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Abstract Parasitic infectious diseases and other hereditary héamatodisorders
are often associated with major changes in the shape andeléstic properties
of red blood cells (RBCs). Such changes can disrupt blood #od/ even brain
perfusion, as in the case of cerebral malaria. Modeling es¢hhematologic dis-
orders requires a seamless multiscale approach, wherd biis and blood flow
in the entire arterial tree are represented accuratelygushysiologically consis-
tent parameters. In this chapter, we present a computatisethodology based on
dissipative particle dynamics (DPD) which models RBCs all asswhole blood
in health and disease. DPD is a Lagrangian method that caered from sys-
tematic coarse-graining of molecular dynamics but caresetiicientlyup to small
arteries and can also be used to model RBGsn to spectrin level. To this end, we
present two complementary mathematical models for RBCglasdribe a system-
atic procedure on extracting the relevant input paramétens optical tweezers and
microfluidic experiments for single RBCs. We then use thedelated RBC mod-
els to predict the behavior of whole healthy blood and compéth experimental
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results. The same procedure is applied to modeling makamiyesults for infected
single RBCs and whole blood are presented.

1 Introduction

The healthy human red blood cells (RBCs) are discocytes whesubjected to any
external stresses and they are approximately 7.5 tqué&7an diameter and 1.7 to
2.2 um in thickness (31). The membrane of the RBC is made up of apttodipid
bilayer and a network of spectrin molecules (cytoskeletaiith the latter largely
responsible for the shear elastic properties of the RBC. §peetrin network is
connected to bilayer via transmembrane proteins and tegeitith the spectrin fil-
aments and the cytosol inside the membrane determine thghmlogical structure
of RBCs. This critical binding between the spectrin netwanrid the lipid bilayer
is actively controlled by ATP (64). Parasitic infectionsgenetic factors can dras-
tically change the viscoelastic properties and even th@estod RBCs (10). For
example, the parasitélasmodium falciparumthat invades the RBCs (Pf-RBCs) of
most malaria patients affects drastically the RBC membpaoperties resulting in
a ten-fold increase of its shear modulus and a sphericaleshafhe later stages
of the intra-cell parasite development (10). In additiocRRBCs develop knobs on
their surface that serve as adhesion sites for the bindirngher Pf-RBCs as well
as healthy RBCs. This enhanced cytoadherence of Pf-RBCsnibioation with
their reduced deformability may cause blood flow obstrutéspecially through the
smaller arterioles and capillaries. Sickle cell anemianisther blood disorder that
affects the hemoglobininside the RBCs causing dramatiogémsin their shape and
deformability. These changes combined with the increastedrial viscosity affects
the flow of sickled RBCs through the capillaries leading tevftacclusion (10, 38).
Other hereditary diseases with similar effects are splyosts and elliptocytosis
(3). In the former, RBCs become spherical with reduced diamend carry much
more hemoglobin than healthy RBCs. In the latter, RBCs digtiebl or oval in
shape and of reduced deformability.

The common problem in the aforementioned hematologic dessris the re-
modeling of the cytoskeleton and correspondingly a changie structure and
viscoelastic properties of individual RBCs, so studyingithmechanical and rhe-
ological properties in vitro can aid greatly in the undensliag and possible dis-
covery of new treatments for such diseases. To this end, deanaed experimental
tools are very valuable in obtaining the basic propertiesrgle RBCs in health and
disease, which are required in formulating multiscale rodthfor modeling blood
flow in vitro and in vivo. Specifically, advances in experinedriechniques now al-
low measurements down to the nanometer scale, and inclurtepipette aspiration
(12, 87), RBC deformation by optical tweezers (6, 37, 82)icapmagnetic twisting
cytometry (54), three-dimensional measurement of menebta@rmal fluctuations
(65, 69), and observations of RBCs immersed in both sheamapiessure-driven
flows (1, 29, 75, 83, 85). Micropipette aspiration and optteseezers techniques
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tend to deform the whole RBC membrane directly, while optinagnetic twist-
ing cytometry and measurements of membrane thermal flichsprobe the mem-
brane properties locally. The macroscopic shear modulhsalthy cells is reported
in the range of 2- 12 uN/m from the two former techniques, while the two latter
ones allow measurements of local rheological propertias,(the complex modu-
lus).

These experiments provide sufficient evidence for a complembrane mechan-
ical response including its unique viscoelastic propsrtie addition, Li et al. (47)
suggest that metabolic activity or large strains may inducentinuous rearrange-
ment of the erythrocyte cytoskeleton. Consequently, itr themerical model the
RBC membrane may exhibit strain hardening or softening deing on certain
conditions. Moreover, the cytoskeleton attachments ctinsdi within the lipid bi-
layer, but such behavior can be neglected at short timesdate (32) proposed an
active elastic network model, where the metabolic actiwiigy affect the stiffness
of the cell through the consumption of ATP. The activity iedd by ATP would also
greatly affect membrane undulations (33, 64) resultinguctflations comparable
to an effective temperature increase by a factor of three.paoasitic infectious
diseases, powerful imaging techniques have been deveippedent years, which
allow to observe details of parasite development insideRBE and also to gain
information about the properties of the cell components §&). Figure 1(a) shows
the parasitd®. falciparum inside an infected RBC during the ring stage of parasite
development, which was obtained using soft x-ray imagicgnéue. The parasite
and some elaborate structure, which extends from the paiasd the cell cytosol,
can be clearly seen in the image.

@) (b):

Fig. 1 (a) Soft x-ray micrograph of intra-erythrocytic ring staBefalciparum malaria parasite
imaged in RBC (Reproduced from (50)). (b) The computatid®BC model consists of particles
connected with links. The model is immersed into DPD fluid &ty interacts with it through
pairwise forces. The internal DPD fluid has a higher visgosit match the viscosity of RBC
cytosol. TheP. falciparum parasite is modeled as a rigid sphere of two microns in diameter.

A number of numerical models have been developed recentlyding a con-
tinuum description (15, 20, 31, 70) and a discrete approtanaon the spectrin
molecular level (11, 46) as well as on the mesoscopic sc8leld, 58, 67). Some
of the models suffer from the assumption of purely elastiomoene, and are able
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to capture only the RBC mechanical response, but cannottitptarely represent
realistic RBC rheology and dynamics. Fully continuum (flait solid) models of-
ten suffer from non-trivial coupling between nonlinearidaleformations and fluid
flow with consequential computational expense. Therefegmi-continuum” mod-
els (15, 70) of deformable particles which use immersed Hagnor front-tracking
techniques are developing rapidly. In these, a membrarepigsented by a set of
points which are tracked in Lagrangian fashion and are @zl an Eulerian dis-
cretization of fluid domain. These models employ the samereat and internal
fluids and do not take into account the existing viscositytast between them. In
addition, continuum models omit some mesoscopic and niogis scale phenom-
ena such as membrane thermal fluctuations which affect RB@laQy and dynam-
ics (57). On the microscopic scale, detailed spectrin moégenodels of RBCs are
much limited by the demanding computational expense. Toerewe will focus
here on an accurate mesoscopic modeling of red blood cells.

There exist several mesoscopic methods (13, 14, 58, 67)ddeiing deformable
particles such as RBCs. Dzwinel et al. (14) model RBCs asawelof elastic ma-
terial having an inner skeleton. This model does not take aucount the main
structural concept of red blood cell, namely a membranedfiléth a fluid, and
therefore it cannot capture properly the dynamics of RBGs.ekample, the ob-
served tumbling and tank-treading behavior in shear flow 9}, Three other afore-
mentioned methods (13, 58, 67) employ a very similar apgroéa¢he method we
will present here, where the RBC is represented by a netwfmgrings in combina-
tion with bending rigidity and constraints for surface-@end volume conservation.
Dupin et al. (13) couple the discrete RBC to a fluid describgthle Lattice Boltz-
mann method (81). They obtained promising results, howtemodel does not
consider external and internal fluids separation, membvéeosity, and thermal
fluctuations. Noguchi and Gompper (58) employed MultigéetiCollision Dynam-
ics (51) and present encouraging results on vesicles andsRB@vever they do
not use realistic RBC properties and probe only a single @speRBC dynam-
ics. Pivkin and Karniadakis (67) used Dissipative Part@ismamics (DPD) (40)
for a multiscale RBC model which will be the basis of the gaherultiscale RBC
(MS-RBC) model we will present here. The MS-RBC model is dblesuccess-
fully capture RBC mechanics, rheology, and dynamics; tleis/\accurate model
was first published in (24). Potential membrane strain hardeor softening as
well as the effects of metabolic activity can also be incogped into the model
leading to predictive capabilities on the progression skdses such as malaria.
Theoretical analysis of the hexagonal network yields itedir mechanical proper-
ties, and completely eliminates adjustment of the modedpaters. Such models
can be used to represent seamlessly the RBC membrane, elgtiosk cytosol, the
surrounding plasma and even the parasite, e.g. in malafieated RBC, see figure
1. However, it is quite expensive computationally, and te &md, we also present a
low-dimensional red blood cell model (LD-RBC), also based on DPD, that is more
appropriate for blood flow simulations in large arteriol66)

This chapter is organized as follows: In section two we nevike basic DPD
theory, the two RBC models, as well as aspects of the aggoegand adhesion
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models that are especially important in modeling hemaioldigorders. In section
three we present some details on how we can use diverse-sialfjlstatic and dy-
namic measurements to estimate key macroscopic paramelecs upon mapping
to the network (microscopic) parameters serve as inpugotbdels. In section four
we first present validation tests based on single-cell éxymts. Subsequently, we
present validation tests for whole blood, demonstratiag tioth models can predict
the human blood viscosity in a wide range of shear rate vainekiding the low
shear rate regime, where aggregation and rouleaux formatie responsible for
the strong non-Newtonian blood behavior. In section five apply to malaria the
framework we developed, i.e. from single-cell-measureisiparameter estimation
to predicting the mechanical and rheological behavior tdéted blood in malaria.
We conclude in section six with a brief summary and a disaumssi the potential of
multiscale modeling to predicting the state and evolutibnemmatologic disorders.

