
such conditions are very different from physiological conditions and may not properly reflect the
behavior of RBCs in blood. Below, we will briefly review the dynamics of RBCs in shear and
Poiseuille flows and emphasize the differences in RBC behavior in suspensions with different
viscosities.
RBCs suspended in a relatively high-viscosity fluid (greater than about 5 times viscosity of
water) show tumbling dynamics at low shear rates and tank-treading at high shear rates in Cou-
ette flow [149–151]. The existence of the tumbling-to-tank-treading transition is attributed to
a RBC minimum energy state, such that a certain energy barrier has to be exceeded for a RBC
to start the tank-treading motion. In the tank-treading state, a RBC also oscillates around the
preferred inclination angle of tank-treading with a certain frequency and amplitude [151–154].
Recent experiments [155] have identified another dynamics, RBC rolling, which occurs within
the range of shear rates between RBC tumbling and tank-treading states.
Note that all these studies have been performed under the conditions where the viscosity of
suspending media was larger than that of the RBC cytosol. However, under physiological con-
ditions blood plasma has a viscosity about five times smaller than that of a RBC cytosol. Using
a similar viscosity ratio, recent experiments [156] and simulations [157] have shown that a large
enough viscosity contrast between inner and outer fluids suppresses the tank-treading motion
of RBCs, leading to the preference for RBC tumbling. This behavior is qualitatively consistent
with that for vesicles, where a transition from tank-treading to tumbling can be triggered by an
increase in the viscosity contrast [158]. This indicates that membrane shear elasticity may play
a secondary role for RBC dynamics at high enough viscosity contrast.



.30 T. Auth, D.A. Fedosov, and G. Gompper

0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

χ

γ
*

Snaking

Parachute

Tumbling

Slipper

Fig. 19: A phase diagram of RBC shapes in tube flow for the average membrane properties of a
healthy RBC with a Föppl-von-K’arm’an number Γ = 2652. Different dynamic states, depend-
ing on the flow strength characterized by a non-dimensional flow rate γ̇∗ and the confinement χ,
are depicted by symbols: parachute (green circles), slipper (brown squares), tumbling (red dia-
monds) and snaking (blue stars) discocyte. The phase-boundary lines are drawn approximately
to guide the eye. From Ref. [97].

Similar to vesicles, RBCs in Poiseuille flow show a rich behavior, characterized by various
shapes including parachutes and slippers [97,159–163], as illustrated in Fig. 18. Parachutes are
characterized by a symmetric shape similar to a semi-spherical cap and they flow in the center
of a tube without significant membrane motion. In contrast, slippers are non-symmetric RBC
shapes, where the membrane is subjected to a tank-treading motion. Thus, slippers are mainly
differentiated from parachutes by an asymmetric shape and the membrane motion.
Recent 2D simulations [162, 163] have led to a phase diagram of various shapes including
parachute, slipper, and a snaking dynamics, as function of RBC confinement and flow strength.
The snaking dynamics is characterized by a wiggling motion of a discocyte shape near the tube
center. 3D simulations [97] have been used to generate a similar diagram of RBC shapes in
tube flow, which is qualitatively similar to the diagram in 2D. Figure 19 shows the RBC shape
diagram in 3D for different flow rates and confinements. The flow rate is characterized by a
non-dimensional shear rate γ̇∗, which is a product of the average shear rate (or pseudo-shear
rate) and the characteristic relaxation time τ = ηR3/κ of a RBC [97]. The confinement χ
is the ratio of an effective RBC diameter and the tube diameter. At strong confinements and
high flow rates, parachutes are mainly found, while low confinements lead predominantly to
off-center slippers. When the flow rate is small enough, off-center tumbling RBCs are found,
which can be explained by the existence of the tumbling-to-tank-treading transition mentioned
above for RBCs in shear flow. In contrast to the 3D model results, this region is absent in 2D
simulations [162, 163], since this transition cannot be captured by a 2D model. Another promi-
nent difference between the phase diagrams in Fig. 19 and in 2D simulations [162, 163] is the
existence of the “confined slipper” in 2D at high confinements which is absent in 3D. Slippers
at high confinements in 3D are hindered due to the cylindrical shape of a tube, which makes
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a confined slipper configuration energetically unfavorable, since it would have to conform the
wall curvature. In microcapillary flow, changes in RBC membrane properties lead to a shift
of boundaries between different RBC shapes and dynamics illustrated in Fig. 19 [97]. Conse-
quently, it should be possible to detect such changes based on the observation of RBCs in flow
and simulations can provide the basis for a quantitative interpretation of these observations.

4 Conclusions and Outlook
Models and simulation techniques for the entire range of length scales relevant for giant vesi-
cles – from atomistic models for single lipids via coarse-grained molecular models for self-
assembly and lipid organization in a membrane, to discretized continuum models for vesicle
shapes – have been developed and applied in recent years. Developments of these techniques
have extended the applicability domain for vesicle simulations towards more complex many-
component systems that cannot be studied easily by analytical calculations. On the molecular
scale, coarse-grained molecular models with chemical specificity have become available – in-
dependently from the increase in computational speed – for much larger systems. The combi-
nation of discretized continuum membrane models with mesoscopic hydrodynamic simulation
techniques is nowadays successfully used to simulate vesicles and simple cells in flow, such as
vesicle deformation in structured channels and blood flow in small capillaries. Finally, a com-
bination of continuum membrane models with models for membrane proteins, the simulation
of coupled fluid and polymerized membranes, and modeling of the interaction of membranes
with cytoskeletal filaments allow the extension of bare vesicle simulations to biomimetic and
biological systems. In combination with hydrodynamics, also the dynamics of such biomimetic
systems can be accessed. This provides versatile tools and opens up exciting possibilities to-
ward studying equilibrium and dynamic properties of multi-component vesicular systems with
passive and active components.
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