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Abstract Parasitic infectious diseases and other hereditary hematologic disorders
are often associated with major changes in the shape and viscoelastic properties
of red blood cells (RBCs). Such changes can disrupt blood flowand even brain
perfusion, as in the case of cerebral malaria. Modeling of these hematologic dis-
orders requires a seamless multiscale approach, where blood cells and blood flow
in the entire arterial tree are represented accurately using physiologically consis-
tent parameters. In this chapter, we present a computational methodology based on
dissipative particle dynamics (DPD) which models RBCs as well as whole blood
in health and disease. DPD is a Lagrangian method that can be derived from sys-
tematic coarse-graining of molecular dynamics but can scale efficientlyup to small
arteries and can also be used to model RBCsdown to spectrin level. To this end, we
present two complementary mathematical models for RBCs anddescribe a system-
atic procedure on extracting the relevant input parametersfrom optical tweezers and
microfluidic experiments for single RBCs. We then use these validated RBC mod-
els to predict the behavior of whole healthy blood and compare with experimental
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results. The same procedure is applied to modeling malaria,and results for infected
single RBCs and whole blood are presented.

1 Introduction

The healthy human red blood cells (RBCs) are discocytes whennot subjected to any
external stresses and they are approximately 7.5 to 8.7µm in diameter and 1.7 to
2.2 µm in thickness (31). The membrane of the RBC is made up of a phospholipid
bilayer and a network of spectrin molecules (cytoskeleton), with the latter largely
responsible for the shear elastic properties of the RBC. Thespectrin network is
connected to bilayer via transmembrane proteins and together with the spectrin fil-
aments and the cytosol inside the membrane determine the morphological structure
of RBCs. This critical binding between the spectrin networkand the lipid bilayer
is actively controlled by ATP (64). Parasitic infections orgenetic factors can dras-
tically change the viscoelastic properties and even the shape of RBCs (10). For
example, the parasitePlasmodium falciparum that invades the RBCs (Pf-RBCs) of
most malaria patients affects drastically the RBC membraneproperties resulting in
a ten-fold increase of its shear modulus and a spherical shape at the later stages
of the intra-cell parasite development (10). In addition, Pf-RBCs develop knobs on
their surface that serve as adhesion sites for the binding toother Pf-RBCs as well
as healthy RBCs. This enhanced cytoadherence of Pf-RBCs in combination with
their reduced deformability may cause blood flow obstruction especially through the
smaller arterioles and capillaries. Sickle cell anemia is another blood disorder that
affects the hemoglobin inside the RBCs causing dramatic changes in their shape and
deformability. These changes combined with the increased internal viscosity affects
the flow of sickled RBCs through the capillaries leading to flow occlusion (10, 38).
Other hereditary diseases with similar effects are spherocytosis and elliptocytosis
(3). In the former, RBCs become spherical with reduced diameter and carry much
more hemoglobin than healthy RBCs. In the latter, RBCs are elliptical or oval in
shape and of reduced deformability.

The common problem in the aforementioned hematologic disorders is the re-
modeling of the cytoskeleton and correspondingly a change in the structure and
viscoelastic properties of individual RBCs, so studying their mechanical and rhe-
ological properties in vitro can aid greatly in the understanding and possible dis-
covery of new treatments for such diseases. To this end, new advanced experimental
tools are very valuable in obtaining the basic properties ofsingle RBCs in health and
disease, which are required in formulating multiscale methods for modeling blood
flow in vitro and in vivo. Specifically, advances in experimental techniques now al-
low measurements down to the nanometer scale, and include micropipette aspiration
(12, 87), RBC deformation by optical tweezers (6, 37, 82), optical magnetic twisting
cytometry (54), three-dimensional measurement of membrane thermal fluctuations
(65, 69), and observations of RBCs immersed in both shear andin pressure-driven
flows (1, 29, 75, 83, 85). Micropipette aspiration and optical tweezers techniques
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tend to deform the whole RBC membrane directly, while optical magnetic twist-
ing cytometry and measurements of membrane thermal fluctuations probe the mem-
brane properties locally. The macroscopic shear modulus ofhealthy cells is reported
in the range of 2−12 µN/m from the two former techniques, while the two latter
ones allow measurements of local rheological properties (e.g., the complex modu-
lus).

These experiments provide sufficient evidence for a complexmembrane mechan-
ical response including its unique viscoelastic properties. In addition, Li et al. (47)
suggest that metabolic activity or large strains may inducea continuous rearrange-
ment of the erythrocyte cytoskeleton. Consequently, in their numerical model the
RBC membrane may exhibit strain hardening or softening depending on certain
conditions. Moreover, the cytoskeleton attachments can diffuse within the lipid bi-
layer, but such behavior can be neglected at short time scales. Gov (32) proposed an
active elastic network model, where the metabolic activitymay affect the stiffness
of the cell through the consumption of ATP. The activity induced by ATP would also
greatly affect membrane undulations (33, 64) resulting in fluctuations comparable
to an effective temperature increase by a factor of three. For parasitic infectious
diseases, powerful imaging techniques have been developedin recent years, which
allow to observe details of parasite development inside theRBC and also to gain
information about the properties of the cell components (50, 65). Figure 1(a) shows
the parasiteP. falciparum inside an infected RBC during the ring stage of parasite
development, which was obtained using soft x-ray imaging technique. The parasite
and some elaborate structure, which extends from the parasite into the cell cytosol,
can be clearly seen in the image.

(a) (b)

Fig. 1 (a) Soft x-ray micrograph of intra-erythrocytic ring stageP. falciparum malaria parasite
imaged in RBC (Reproduced from (50)). (b) The computationalRBC model consists of particles
connected with links. The model is immersed into DPD fluid andfully interacts with it through
pairwise forces. The internal DPD fluid has a higher viscosity to match the viscosity of RBC
cytosol. TheP. falciparum parasite is modeled as a rigid sphere of two microns in diameter.