2 Methods and Models

We first review two formulations of the dissipative partidignamics (DPD) method
that we employ in modeling RBCs and blood flow. We then prosijgecific details

on the multiscale RBC model (MS-RBC) and subsequently olotliedimensional

RBC model (LD-RBC), including the aggregation and adhegiadels. Finally, we

present details on the scaling from DPD units to physicakuni

2.1 Dissipative Particle Dynamics: Original Method

Dissipative Particle Dynamics (DPD) (34, 40) is a mesoscairticle method,
where each particle representsnalecular cluster rather than an individual atom,
and can be thought of as a soft lump of fluid. A first-princiglesivation of the DPD
method from the Liouville equation is presented in (45). THeD system consists
of N point particles of masey, positionr; and velocityv;. DPD patrticles interact
through three forces: conservati\Ka,cjo, dissipative FPJ-), and randoml{ﬁ) forces
given by

Fi(é = FS(rij)fij,
Fij = =y (rij) (vij - Fij)Fij, 1)
FR = GwR(rij)%fiJ’

wherefi; = rjj/rij, andvij = vi — vj. The coefficientyy and o define the strength
of dissipative and random forces, respectively. In addijtwo® and wR are weight
functions, andj; is a normally distributed random variable with zero mearit un
variance, andjj = &ji. All forces are truncated beyond the cutoff radigswhich
defines the length scale in the DPD system. The conservative fs given by
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Crry ajj(1—rij/rc) for rij <re,
Ry = { 0 for rij >re, (2)

whereg;; is the conservative force coefficient between partickesd .

The random and dissipative forces form a thermostat and satssfy the
fluctuation-dissipation theorem in order for the DPD systenmaintain equilib-
rium temperaturd (18). This leads to:

() =[], 0?=2keT, 3)

wherekg is the Boltzmann constant. The choice for the weight fumdiis as fol-
lows .
R ) (L=rij/re) forrij <re,

@ (r.,)_{ 0 for rjj >re, (4)
wherek = 1 for the original DPD method. However, other choices (&g-,0.25)
for these envelopes have been used (21, 27) in order to setha viscosity of the
DPD fluid.

The time evolution of velocities and positions of particiesletermined by the
Newton’s second law of motion

dri = vidt, (5)

1
dv; = ﬁé(FﬁJrFiDjnLFﬁ-)dt. (6)
JFI
The above stochastic equations of motion can be integrasedy e modified
velocity-Verlet algorithm (34); for systems governed byxed hard-soft potentials
sub-cycling techniques similar to the ones presented ing&4 be employed.

2.2 DPD Method for Colloidal Particles

To simulate colloidal particles by single DPD particles, uge a new formulation
of DPD, in which the dissipative forces acting on a partiake explicitly divided
into two separate componententral and shear (non-central) components. This
allows us to redistribute and hence, balance the dissp#iices acting on a single
particle to obtain the correct hydrodynamics. The resgltimethod was shown to
yield the quantitatively correct hydrodynamic forces aadjties on a single DPD
particle (63), and thereby produce the correct hydrodyariar colloidal particles
(61). This formulation is reviewed below.

We consider a collection of particles with positiansnd angular velocitie®;.
We definerjj =ri —rj, rij = |rij|, & = rij/rij, Vij = Vi — Vj. The force and torque
on particlei are given by
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Fi = Z Fij,
]

(7)
T| :*Z/\ijrij XFij.
J

Here, the facton;; (introduced in (72)) is included as a weight to account fer th
different contributions from the particles in differentespes (solvent or colloid)
differentiated in sizes while still conserving the angutesmentum. It is defined as
R
Aij= =——, 8
I"RiR ®)
whereR andR; denote the radii of the particlesand j, respectively. The force
exerted by particlg on particlei is given by

Fij = F + F + F} + Fij. (9)

The radial conservative forde” can be that of standard DPD and is given in
equation (2). Thérandational forceis given by

=—mﬁ%ru—“—WN%w%%km

‘ (10)
= =¥y P (vij - e )e =y £2 () [vij — (vij - @)ey ]

It accounts for the drag due to the relative translation#baity vij of particlesi
andj. This force is decomposed into two components: one alonghendther per-
pendicular to the lines connecting the centers of the pasti€orrespondingly, the

drag coefficients are denoted lpﬂ{ and yﬁ for a “central” and a “shear” compo-

nents, respectively. We note that the central componeriiefdrce is identical to
the dissipative force of standard DPD (eq. (1)).
Therotational force is defined by

= —yj F2(rij) [rij < (A Qi +2;1Q)] (11)

while therandomforce is given by

_ 1
Fijdt = f(fij)[\ﬁffutf[dwijllﬂ@fﬁdwﬂ -8 (12)

whereai‘} =/ 2kgT i} ando;; = ,/2ksTy; are chosen to satisfy the fluctuation-

dissipation theorengWj; is a matrix of independent Wiener increments, almn{}
is defined aSiWA“" 3(dW};” —dw;). We can also use the generalized weight

function f(r) = (1— —) as in the previous section with= 0.25 (22) in equa-
tions (10)- (12). The numerical results in previous stud&s 63) showed higher
accuracy withk = 0.25 compared to the usual choike= 1. The standard DPD is
recovered Wheyﬁ =0, i.e., when theshear” components of the forces are ignored.
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Colloidal particles are simulated as single DPD partict@sjlarly to the solvent
particles but of larger size. The particle size can be adgistith the coefficient
aj; of the conservative force (see eq. (2)). However, the stahlilaear force in
DPD defined in eq. (2) is too soft to model any hard-sphere bdfggarticles. To
resolve this problem, we adopt an exponential conservétinee for the colloid-
colloid and colloid-solvent interactions, but keep thevetional DPD linear force
for the solvent-solventinteractions. We have found theséhybrid conservative in-
teractions produced colloidal particles dispersed ineatwithout overlap, which
was quantified by calculating the radial distribution fuantof colloidal particles
(61). Moreover, the timestep is not significantly decreagedontrast to the small
timesteps required for the Lennard-Jones potential (723.rédial exponential con-
servative force is defined as

R = ol (@) a3

wherea;j andb;; are adjustable parameters, aids its cutoff radius. The size of a
colloidal particle can thus be controlled by adjusting th&re ofa;j in eq. (13).

2.3 Multiscale Red Blood Cell (MS-RBC) Model

Here, we will use the DPD formulation described in secticgh Zhe average equi-
librium shape of a RBC is biconcave as measured experintg(28l), and is repre-
sented by

4(x*+y?)
D3

x2—|—y2 (x2+y2)2

Z=+Dgy/1— a , 14

[ao—i—al

whereDg = 7.82 umis the average diametexy = 0.0518,a; = 2.0026, anda, =
—4.491. The surface area and volume of this RBC are equal toui85and 94
umd, respectively.

In simulations, the membrane network structure is gendrbtetriangulating
the unstressed equilibrium shape described by (14). Thelabe is first imported
into a grid generator to produce an initial triangulatiosédon the advancing-front
method. Subsequently, free-energy relaxation is perfdioyelipping the diagonals
of quadrilateral elements formed by two adjacent trianghdsle the vertices are
constrained to move on the prescribed surface. The retaxatiocedure includes
only elastic in-plane and bending energy components destielow.

Figure 2 shows the membrane model represented by a set @ pwih, i € 1...N,
that are the vertices of a two-dimensional triangulatesvosgt on the RBC surface
described by equation (14). The vertices are connectedslegdges which forni\;
triangles. The potential energy of the system is defined lamife

V({Xi}) = Vin- plane+Vbending + Varea + Vvolume- (15)
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Fig. 2 MS-RBC membrane model witk, = 100, 500, and 3000 from left to right, respectively.

The in-plane elastic energy mimics the elastic spectrimogk, and is given by

ke Tlm(33¢ — 23) Ko

Vi olane = n , 16

wherel| is the length of the spring I is the maximum spring extensiax), =1 /Im,
pis the persistence lengtksT is the energy unitk, is the spring constant, amds
a power. Note that the spring forces in membrane are a corimnaf conservative
elastic forces, that may be expressed in terms of the enertpniial above, and
dissipative forces to be defined below. The first term in (1&yesponds to the
attractive wormlike chain (WLC) potential, and the secosmit defines a repulsive
force forn > 0 to be called the power force (POW), so that we abbreviasesiiting
model as WLC-POW. Note that if = 1 the power force energy should be defined
as—kplog(lj). A non-zero equilibrium spring length is defined by the bakwof
these two forces.

The bending energy represents the bending resistance bpithéilayer and is
defined as

Vbending = kb [1* COS(QJ' - 90)] ) (17)
jel.Ns

wherek, is the bending constart)j is the instantaneous angle between two adjacent
triangles having the common edgeand 6, is the spontaneous angle. The above
bending energy is a discretization (76) of the macroscogifrtéh model (36).

The area and volume conservation constraints which acéouatea-incompressibility
of the lipid bilayer and incompressibility of the inner cgti, respectively, are ex-
pressed as

ka(A— AF")? ka(Aj — Ao)?
Varea= ——=m5 — + —_—, (18a)
" jel. N 2A0
ko(V — V)2
Vi = S (18b)

whereky, kg andk, are the global area, local area and volume constraint coeffi-
cients, respectively. The termsandV are the total area and volume of RBC, while
AP andV* are the specified total area and volume, respectively. Natethe
above expressions define global area and volume constraimdshe second term
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in equation (18a) incorporates the local dilatation caxistr Detailed description
and discussion of the RBC model can be found in (24, 25).
Particle forces are derived from the above energies asaiello

fi=—0V({xi})/oxi, iel..Ny. (29)

Exact force expressions can be found in (23).

2.3.1 Mechanical Properties

Linear analysis of the regular hexagonal network havingth@ve energies yields a
relationship between macroscopic elastic propertiesafsta@ea-compression, and
Young’s moduli) of the network and model parameters (24, I5) membrane
shear modulus is thus given by

V3keT X0 1 1\  V3kp(n+1)
= —_ —_ + T’
4plmXo a5

Ho (20)

20— A1-x02 ' 4

wherelg is the equilibrium spring length andg = lp/Im. The corresponding area-
compression and Young’s moduli are found as follows

- 4KoHo
Ko + Ho

Ko = 2Ug + ka + Kg, (21)
The bending coefficienk, of equation (17) can be expressed in terms of the
macroscopic bending rigidit. of the Helfrich model (36) ak, = 2k./+/3.

2.3.2 Membrane Viscoelasticity

The above model defines a purely elastic membrane, howes&BC membrane
is known to be viscoelastic. To incorporate viscosity irite tnodel, the spring def-
inition is modified by adding viscous contribution througksgipative and random
forces. Such a term fits naturally in the DPD method (40), wheter-particle dis-
sipative interactions are an intrinsic part of the methddi§htforward implemen-
tation of the dissipative interactions Egj = —y(vij - &j)&;j (v is the dissipative
parametery;j = v; —Vj is the relative velocity of verticesand j connected by
a spring, andyj is the direction along the spring with unit length) appearbeé
insufficient. Experience shows that smgltesults in a negligible viscous contri-
bution sincevij - gj ~ 0, while large values of require considerably smaller time
steps to overcome the numerical instability. Better penfmnce is achieved with
a viscous spring dissipation termyvij, which is similar to a “dashpot”, and in
combination with a spring force represents the Kelvin-Voigdel of a viscoelastic
spring. For this term the fluctuation-dissipation balaneeds to be imposed to en-
sure the maintenance of the equilibrium membrane temprergili . We follow the
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general framework of the fluid particle model (17), and deﬁﬁe: —Tij -vij and
Tij =y" 1+ Y ajaj, wherey" andy© are the dissipative coefficients. This definition
results in the dissipative interaction term of the kind

FO = — [y 1+ Yejej] -vij = —y'vij — V°(vij - &))aj, (22)

where the second term is analogous to the dissipative ford@HD. From the
fluctuation-dissipation theorem, random interactionsgven by

FRdt = \/2keT (\/ZdeWﬁ +/3)° — yTwl) -, (23)

wheretr[dWij;] is the trace of a random matrix of independent Wiener incre-
mentsdWij, anddWﬁf = dWﬁ —tr[dWiSj]l/3 is the traceless symmetric part, while
dWﬁ = [dW;j; +dWiTj]/2 is the symmetric part. Note, that the last equation imposes
the condition 3¢ > y'. The defined dissipative and random forces in combination
with an elastic spring constitute a viscoelastic spring séhequilibrium tempera-
turekgT is constant. To relate the membrane shear viscagitgnd the dissipative
parametery", y© we employ the idea used for the derivation of membrane elasti
properties (see (23, 24) for details) and obtain the follayielation

3
Nm=V3y" + g. (24)
Clearly,y" accounts for a large portion of viscous contribution, areteéfiorey© is

set toy" /3 in all simulations.

2.3.3 RBC-Solvent Boundary Conditions

The RBC membrane encloses a volume of fluid and is itself suskin a solvent.
In particle methods, such as DPD, fluids are representedakeaton of interacting
particles. Thus, in order to impose appropriate boundangitmns (BCs) between
the membrane and the external/internal fluids two mattess te be addressed:

i) enforcement of membrane impenetrability to prevent mixof the inner and the
outer fluids,

i) no-slip BCs imposed through pairwise point interac8doetween the fluid parti-
cles and the membrane vertices.

Membrane impenetrability is enforced by imposing bounaekbreflection of
fluid particles at the moving membrane triangular plaggefidhe bounce-back re-
flection enhances the no-slip boundary conditions at the ln@ne surface as com-
pared to specular reflection; however, it does not guarardedip. Additional dis-
sipation enhancement between the fluid and the membrangu#ed to achieve
no-slip at the membrane boundary. For this purpose, the DiBfpative force be-
tween fluid particles and membrane vertices needs to be pyoget based on the
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idealized case of linear shear flow over a flat plate. In cantin, the total shear
force exerted by the fluid on the aréas equal toAny, wheren is the fluid’s vis-
cosity andy is the local wall shear-rate. In DPD, we distribute a numigrasticles
on the wall to mimic the membrane vertices. The force on alsimgll particle
exerted by the sheared fluid can be found as follows

F = / ng(r)FPaV, (25)
JVh

whereFP is the DPD dissipative force (17) between fluid particles aranbrane
verticesn is the fluid number densitg(r) is the radial distribution function of fluid
particles with respect to the wall particles, angds the half sphere volume of fluid
above the wall. Here, the total shear force on the &r&aequal toNaF,, whereNp

is the number of wall particles enclosed Ay The equality ofNaFR, = Any results
in an expression of the dissipative force coefficient in ®ohthe fluid density and
viscosity, and the wall densitia/A, while under the assumption of linear shear
flow the shear ratg cancels out. This formulation results in satisfaction @& tio-
slip BCs for the linear shear flow over a flat plate. It also ssras an excellent
approximation for no-slip at the membrane surface in sgitb@assumptions made.
Note that in the absence of conservative interactions tflaid and wall particles

g(ry=1.

2.3.4 RBC Aggregation Interactions

For a blood suspension the attractive cell-cell interaxstiare crucial for simulation
of aggregation into rouleaux. These forces are approxighptenomenologically
with the Morse potential given by

o(r) = De [ezﬁ(rw) - 2&<f0*f>} , (26)

wherer is the separation distanag,is the zero force distancBy is the well depth

of the potential, an@ characterizes the interaction range. For the MS-RBC model
the Morse potential interactions are implemented betweenyetwo vertices of
separate RBCs if they are within a defined potential cutaffusry as shown in
figure 3. The Morse interactions consist of a short-rangalsige force whem < rg

and of a long-range attractive force for- ro. However, such repulsive interactions
cannot prevent two RBCs from an overlap. To guarantee ndajyamong RBCs
we employ a short range Lennard-Jones potential and speefilections of RBC
vertices on membranes of other RBCs. The Lennard-Jonestfaitis defined as

i) =0 [ (22) - (22)]. 27)

r

whereg anday; are energy and length characteristic parameters, respBcilhese
interactions are repulsive and vanish beyone 21/6¢ ;. In addition, specular re-
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vertex-vertex interactions

Fig. 3 Aggregation interactions for the MS-RBC model.

flections of RBC vertices on surfaces of other RBCs are nacgdsie to coarseness
of the triangular network, which represents the RBC meméran

2.3.5 RBC Adhesion Interactions

Adhesion of Pf-RBCs to coated surfaces is mediated by tlegdotions between
receptors and ligands which are the adhesion sites digtdlmn a cell and a surface,
respectively. A potential bond between a receptor and adigaay be formed only
if the receptor is close enough to the free ligand, which iarabterized by the
reactive distancely,. A ligand is called free if it is not bound to any receptors.
During the time a receptor is within the distardg to a free ligand, a bond can be
formed with on-raté,,. Reversely, existing bonds are ruptured with off-fatg or

if their length exceeds the rupture distartzes. The rates, andkys are defined
as follows

on(l —10)2 oii(l —1g)?
Kon = kgnexp(—az(kTo)), Kot = kgff eXp(UffZ(kTo)) (28)

wherekd, andk; are the reaction rates at the distathee Iy between a receptor
and a ligand with the equilibrium spring lengdihdefined below. The effective on
and off strengthgry,, andoyt define a decrease or an increase of the corresponding
rates within the interaction lengtlis, anddy ¢, andkgT is the unit of energy. The
force exerted on the receptors and ligands by an existing Bogiven by

F(1) =ks(I —lo), (29)

whereks is the spring constant. The probabilities of bond forma#iad dissociation
are defined aByn = 1 —exp(—konAt) andPys; = 1— exp(—kottAt), whereAt is the
time step in simulations. This adhesion model is a slight ifiezdion of the well-
known adhesive dynamics model developed by Hammer and Bp)e(imarily for
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leukocytes. In their moded,, = gis anddy s = ks — Ots, Whereais is the transition
state spring constant.

During the course of a simulation the receptor/ligand iatéions are considered
every time step. First, all existing bonds between recepad ligands are checked
for a potential dissociation according to the probabiRgy:. A bond is ruptured if
& < Py¢¢ and left unchanged otherwise, whefds a random variable uniformly
distributed on[0, 1]. If a bond is ruptured the corresponding ligand is availdbte
new binding. Second, all free ligands are examined for |pesdiond formations.
For each free ligand we loop over the receptors within théadised,,, and bond
formation is attempted for each found receptor accordirigegrobabilityP,,. This
loop is terminated when a bond is formed. Finally, the foxmfes| remaining bonds
are calculated and applied.

Note that this algorithm permits only a single bond per ligawhile receptors
may establish several bonds if several ligands are fredmilieir reaction radius.
This provides an additional capability for the adhesiveaiyits model compared
with that employing one-to-one interactions between rearspand ligands. Also,
this assumption appears to furnish a more realistic reptatien of adhesive inter-
actions of Pf-RBCs with a coated surface. Pf-RBCs displayralver of parasitic
nanometer-size protrusions or knobs on the membrane suf®; 41, 55), where
receptors that mediate RBC adherence are clustered.

2.4 Low-Dimensional RBC (LD-RBC) Model

Here, we will employ the DPD formulation presented in set02. The LD-RBC
is modeled as a ring of 10 colloidal DPD particles connectgavbrmlike chain
(WLC) springs. The intrinsic size of colloidal particle igt@rmined by the radius
of the sphere effectively occupied by a single DPD partiéle) (which is defined
by the distribution of its surrounding solvent particles.

To construct the cell model, however, we allow particlehimsame RBC to over-
lap, i.e., the colloidal particles in the same cell stilleirgct with each other through
the soft standard DPD linear force (see eq. (2)). The radjus,each colloidal par-
ticle is chosen to be equal to the radius of the ring, and héreeonfiguration of
RBC is approximately a closed-torus as shown in figure 4.

The WLC spring force interconnecting all cell particles ach RBC is given by

kT 1 1 7
wie =" [4(1%)2 4+|m1 (30)

whererij is the distance between two neighboring begds the persistence length,
andl, is the maximum allowed length for each spring. Since thehaedlalso bend-
ing resistance, we incorporate into the ring model bendesistance in the form
of “angle” bending forces dependent on the angle betweertbmsecutive springs.
The bending forces are derived from the cosine bending patgjiven by
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Mass center of RBC at contact point
of overlapping spheres

Fig. 4 LD-RBC: A sketch of the low-dimensional closed-torus likB&model.

505 = ko[1 — cosBji, 31)

wherek is the bending stiffness, anlljx is the angle between two consecutive
springs.

Here,p determines the Young’s modulus, and along vitranda give the right
size of RBC. To match both axial and transverse RBC defoonatwith the ex-
perimental data (82), is adjusted to reach a good agreement, which also gives
some contribution to the Young’s modulus. The LD-RBC modesinot have the
membrane shear modulus.

Since the thickness of LD-RBC model is constant, we estintfegevariations
of the RBC volume and surface area under stretching by clogl the relative
change of the area formed by the ring under stretching. FalttineRBCs we find
that it varies within only 8% in the range of all stretchingdes (60). Therefore, the
surface-area and hence the volume of RBCs remain approadyrainstant in the
LD-RBC model.

2.4.1 Number of Particles in LD-RBC Model

We examine the effect of coarse-graining on stretchingaese by varying the
number of particlesN) to model the LD-RBC. Figure 5 shows the RBC shape
evolution from equilibrium (OpN force) to 100pN stretching force at different
Nc. Note that an increase of the number of particles making efiBC results in a
smoother RBC surface. However, this feature seems to bpilessunced for higher
N.. Also, when we stretch the RBCs with differedg, we find that an increase of
N results in better agreement with the experimental data (@R)aftemN; = 10, the
change becomes very small (60). To gain sufficiently gooé@ment and keep the
computation cost low, we choosk = 10 for all the simulations shown herein; this
is the accurate minimalistic model that we employ in our &sd
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Fig. 5 LD-RBC shape evolution at differeitl. (hnumber of particles in LD-RBC model) and
stretching forces.

2.4.2 Aggregation Model

For LD-RBC model, we also employ the Morse potential, seeatign (26), to
model the total intercellular attractive interaction enerThe interaction between
RBCs derived from the Morse potential includes two partdi@tsranged repulsive
force and a weak long-ranged attractive force. The repailgivce is in effect when
the distance between two RBC surfaces isrg, whererg is usually in nanometer
scale (7, 48, 56). In our simulatiorng,is chosen to be 200n.

Here,r is calculated based on the center of mass of RBCsriis.equal to the
distance between the center of mass of two RBCs minus thkniss of a RBC.
We also calculate the normal vector of each RBg),(which is used to determine
if the aggregation occurs between two RBCs according to tiggea formed by
the normal vectors of two RBCs with their center line. The RB&@mal vector is
defined as
D VKX Vier1
=
Here, Xk is the position of thekth particle in each RBCx. is the position of the
center of mass, an; is the number of particles in each RBC. The center ligp
of two RBCs (celli and cellj) is defined as — X¢j. The angle formed by the
normal vector of one cell with the center line is determingdheir dot product

Nc ,Vk = Xk — Xe. (32)

N Vdj
Ineill [1Vaij

(33)

The Morse interaction is turned ondf > d; andd; > dc, otherwise, it is kept off.
The critical valued,, is chosen to be equal tws(71/4), i.e., the critical anglef)
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to turn on/off the aggregation interaction7g4. This value is found to be suitable
to induce rouleaux formation, but exclude the disorderagtegation. The proposed
aggregation algorithm can be further illustrated by a dkétcfigure 6, where the
aggregation between two neighbor RBCs is decided to befatobrding to their
relative orientation.

Biand 6, <m/4 @) 6, or 6, >m/4 b
n ng
[ 91 _____ C
Veq
Interaction : Yes Interaction : No

Fig. 6 Schematic of the aggregation algorithm. Here, the two ri@ghiRBCs (1 and 2) are to
aggregate or not if the angle@, and6,, are smaller or greater thary4.

2.5 Scaling of Model and Physical Units

The dimensionless constants and variables in the DPD modsi be scaled with
physical units. The superscript denotes that a quantity is in “model” units, while
P identifies physical units (Sl units). We define the lengtHesea follows

p
MiDO

M =2
M
DO

m, (34)

whererM is the model unit of lengthDy is the cell diameter, anth stands for
meters. The energy per unit masgT) and the force unit (N” denotes Newton)
scales are given by

YP /DP 2 YP DP
TM=__ (=20 TP NM = —— —ONP 35
o7 g5 (5 ) ™" Fop @
whereY is the membrane Young’s modulus. The time scale is defined as

DY nPyM
= W"I—MW& (36)
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wheren is a characteristic viscosity (e.g., solvent or membrane).

3 Parameter Estimation

The models described in the previous section require agsrimicroscopic” pa-
rameters, e.g. the persistence lengtior the WLC potential, but also other param-
eters, e.g. values of the membrane viscosity. These pagesnafy not be readily
available in the literature and certainly they vary accogdio the RBC state, i.e a
healthy or infected RBC. To this end, we aim to estimate mitfigorequired param-
eters from single-cell measurements of macroscopic qies)te.g. shear modulus,
which can then be mapped to “microscopic” (network) pararsetising analyt-
ical expressions, such as the one in equation (20). Spdkifitee RBC model is
compared against several available experiments which ieazell mechanics, rhe-
ology, and dynamics for healthy and diseased RBCs. Firsbbiasn the shear mod-
ulus using optical tweezers measurements of a stretched RBGhen estimate the
membrane rheological parameters using measurements frfboabmagnetic twist-
ing cytometry and from the response of single RBC in shear fioall cases we run
corresponding DPD simulations in order to compare and mietexperimentally
observed responses. In the following, we describe dethiisi® procedure and we
also demonstrate that while the parameters can be estirimatecklatively narrow
regime, we can then predict accurately the single RBC mecbatynamics and
rheology over a much wider range of operating conditions.

3.1 Shear Modulus Using Optical Tweezers

To mimic the optical tweezers experiments of (82) a model®&CRindergoes
stretching by applying a stretching force on both ends otk The total stretch-
ing force fM is applied toN_ andN, vertices \_ = N, = €N,) along the negative
and the positive directions, respectively. These verttme&r a near-spherical area
on the RBC surface with = 0.02 which corresponds to the contact diameter of the
attached silica bead with diametepfused in experiments (82). Note that the vis-
cous properties of the membrane and of the suspending metbumt affect final
stretching since the RBC response is measured after cawvezdo the equilibrium
stretched state is achieved for given force.

Figure 7 (left) compares the simulated axial and transv&B€ diameters
with their experimental counterparts (82) for differentcge-graining levels start-
ing from the spectrin-levelN, = 27344) to the highly coarse-grained network
of Ny = 500. Excellent correspondence between simulations andriexents is
achieved forpp = 6.3 uN/mandY = 189 uN/m independently of the level of
coarse-graining. The small discrepancy between simukateldexperimental trans-
verse diameters is probably a consequence of the opticaureaents being per-
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Fig. 7 MS-RBC (left): Stretching response of a healthy RBC foretit coarse-graining levels.
MS-RBC vs. LD-RBC (right): Stretching response of a healRBC and a Pf-RBC (schizont
stage) with the experiments of (82)a andDr refer to the axial and transverse diameters. (From
(23, 59)).

formed from only a single observation angle. Numerical datians showed that
RBCs subjected to stretching tend to rotate in y-z plane,thatefore measure-
ments from a single observation angle may result in unddigtien of the maxi-
mum transverse diameter. However, the simulation reseitein within the exper-
imental error bars.

Next, we compare the MS-RBC versus the LD-RBC models; figufeght)
presents the axial and transverse RBC deformations for khige®@BC and for
a RBC at the latest stage (schizont) of intra-erythrocyéicapite development in
malaria disease in comparison with experiments (82). Sitiar results are in ex-
cellent agreement with the experiments for both RBC modéis.Young’s modulus
of a RBC is found to be 19 and 1800 uN/mfor healthy RBC and at the schizont
stage, respectively, in case of the MS-RBC model, while theRBC model yields
the values of 2@ and 19% uN/m for the RBC Young's modulus. Note that the
low-dimensional RBC model is able to capture linear as welhan-linear RBC
elastic response.

3.2 Membrane Rheology from Twisting Torque Cytometry

Twisting torque cytometry (TTC) is the numerical analog loé bptical magnetic
twisting cytometry (OMTC) used in the experiments (52, 5#)ere a ferrimagnetic
microbead is attached to RBC top and is subjected to an atsedl magnetic field.

In simulations a microbead is attached to the modeled membend is subjected
to an oscillating torque as shown in figure 8 (left). In anglagth the experiments,
the modeled RBC is attached to a solid surface, where theadalkesion is modeled
by keeping stationary fifteen percent of vertices on the RB&dm, while other
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vertices are free to move. The adhered RBC is filled and soded by fluids hav-
ing viscosities much smaller than the membrane viscositg, therefore, only the
membrane viscous contribution is measured. The microbgeaihiulated by a set
of vertices on the corresponding sphere subject to a rigatlybootion. The bead
attachment is modeled by including several RBC vertices texhe microbead
bottom into the rigid motion.

A typical bead response to an oscillating torque measursifialations is given
in figure 8 (right). The bead displacement has the same aBoil frequency as the

oscillating torque
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Fig. 8 Setup of the TTC (left) and the characteristic response ofi@aiead subjected to an
oscillating torque (right).

applied torque per unit volume, but it is shifted by a phasglep depending on
the frequency. The phase angle can be used to derive compgarfethe complex
modulus according to linear rheology as follows

, AT " AT
¢(w) = Z5c0s(0). ()= Z5sin(0), (37)
whereg' (w) andg”’ (w) are thetwo-dimensional storage and loss moduls{ andG”
in 3D), andAT andAd are the torque and bead displacement amplitudes. Note that
under the assumption of no inertial effects, the phase asgjlsfies the condition
0<p<m/2.

Figure 9 presents components of the complex modulus fottheRBCs com-
pared with experimental data of (54). A good agreement ofntieenbrane mod-
uli in simulations with the experimental data is found foethending rigidity
ke = 4.8 x 1071° J and the membrane viscosity, = 0.022 Pa-s. Note that this
corresponds to the bending rigidity twice larger than thdelyj accepted value of
2.4x10°1° J. In figure 9 only the membrane bending rigidity is varied siribe
Young’s modulus was obtained in the RBC stretching tests@lo summary, TTC
for healthy RBCs revealed that the storage modujjsdepends on the membrane



Multiscale Modeling of Hematologic Disorders 21

—¥-g’' - experiment (OMTC)
-¥ g’ - experimerl1gt (OMTC) .
—_— —k = - 0.85
g =24x10" 1) w0, ',0
~1072 €9 K =48x107"°7 IO M
E - g" _nmz 0.04 Pals O‘,"t'
% ---g" - = 0.022 Pas TR
a -9 g -n,,= 0.01 Pal3 ;"xé
N—r 3 d
:m 10 "t W
© ’ng .
c SR
s Fo
o107 . ¥ 085
*
-5
10 : : : :
107 10" 10° 10" 10> 10°

Frequency (Hz)

Fig. 9 Two-dimensional storage and logg &ndg”) moduli of the RBC membrane obtained from
simulations for different membrane viscosities and begdigidities in comparison with the ex-
periments (54). (From (23)).

elastic properties and bending rigidity, while the loss mlad @") is governed by
the membrane viscosity.

3.3 RBC Dynamics in Shear Flow

Experimental observations (1, 29, 30, 86) of RBC dynamishiar flow show RBC
tumbling at low shear rates and tank-treading at high shetasr This behavior is
related to existence of a RBC minimum energy state showndre#periments by
Fischer (29), where a RBC relaxed to its original state mélke several attached
microbeads after some time of tank-treading motion. HetleeRBC has to exceed
a certain energy barrier in order to transit into a tank-dieg motion in shear flow.

Theoretical predictions (1, 79) attempt to capture RBC dyiga in shear flow
depending on the shear rate and the viscosity contrast dedge= (1 + Nm)/No.
According to the theories, for a small< 3 a RBC tumbles at low shear rates and
tank-treads at high shear rates. Near the tumbling-to-teedding transition there
exists a narrow intermittent region where theories preditinstability such that
RBC tumbling can be followed by tank-treading and vise vekavever, in case
of a large viscosity contrasA(> 3) the theories predict a well-defined tumbling
regime followed by an intermittent region, while stablekdreading may not be
present. In addition, the tank-treading state is also dtarzed by RBC swinging
around the tank-treading axes with certain frequency angliaude.



22 Authors Suppressed Due to Excessive Length

A simulated RBC is suspended into a solvent placed betweeparallel walls
moving with constant velocities in opposite directiong¥e 10 (left) shows tum-
bling and tank-treading frequencies with respect to shatasrin comparison with
experiments (30, 86). Comparison of the simulated dynamwitls experiments
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Fig. 10 Tumbling and tank-treading frequency (left) of a RBC in stav and swinging average
angle and amplitude (right) for different cases:fk)=5x 102 Pa-s, n; = nm = 0 (circles); 2)
No=ni =5x1023Pa-s, nm=0 (squares); 3o =N =5x 10 3 Pa-s, Nn=22x 102 Pa-s
(triangles). (From (23)).

showed that a purely elastic RBC with or without inner sot(eircles and squares)
results in an overprediction of the tank-treading frequesidecause the membrane
assumes no viscous dissipation. Addition of the membraswosity (triangles) re-
duces the values of the tank-treading frequencies and ggewva good agreement
with experiments for the membrane viscosify, = 22 x 10~2 Pa-s. Note that for
all cases a finite intermittent region is observed and it bee®wider for a non-
zero membrane viscosity. This result is consistent withetkgeriments, but it dis-
agrees with the theoretical predictions. Similar resuttsthe intermittent region
were reported in simulations of viscoelastic vesicles .(#®)reover, an increase in
the internal fluid or membrane viscosities results in a gifithe tumbling-to-tank-
treading transition to higher shear rates. Figure 10 (jighbws the average RBC
tank-treading angle and the swinging amplitude. The vadwesonsistent with ex-
perimental data (1) and appear to be not very sensitive tongrabrane viscosity.
Note that the swinging frequency is equal to twice the taekding frequency.

In conclusion, the RBC model accurately captures membrgnardics in shear
flow, while the theoretical models can predict RBC dynanatcsiost qualitatively.
The theoretical models assume ellipsoidal RBC shape anda(etlipsoidal) RBC
tank-treading path. Our simulations showed that a RBC igestito deformations
along the tank-treading axis. In addition, modeled RBCsashobstantial shape
deformations (buckling) in a wide range around the tumblingank-treading tran-
sition. A degree of these deformations depends on the RépKarman number
k defined asYR3/kc, whereRy = /A /(4m). As an example, if the RBC bend-
ing rigidity is increased by a factor of five, the aforemengd shape deformations
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become considerably smaller, while if the RBC bending itgits increased by a

factor of ten, the shape deformations practically subSitie.theoretical models do
not take the bending rigidity into consideration, while ekmental data are not con-
clusive on this issue. This again raises the question abheunhtgnitude of bending
rigidity of healthy RBCs since our simulations (TTC and RB¢hdmics in shear

flow) indicate that the RBC bending rigidity may be sevenalgs higher than the
widely used value ok = 2.4 x 1019,

4 Validation

In the previous section we demonstrated how we can use expetal data from

single-cell measurements to extract the input parameterthé models, but also,
to partially validate the simulated biophysical behavibsiogle RBCs. In this sec-
tion, we extend this validation further by comparing sintigla results based on
the MS-RBC model as well as on the LD-RBC model with differexperiments.

First, we consider data from microfluidic experiments inmhals with very small

cross-sections, i.e., comparable to the smallest capi#larvWe also compare with
experimental results from the dynamic response of RBCsgghiough properly mi-

crofabricated geometric constrictions. Subsequentlypresent simulation results
for whole blood in terms of the flow resistance in tubes and pam against well

known experimental results. Finally, we demonstrate haes¢hmultiscale simula-
tions can be used as a “virtual rheometer” to obtain the hubh@od viscosity over

a wide range of shear rate values. This includes the low sh&aregime, where the
formation of rouleaux is shown to determine the strong nawinian behavior of

blood.

4.1 Single RBC: Comparison with Microfluidic Experiments

Microfabrication techniques allow manufacturing of chalsrwith dimensions com-
parable to the smallest blood vessels. In recent yearsofhiatic experiments have
become popular in measuring properties of RBCs and othés. &len though, at
present time, these experiments typically do not includelemistry, they can pro-
vide quantitative information about the motion of a singB®through the chan-
nels at controlled conditions. This information can be usedlidate computational
models. The two examples of RBC model validation using nficidic devices de-
scribed in this section are taken from refs.(73) and (4), reltetailed description
of experiments and simulations can be found.

The first set of experiments was performed in the S. Sureshtl®bT. The chan-
nel structures used in these experiments are illustratédune 11(a). At their nar-
rowest point, these sharply converging/diverging chasaet 30um long, 27 um
high and have widths ranging from 3 tguén. The experiments were carried out at
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temperature 37TC and 4XC. High-speed imaging was used to measure and quan-
tify the temperature-dependent flow characteristics amghstiransitions of RBCs
as they traversed microfluidic channels of varying size.

a) b)

Fig. 11 (a) Schematic view of microfluidic channels used in expenitag(b) Shape characteristics
of RBC traversal across microfluidic channels: Experimiefiét) and simulated (right) images of
erythrocyte traversal acrosgdnwide, 30umlong, 27 umhigh channel at room temperature and
an applied pressure difference 0085kPa. (From (4)).

The fluid domain in DPD simulations corresponds to the migdig of the mi-
crofluidic device. The width of the flow domain is g, the length is 20Qm, and
the heightis Z7um. The central part of the simulation domain is the same asan th
experiment. Specifically, the flow is constricted to rectalagcross-section of 4, 5
or 6 umin width and 27umin height. The walls are modeled by freezing DPD par-
ticles in combination with bounce-back reflection, simttathose in (66). Periodic
inlet/outlet boundary conditions are employed, and the floaustained by apply-
ing an external body force. The RBC model consists of 500tpoBounce-back
reflection is employed at the membrane surface. The intd&RB& fluid is 9, 8.5
and 7.6 times more viscous than the external fluid in simuaticorresponding to
temperature of 2ZC, 37C and 42C, respectively (68). The effect of temperature in
the experiment on the viscosity of the suspending mediunodeied by changing
the viscosity of the DPD fluid surrounding the RBC. Specificahe viscosity of
the external fluid at 37T and 41C is decreased by 22 % and 28 % compared to the
viscosity at 22C, while the membrane viscosity is decreased by 50 % and 63.5 %
respectively, to match the experimentally measured RB&xgdion times at these
temperatures.

Figure 11(b) presents a qualitative comparison of expertnéth the DPD
model for RBC traversal across au#m wide channel. Here, the cell undergoes a
severe shape transition from its normal biconcave shape étlipsoidal shape with
a longitudinal axis up to 200% of the average undeformed diamFigure 12(a)
illustrates how the longitudinal axis of the cell, measuaséthe center of the chan-
nel, changes with different channel widths. Experimentalsimulated longitudinal
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Fig. 12 Quantitative flow behavior of RBC traversal of microfluidibannels. (a) Measured and
simulated cell lengths at the center of the microfluidic eterfor varying channel widths. (b)
Comparison of DPD simulation results (open markers) withegimentally measured mean ve-
locities (filled markers) of RBC traversal as a function ofasered local pressure differences for
3, 4, 5 and @im channel widths (height = 2.m, length = 30um). Error bars on experimental
data points represent an average +/- one standard devadtminimum of 18 cells. Error bars
on modeling data points indicate minimum and maximum viret resulting from a case study
exploring the sensitivity of the RBC traversal to channedmgetry and cell volume. (From (73)).

RBC axes typically differ no more than 10-15%. Figure 12(gsents pressure—
velocity relationships for RBC flow across channels of déf& cross-sectional di-
mensions. Average cell velocity measurements were takemelea the point just
prior to the channel entrance (the first frame in Figure 1)1#by the point at which
the cell exits the channel (the final frame in Figure 11(bj)e DPD model ade-
quately captures the scaling of flow velocity with averagespure difference for
4-6 um wide channels. The significant overlap in the experimenssh dor 5-6
umwide channels can be attributed largely to variations ihgieé and small varia-
tions in channel geometry introduced during their microiedtion. For the smallest
channel width of 3um, the experimentally measured velocities are as much as half
those predicted by the model. This may be attributed to sévactors, including
non-specific adhesive interactions between the cell memetaad the channel wall
due to increased contact. Furthermore, thjg8x 2.7 um (8.1 unv) cross-section
approaches the theoretical uén diameter (6.16:m?) limit for RBC transit of ax-
isymmetric pores (5). Therefore, very small variations iraenel height (due, for
example, to channel swelling/shrinking due to small vasia in temperature and
humidity) can have significant effects.

For the effect of temperature on the flow dynamics of the RBCre&fer the
reader to (73) where the ratio of the local pressure gradiedtaverage cell veloc-
ity (AP/V) as a function of temperature is examined. The main findilgasthere
exists a threshold cross-section below which the RBC vismmmponents begin
to play a significant role in its dynamic flow behavior; thieet is less profound
at higher temperatures. Since the energy dissipation inmmbrane is typically
higher than in the internal fluid, one might expect the infeeenf membrane vis-
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cosity on the flow behavior of the RBC across such small csessions to be large
compared to the internal fluid viscosity (19).

The second set of experiments was performed in the J. Han L&HTa The
microfluidic device consists of two channels24:min height. Rows of 3 by 10m
triangular obstacles are placed into the channels as showigiire 13(a). The dis-
tance between the obstacles igr8, while the distance between rows of obstacles is
10um. The only difference between the two channels in the desitied orientation
of the obstacles; one channel is the other flipped by 180

-

(b)

Fig. 13 (a) Two parallel channels, one with opening geometriesatathe reverse of the other, are
connected to common inlet and outlet reservoirs. The heiftite device is 4.2um, the distance
between the pillars is gm, and the distance between rows of pillars ispif. (b) Snapshot from
video of labeled cells moving through the device. Liquid fl@from right to left. (From (4)).

For low-Reynolds number flows, the resistance and averagle/#locities in the
absence of cells must be the same for both channels. WherBi@ecBncentration
is low, the cells move with different average velocities fie two channels. This
indicates that for openings of the same minimal cross-Gedrea, the geometry
(rate) of constriction affects the amount of force requii@ctell traversal. Also, the
channels appear to be sensitive to some specific propeftRB®@s, therefore the
device can be used to estimate these properties for a giVieinare its velocity at
known applied pressure gradient.

In simulations, the solid walls are assembled from randodiyributed DPD
particles whose positions are fixed. In addition, bounoeklveflections are used to
achieve no-slip conditions and prevent fluid particles frmenetrating the walls (66).
A portion of the microfluidic device with dimensions 200 by0lBy 4.2 microns
containing 5 rows of pillars (10 pillars in each row) is magtl The fluid region
is bounded by four walls while periodic boundary conditi@me used in the flow
direction. Here, the RBC is simulated using 5,000 DPD pladito obtain accurate
results unlike most of the other simulations, including plhevious example, where
500 DPD points per RBC were sufficient. This is due to the fastadhic changes
of the RBC membrane as the RBC travels through the narrowticctiens. Param-
eters of the healthy cell model are derived from RBC spectatwork properties
as described in previous sections. In addition, membractutition measurements
and optical tweezers experiments are used to define simnlpdirameters. Specifi-
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cally, we required that the amplitude of thermal fluctuasiohthe membrane at rest
to be within the range of experimental observations (65).a8¥§e required that the
characteristic relaxation time of the RBC model in simaas be equal to the ex-
perimentally measured value of 0.18 seconds. The RBC msdalnersed into the
DPD fluid. The membrane particles interact with internal argkrnal fluid particles
through the DPD forces. By changing the direction of the bimdge, the motion of
the cell through channels with converging and divergingegds simulated using
the same channel geometry.

The DPD model is able to capture the effect of obstacle aatemt quite ac-
curately. Quantitative comparison of simulation resultthvexperimental data for
healthy cell velocity as a function of applied pressure grmatds shown in figure 14.
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Fig. 14 Average velocity of healthy RBCs as a function of pressumdignt and comparison
of simulation and experimental results. Results for cogivey (a) and diverging geometries (b).
(From (4)).

In order to evaluate contributions of individual mechahmaperties of the cell
to overall dynamic behavior, we run additional simulatiohke DPD model pro-
vides a unique opportunity to perform this analysis, singeeimental evaluation of
these contributions is laborious or impossible. Largelscale found to travel with
lower velocities; however, the velocity variation due tdl s&ze is not significant.
Additional simulations were performed in which the memlerahear modulus and
membrane viscosity were varied independently of each offtes results showed
that the RBC velocity in the device is sensitive to shear negjwvhile (in contrast
to the device described above) variation of membrane viscdgl not affect the
RBC traversal significantly. This finding may seem to be ceuimtuitive; when the
membrane viscosity is increased one would expect higheggrdissipation and
therefore lower RBC velocity. Indeed, increased membraseogity increases the
time it takes for a RBC to traverse an individual opening lestavpair of obstacles.
However, it also slows down the recovery of RBC shape whertéfigs traveling
between rows of obstacles, making it easier to enter the oing. As a result,
the particular design of this device lessens the dependgite cell velocity on
membrane viscosity.
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4.2 Whole Healthy Blood

Next, we present simulation results for whole blood modeleda suspension of
healthy RBCs using the two RBC models without changing thramaters that we
have established from single-cell measurements. We firssider flow in a tube
in order to assess flow resistance in microvessels, and gubsty, we focus on
Couette flow in order to compare the predicted blood visgosidm rheometric
measurements.

4.2.1 Flow Resistance

Here, we simulate blood flow in tubes of diameters rangingfi® pymto 40 um. In
case of the MS-RBC model, it is important to model carefully €xcluded volume
(EV) interactions among cells, which are often implemerttedugh a repulsive
force between membrane vertices of different cells. A ¢entange (force cutoff
radius) of the repulsive interactions may impose a non-g@romum allowed dis-
tance between neighboring RBC membranes, which will beddtcreening dis-
tance” between membranes. The choice of a smaller cutoffisagay result in
overlapping of cells, while a larger one would increase ttresning distance be-
tween cells, which may be unphysical and may strongly affeetresults at high
volume fractions of RBCs. A better approach is to enforce EMractions among
cells by employing reflections of RBC vertices on the membrsurfaces of other
cells yielding essentially a zero screening distance betweo RBC surfaces. In
addition, we employ aet repulsion of RBCs from the wall by properly setting the
repulsive force coefficient between the wall particles dreddell vertices.

Figure 15 shows plots of the apparent blood viscosity wiipeet to the plasma
viscosity. The apparent viscosity is defined as folloyg, = ’Eg’gf , Where AP
is the pressure differenc€ is the flow rate, and. is the length of the tube. It
increases for highe; values since higher cell crowding yields larger flow resis-
tance. It is more convenient to consider the relative apgariscosity defined as
Nre = '7;2”, wherens is the plasma viscosity. Figure 15(a) shows the simulgtgd
values in comparison with the empirical fit to experimentk) (for the tube diame-
ter range 16- 40 um andH; values in the range.05— 0.45. Excellent agreement
between simulations and experiments is obtained for thpgy&V interactions for
all cases tested. The pressure gradients employed hereé88210°, 1.316x 10°,
and 6582x 10* Pa/mfor tubes of diameters 10, 20, and A, respectively. In the
case of low hematocrl; (e.g., 015) the velocity profiles closely follow parabolic
curves in the near-wall region. In the central region of thieeta substantial reduc-
tion in velocity is found for all volume fractions in compsoin with the parabolic
profiles indicating a decrease in the flow rate (26). FigurgL8hows results from
both the MS-RBC and LD-RBC models for a wider range of tubengiters. The
agreement is good between the models and the experimem¢atefaesented by

an empirical fit; however, it is clear that for vessels witlardieter below 15- 20
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microns the LD-RBC model fails as the membrane rheology im&soimportant,
which the low-dimensional model does not account for.
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Fig. 15 Flow resistance in healthy blood: (a) Relative apparentosgy compared with exper-
imental data (71) for various hematocrit values and tubendiars. The inset plot is a snapshot
of RBCs in Poiseuille flow in a tube of a diameter= 20 um atH; = 0.45. (b) Comparison of

MS-RBC and LD-RBC models; the lines are the empirical catieh by Pries et al. (71). (From
(23, 59)).

RBCs in Poiseuille flow migrate to the tube center forming eeda the flow.
The inset of Figure 15 shows a sample snapshot of RBCs flowiragtube of di-
ameterD = 20 um. A RBC core formation is established with a thin plasma layer
next to the tube walls called theell-free layer (CFL) (26). The thickness of the
CFL is directly related to the Fahraeus and the Fahraeudepist effects, both of
which were accurately captured by the DPD model, see (26)etermine the CFL
thickness we computed the outer edge of the RBC core, whishmar to CFL
measurements in experiments (43, 49). Figure 16 shows alsd@fh edge from
simulations forH; = 0.45 andD = 20 um and local CFL thickness distribution,
which is constructed from a set of discrete local measurésnainCFL thickness
taken every & pum along thex (flow) direction. The fluid viscosity of the CFL re-
gion is much smaller than that of the tube core populated RBICs providing an
effective lubrication for the core to flow.

4.2.2 Aggregation and Rouleaux Formation

Here, we present simulations in a wide range of shear rateegahcluding the low
shear rate regime with and without the aggregation modedsribed in sections
2.3.4 and 2.4.2. The viscosity was derived from simulatioihglane Couette flow
using the Lees-Edwards periodic boundary conditions irctvitihe shear rate and
the density of cells were verified to be spatially uniform.eTéxperimental vis-
cosities of well-prepared erythrocytes without rouleanxl ®f whole blood were
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Fig. 16 An example of a CFL edge (left) and local CFL thickness disttibn (right) forH; = 0.45
andD = 20 um. (From (23)).

measured at hematocrit 45% and at temperatuP€ 3% (8, 53, 78) using rota-
tional Couette viscometers. At the same conditions for blothMS-RBC and the
LD-RBC suspensions the viscosities were computed, withwititbut rouleaux,
as functions of the shear rate over the rang®8s~* to 10000s~1. RBC suspen-
sion viscosities were normalized by the viscosity valuetheir suspending media.
These data are compared in Figure 17(a) as relative vigcag#inst shear rate
at constant hematocrit. The MS-RBC model viscosity curieseéry close to the
viscosities measured in three different laboratories. Moelel, consisting only of
RBCs in suspension, clearly captures the effect of aggmyan the viscosity at
low shear rates, and suggests that particles other than RBslittle effect on the
viscosity. The measured values for whole blood are moreistamg than those for
erythrocyte solutions, which may reflect differences in pineparation of the latter.
The LD-RBC model underestimates somewhat the experimdatal but is gener-
ally in good agreement over the whole range of shear ratesagain demonstrates
the effect of aggregation. This is remarkable in view of timedicity and economy
of that model.

The dependence of whole blood and erythrocyte solutiorogisgon hematocrit
(Ht) is demonstrated in Figure 17(b). The curves are measuredsiiges correlated
with H; at constant shear rate by Chien et al. (8), and the pointsadzalated with
the LD-RBC model. This clearly shows how the latter captuinedd; dependence
of viscosity, and that the model again demonstrates agtioega be crucial for a
quantitative account of the difference between the visgagiwhole blood and that
of washed erythrocyte suspensions.
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Fig. 17 Validation of simulation results for whole blood and Ringegythrocyte solutions (ESs).
(a) Plot of non-Newtonian viscosity relative to solventogsity as a function of shear rate at
H; = 45% and 39C: simulated curves of this work, as indicated, aegperimental points: Whole
blood: green crosses - Merrill et al. (53); black circles -ePhet al. (8), black squares - Skalak
et al. (78). Ringer ES: red circles - Chien et al. (8); red sgsia Skalak et al. (78). (b) Plot of
relative viscosity as a function of hematociit ] at shear rates.052 (black) and 58 (blue)s
simulated (LD-RBC points), and Chien et al. (&perimental fits for whole blood (solid lines) and
Ringer ES (dashed lines). (From (59)).

5 Application to Malaria Modeling

Plasmodium falciparum (Pf) causes one of the most serious forms of malaria re-
sulting in several million deaths per year. Pf-parasitizelts (Pf-RBCs) experience
progressing changes in their mechanical and rheologiocglgties as well as in their
morphology (9, 77) during intra-erythrocytic parasite d®pment, which includes
three stages from the earliest to the latest: ringrophozoite— schizont. Progres-
sion through these stages leads to considerable stiffesfiff-RBCs as found in
optical tweezers stretching experiments (82) and in diffom phase microscopy
by monitoring the membrane fluctuations (65). Pf developraéso results in vac-
uoles formed inside of RBCs possibly changing the cell vauithus, Pf-RBCs at
the final stage (schizont) often show a “near spherical” shehile in the preced-
ing stages maintain their biconcavity. These changeslgrati¢ct the rheological
properties and the dynamics of Pf-RBCs, and may lead to wtigin of small cap-
illaries (77) impairing the ability of RBCs to circulatin vitro experiments (2) to
investigate the enhanced cytoadherence of Pf-RBCs in flamblers revealed that
their adhesive dynamics can be very different than the estblished adhesive
dynamics of leukocytes. For example, the adhesive dynaofiP$-RBCs on puri-
fied ICAM-1 is characterized by stable and persistent fligiolling) behavior for
a wide range of wall shear stresses (2) but also by intemtifftause and sudden
flipping due to the parasite mass inertia.

In this section, we apply the computational framework wesdigped for healthy
RBCs to Pf-RBCs. In particular, we first consider single RB@svalidation pur-
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poses and subsequently we simulate whole infected bloodsgpession of a mix-
ture of healthy and Pf-RBCs. We examine the mechanical, di;and rheologic
responses as well as the adhesive dynamics of infected RBCs.

5.1 Single Cell

We include in this section comparison with optical tweezgeriments and with
microfluidics to assess the fidelity of the RBC models to rdpo@ the mechanics
and dynamics of Pf-RBCs.

5.1.1 Mechanics
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Fig. 18 Stretching response of Pf-RBCs using the MS-RBC for diffestages compared with the
experiments (82D andDr refer to the axial and transverse diameters. (From (23)).

In malaria disease, progression through the parasite diewednt stages leads to a
considerable stiffening of Pf-RBCs compared to healthys{68, 82). Furthermore,
in the schizont stage the RBC shape becomes near-sphehieedas in the preced-
ing stages RBCs maintain their biconcavity. Figure 18 shaiwsilation results for
Pf-RBCs at different stages of parasite development. Thelsiion results were ob-
tained with the MS-RBC model using 500 points. Table 1 prestre shear moduli
of healthy and Pf-RBCs at different stages; these valuesarsistent with the ex-
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periments of (65, 82). The bending rigidity for all casesaste 24 x 10-19J, which

HealthyRing| TrophozoiteSchizont
6.3 |145 29 60 & 40

Table 1 Shear moduli of healthy and Pf-RBCsilN/matT = 23° C. The “*” denotes a “near-
spherical” RBC at the schizont stage.

is the value of bending rigidity for healthy RBCs, as the meamie bending stiffness
for different stages is not known. The curve for the schiztage marked as “near-
spherical” corresponds to stretching an ellipsoidal sheipte axesay = ay = 1.2a;.
Here, the membrane shear modulus oftd0/m matches the stress-strain response
with the experiment, i.e., it is smaller than that for thedrsicave-shape simulation.
For the near-spherical cell the membrane is subject to g&olocal stretching for
the same uniaxial deformation compared to the biconcavpestzor the deflated
biconcave shape, the inner fluid volume can be deformed pores to stretching,
while in the near-spherical shape the fluid volume applietachal resistance onto
the stretched membrane. Hence, the cell geometry plays poriant role, and it
has to be closely modeled for accurate extraction of parammdtom the optical
tweezers experiments.

5.1.2 Microfluidics
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t=8.3s i

t=10s t=0.75-

@) Fluid Flow —3= (b)

Fig. 19 (a) Experimental images of ring-stage P. falciparum-itédqred arrows) and uninfected
(blue arrows) RBCs in the channels at a pressure gradien2dfRa/um. The small fluorescent
dot inside the infected cell is the GFP-transfected paasit 83 s, it is clear that the uninfected
cell moved about twice as far as each infected cell. (b) DPRukition images of P. falciparum-
infected RBCs traveling in channels of converging (left)l @iverging (right) opening geometry at
0.48 Pa/um. (From (4)).

The microfluidic device with triangular obstacles desatiesection 4.1 is used
also here to perform experiments for the late ring-stafgciparum-infected RBCs
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Fig. 20 Average velocity of ring-stage malaria infected RBCs asraftion of pressure gradient
and comparison of simulation and experimental resultsulRefor converging (a) and diverging
(b) geometries. (From (4)).

that are infected with a gene encoding green fluorescergipr@&FP). For both the
converging and diverging geometries infected RBCs exlilaier average veloci-
ties that healthy RBCs (see figure 19(a)). In the DPD simaratithe infected cells
are modeled with increased shear modulus and membranesitisealues obtained
from optical tweezers as explained in the previous sectiégm . model the parasite
as a rigid sphere of two microns in diameter (16) placed msitke cell (see fig-
ure 1(b)). Snapshots from simulations showing passage iofected RBC through
channels with converging and diverging pore geometrieslaog/n in figure 19(b).
The DPD model is able to capture the effect of changes of RBpegties arising
from parasitization quite accurately. A quantitative ca@mgpon of the simulation re-
sults with experimental data for the average velocity oRBEs as a function of
applied pressure gradient is shown in figure 20.

5.1.3 Pf-RBC Adhesive Dynamics

Here, we present typical results for the adhesive dynamid3f-&RBCs in shear
flow for various values of the wall shear stress (WSS). The el®dmployed are
described in section 2.3.5 with some modifications in ordettie simulated RBC
dynamics to be comparable with that found in experimentagi)g purified ICAM-
1 as a wall coating. Figure 21 shows several successive lsoispsf a cell rolling
on the wall for the schizont stage of a Pf-RBC. The dynamicthefPf-RBC is
characterized by a “flipping” behavior initiated first by tbell peeling off the wall
due to the force of the hydrodynamic flow after flat RBC adhegtbe first snap-
shot in figure 21). After the majority of the initial cell caut area with the wall
is peeled off, a RBC flips over on its other side which is féaiéd by the remain-
ing small contact area with the wall. During these steps BER undergo strong
membrane deformations as illustrated in figure 21. A sinf@havior was found
in experiments (2) of P-RBCs which showed flipping (rolljragong a wall coated



Multiscale Modeling of Hematologic Disorders 35
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Fig. 21 Top and side views of successive snapshots of a single fijpgfian infected RBC at the
schizont stage. Coordinates along the wall for differersipsiots are shifted in order to separate
them for visual clarity. Blue particles are added as trademsng post-processing to illustrate the
membrane dynamics. (From (23)).

with purified ICAM-1. In agreement with the simulations, R8i@ experiments also

showed strong membrane deformations characterized byrwembrane buckling.
Figure 22 presents the corresponding displacement alengctbordinate (a) and

instantaneous RBC velocity (b). An infected RBC rolls in katigely stable motion
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Fig. 22 Pf-RBC displacement (a) and velocity (b) along the wall foe schizont stage. (From
(23)).

which resembles a staircase. The segments of smaller déspknts correspond to
the stage of a flat RBC adhesion followed by its slow peelifighef wall (see figure
21), while the fragments of larger displacements reprefenstage of RBC fast
flipping described above. The RBC velocity is in agreemetthits displacement
showing high peaks or fast cell motion during the time segmsith larger dis-
placements. The average cell velocity is approximatedy bn/s. Figure 23 shows
RBC displacement along thecross-flow coordinate (a) and instantaneous contact
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area (b). The displacement across the wall shows a jerkyomofian infected RBC
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Fig. 23 RBC displacement across the wall (a) and the cell contaet @jefor the schizont stage.
(From (23)).

within several microns. This is due to the discrete numbedrsafds and their ran-
dom rupture or dissociation. Thus, if there is a non-unifatistribution of bonds
over the contact area at some instance of time, a Pf-RBC mpylbe to one side.
In addition, the hydrodynamic force on the RBC may be nom-ierz direction,
since the cell is not symmetric due to the local deformatisimswn in figure 21.
The RBC contact area in figure 23(b) is correlated with itpldisement and ve-
locity in figure 22. Minima in the contact area coincide witlaxima in the RBC
velocity corresponding to the stage of fast cell flippingnfrits one side to the other.
The cell contact area remains within the range of-180 un¥, while the average
value is equal to 38 un?.

To investigate the dependence of RBC adhesive dynamics db, W8 velocity
of the upper plate is changed. Note that the shear rate izdltg the same time.
However, the WSS appears to be a key parameter which gova@sdrlhesive
dynamics, since adhered RBCs are driven by fluid stressesofiralong the wall
with a much smaller velocity than that of the shear flow.

Several initial simulations with a varying WSS and other dixgarameters re-
vealed that a Pf-RBC may exhibit firm adhesion at a WSS lowam 317 Pa for
the case described above and can completely detach fromathathigher WSS.
At low WSS, adhesion forces are strong enough to countenacitress exerted on
the cell by the flow resulting in its firm sticking to the loweaik On the contrary,
at high WSS existing bonds do not provide sufficiently stradgesive interactions
which yields RBC detachment from the wall. RBC visualizaishowed that its
detachment at high WSS occurs during the relatively fasionaif RBC flipping,
since the contact area at that step corresponds to its minirdlowever, in exper-
iments (2) Pf-RBCs which moved on a surface coated with thédigd ICAM-1
showed persistent and stable rolling over long observaimes and for a wide
range of WSS between®Pa and 2Pa. This suggests that there must be a mech-
anism which stabilizes rolling of infected RBCs at high W38is fact is not sur-
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prising since, for example, leukocyte adhesion can beelgtiegulated depending
on flow conditions and biochemical constituents present§28

To stabilize RBC binding at high WSS we introduce adaptigitthe bond spring
constantKs) see equation (29). As the first approximation we assumeeaiide-
pendence oks on the WSS, such th&g is increased or decreased proportionally to
an increase or decrease in the WSS. Figure 24 presents ttagavelling velocity
of a Pf-RBC in comparison with experiments of cell rolling@surface coated with
purified ICAM-1 (2). The simulated average velocities foe tfinear” case show a
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Fig. 24 Average rolling velocity of infected RBCs depending on th&8\in comparison with the
experiments of cell rolling on purified ICAM-1 (2). Experimial data include mean values and
curves that correspond to the 10th, 25th, 75th, and 90tlepgtes. (From (23)).

near-linear dependence on the WSS and are in good agreeritbréxperiments
up to some WSS value; the simulated value remains betweetOtheand the 90th
percentiles found in experiments. However, the observed-epancy at the highest
simulated WSS suggests that a further strengthening efa@libond interactions
may be required. The dependence of the RBC rolling velogityMsS found in ex-
periments is clearly non-linear. Therefore, the assumpdiblinear dependence of
ks on the WSS is likely to be an oversimplification. The simwaatresults marked
“non-linear” in figure 24 adopt a non-linear dependencie;@n the WSS, and yield
excellent agreement with experiments.

In addition, there may be a change in bond association arsodation kinet-
ics with WSS which would be able to aid in rolling stabilizatiof infected RBCs
at high shear rates. The DPD simulations suggest that thesaghdynamics of Pf-
RBCs is not very sensitive to a moderate change (below-3@296) inkd, andkgff;
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however, cell dynamics may be strongly affected if theseupaters are changed
considerably. Moreover, experimental data show a muctetasgatter in the aver-

age RBC velocity for different cells observed than that mdiations (not shown).

This is likely to be related to non-uniform distributions i@ceptors on the RBC

membrane and ligands on the wall. In the simulations, dhistions of both recep-

tors and ligands are fixed and are nearly homogeneous witloxipmately the same

area occupied by each receptor or each ligand. A scattetiavi@ among distinct

RBCs in the simulations is solely related to the stochasdttire of the adhesive
model. However, in experiments irregular distributionseteptors and ligands are
likely to significantly contribute to a scatter in RBC adesilynamics.

5.2 Whole Infected Blood

Finally, we simulate blood flow in malaria as a suspensioneafithy and Pf-RBCs
at the trophozoite stage and hematokkit= 0.45. Several parasitemia levels (per-
centage of Pf-RBCs with respect to the total number of celsinit volume) from
5% to 100% are considered in vessels with diameters 10 andn20The inset
of figure 25 shows a snapshot of RBCs flowing in a tube of dian#Qq:m at a
parasitemia level of 25%. The main result in figure 25(a) igegiby the plot of
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Fig. 25 Flow resistance in malaria: (a) Healthy (red) and Pf-RBQsg)in Poiseuille flow in a
tube of diameteD = 20 um. H; = 0.45, parasitemia level 25%. Plotted is the relative apparent
viscosity of blood in malaria for various parasitemia levahd tube diameters. Symbol “x” cor-
responds to the schizont stage with a near-spherical skxperimental data from the empirical
fit by Pries et al. (71). (From (23)). (b) Bulk viscosity vessparasitemia level for 30% hematocrit
using a Couette device setup at shear rate 230 The square symbols are measurements from
(74) and the triangles are simulations of Huan Lei (Brownudrsity).

the relative apparent viscosity in malaria — a measure of fesistance as in sec-
tion 4.2 — obtained at different parasitemia levels. Theafbf parasitemia level
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appears to be more prominent for small diameters and hkighkialues. Thus, at
H; = 0.45 blood flow resistance in malaria may increase up to 50% $sels of
diameters around 1Qm and up to 43% for vessel diameters around.20. These
increases do not include any contributions from the intégsaof Pf-RBCs with the
glycocalyx (68, 88); such important interactions are cawrps they may include
cytoadhesion. In figure 25(b) we also present the bulk visco$ infected blood
(schizont stage) simulated in a Couette type device at sheay = 2305 1. The
DPD simulations compare favorably with the experimentéhaétained with a cor-
responding rheometer in (74). These validated predictizere obtained without an
explicit adhesion model between Pf-RBCs. It seems that seltitell interactions
are not important at this high shear rate value.

6 Summary

In this chapter we have presented a comprehensive simulatethodology based
on dissipative particle dynamics (DPD), which is effectingoredicting the blood
flow behavior (mechanics, dynamics and rheology) in healthdisease. We em-
phasized, in particular, how single-RBC experiments —aisiptical tweezers and
novel microfluidic devices — can provide data from which we eatract the macro-
scopic parameters of the model, which can then be relatéetmicroscopic param-
eters required by the two RBC models we presented. In addlifi@se single-RBC
data can serve as a validation test bed over a wide range cdtopeconditions.
The success of the DPD models is then to predale blood behavior in health or
disease without any further “tuning” of the models’ paraenst We demonstrated
that this is indeed the case for healthy and malaria-infeeteole blood in two dif-
ferent set ups, i.e., blood flow in a tube as well as in Coueite. fin particular, we
presented accurate predictions of the bulk viscosity botth&althy blood as well
as for infected blood with parasitemia levels up to 100%.

The two RBC models we presented can be used in a complemdatdripn
in simulations of hematologic disorders. The multiscaledeldMS-RBC) can re-
solve structures down to protein level on the lipid bilayertlee spectrin level of
the cytoskeleton and can be used efficiently for whole blaodigtions (up to 45%
hematocrit) for capillaries and arterioles of approxiniatep to 100 microns in di-
ameter. On the other hand, the more economical low-dimeakinodel (LD-RBC)
does not account for the membrane explicitly and it is onlyuaate, as we demon-
strated in section 4, for arterioles, i.e. vessels with disenabove 15- 20 microns.
That too, however, can become computationally expensivei¢d hematocrit val-
ues and for large arteries. To this end, a continuum modebeaemployed above
a certain vessel size with the Newtonian constitutive lalidvior blood for that
size of arterial vessels. This multiscale approach, whickpipropriate for the entire
human arterial tree, is demonstrated diagrammaticalliiénsketch of figure 26.

Next, we comment further on the RBC model parameters usedpmg from
experimental data, which can be roughly divided into thremugs: (1) RBC prop-
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Fig. 26 Applicability of different models with respect to a chamtstic vessel size (diameter).

erties, e.g., geometry, shear and bending moduli, membriagesity, parasite in
malaria, polymerized hemoglobin in sickle cell anemia,;gt2) adhesion proper-
ties, e.g., receptor and ligand densities, on and off rated,bond stiffness, and
(3) flow properties, e.g., shear rate, fluid viscosity. Thevfliroperties can be ef-
fectively reduced to a single parameter, e.g., the wall skeass (WSS), which
is the governing parameter and can influence greatly thesaghdynamics as we
demonstrated in the case of malaria. Often the dominant RB&npeter is the shear
modulus not only in the static but also in the dynamic respofsr example, the
increased shear modulus of Pf-RBCs in comparison with he&BCs is the main
reason for the flipping motion of Pf-RBCs. Cell geometry abhk also very im-
portant, for example more spherical Pf-RBCs will likelylroh a surface than flip;
shape changes are particularly influential in sickle cedimaia, spherocytosis and el-
liptocytosis. On the other hand, the RBC bending rigiditgras to play a secondary
role in the mechanics or dynamics, and in most cases the nagmliscosity also
plays a secondary role, but not for very small capillarissya discussed in section
4.1. For diseased RBCs, the adhesion parameters govenatbe sf adhesion, e.g.,
firm adhesion, flipping, slipping, detachment. For leukesythese different states
have been studied thoroughly, e.g. (44) and agree well Wwiptethora of experi-
mental data. In summary, for fixed flow conditions and celbpagters, the space of
adhesion parameters can be divided into sub-spaces wighetif adhesion states. A
similar adhesion state diagram can be constructed for sksERBCs with adhesive
properties, but experimental data are currently lacking.

Finally, we want to clarify that we modeled here whole blosdsaspension of
RBCs in plasma, hence ignoring the effect of white cells (&l807%) and platelets
(less than 0.5% ) or the effect of other proteins in the plaattaough we modeled
fibrinogen implicitly in section 4 on rouleaux formation.dfn the numerical mod-
eling standpoint, there is no particular difficulty in als@deling these other cells,
which are significant in specific biomedical studies, e.ghiombosis, immune re-
sponse. From the biophysical view point, however, as we tatnated in sections
4 and 5 their presence is not important for the whole bloodldgical properties.
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