A number of numerical models have been developed recently including a con-
tinuum description (15, 20, 31, 70) and a discrete approximation on the spectrin
molecular level (11, 46) as well as on the mesoscopic scale (13, 14, 58, 67). Some
of the models suffer from the assumption of purely elastic membrane, and are able
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to capture only the RBC mechanical response, but cannot quantitatively represent
realistic RBC rheology and dynamics. Fully continuum (fluidand solid) models of-
ten suffer from non-trivial coupling between nonlinear solid deformations and fluid
flow with consequential computational expense. Therefore,“semi-continuum” mod-
els (15, 70) of deformable particles which use immersed boundary or front-tracking
techniques are developing rapidly. In these, a membrane is represented by a set of
points which are tracked in Lagrangian fashion and are coupled to an Eulerian dis-
cretization of fluid domain. These models employ the same external and internal
fluids and do not take into account the existing viscosity contrast between them. In
addition, continuum models omit some mesoscopic and microscopic scale phenom-
ena such as membrane thermal fluctuations which affect RBC rheology and dynam-
ics (57). On the microscopic scale, detailed spectrin molecular models of RBCs are
much limited by the demanding computational expense. Therefore, we will focus
here on an accurate mesoscopic modeling of red blood cells.

There exist several mesoscopic methods (13, 14, 58, 67) for modeling deformable
particles such as RBCs. Dzwinel et al. (14) model RBCs as a volume of elastic ma-
terial having an inner skeleton. This model does not take into account the main
structural concept of red blood cell, namely a membrane filled with a fluid, and
therefore it cannot capture properly the dynamics of RBCs, for example, the ob-
served tumbling and tank-treading behavior in shear flow (1,79). Three other afore-
mentioned methods (13, 58, 67) employ a very similar approach to the method we
will present here, where the RBC is represented by a network of springs in combina-
tion with bending rigidity and constraints for surface-area and volume conservation.
Dupin et al. (13) couple the discrete RBC to a fluid described by the Lattice Boltz-
mann method (81). They obtained promising results, howeverthe model does not
consider external and internal fluids separation, membraneviscosity, and thermal
fluctuations. Noguchi and Gompper (58) employed Multiparticle Collision Dynam-
ics (51) and present encouraging results on vesicles and RBCs, however they do
not use realistic RBC properties and probe only a single aspect of RBC dynam-
ics. Pivkin and Karniadakis (67) used Dissipative ParticleDynamics (DPD) (40)
for a multiscale RBC model which will be the basis of the general multiscale RBC
(MS-RBC) model we will present here. The MS-RBC model is ableto success-
fully capture RBC mechanics, rheology, and dynamics; this very accurate model
was first published in (24). Potential membrane strain hardening or softening as
well as the effects of metabolic activity can also be incorporated into the model
leading to predictive capabilities on the progression of diseases such as malaria.
Theoretical analysis of the hexagonal network yields its linear mechanical proper-
ties, and completely eliminates adjustment of the model parameters. Such models
can be used to represent seamlessly the RBC membrane, cytoskeleton, cytosol, the
surrounding plasma and even the parasite, e.g. in malaria-infected RBC, see figure
1. However, it is quite expensive computationally, and to this end, we also present a
low-dimensional red blood cell model (LD-RBC), also based on DPD, that is more
appropriate for blood flow simulations in large arterioles (60).

This chapter is organized as follows: In section two we review the basic DPD
theory, the two RBC models, as well as aspects of the aggregation and adhesion
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models that are especially important in modeling hematologic disorders. In section
three we present some details on how we can use diverse single-cell static and dy-
namic measurements to estimate key macroscopic parameters, which upon mapping
to the network (microscopic) parameters serve as input to the models. In section four
we first present validation tests based on single-cell experiments. Subsequently, we
present validation tests for whole blood, demonstrating that both models can predict
the human blood viscosity in a wide range of shear rate values, including the low
shear rate regime, where aggregation and rouleaux formation are responsible for
the strong non-Newtonian blood behavior. In section five, weapply to malaria the
framework we developed, i.e. from single-cell-measurements parameter estimation
to predicting the mechanical and rheological behavior of infected blood in malaria.
We conclude in section six with a brief summary and a discussion on the potential of
multiscale modeling to predicting the state and evolution of hematologic disorders.

2 Methods and Models

We first review two formulations of the dissipative particledynamics (DPD) method
that we employ in modeling RBCs and blood flow. We then providespecific details
on the multiscale RBC model (MS-RBC) and subsequently on thelow-dimensional
RBC model (LD-RBC), including the aggregation and adhesionmodels. Finally, we
present details on the scaling from DPD units to physical units.

2.1 Dissipative Particle Dynamics: Original Method

Dissipative Particle Dynamics (DPD) (34, 40) is a mesoscopic particle method,
where each particle represents amolecular cluster rather than an individual atom,
and can be thought of as a soft lump of fluid. A first-principlesderivation of the DPD
method from the Liouville equation is presented in (45). TheDPD system consists
of N point particles of massmi, positionr i and velocityvi. DPD particles interact
through three forces: conservative (FC

i j), dissipative (FD
i j), and random (FR

i j) forces
given by

FC
i j = FC

i j (ri j)r̂ i j ,

FD
i j =−γωD(ri j)(vi j · r̂ i j)r̂ i j,

FR
i j = σωR(ri j)

ξi j√
dt

r̂ i j,

(1)

wherer̂ i j = r i j/ri j, andvi j = vi − v j. The coefficientsγ andσ define the strength
of dissipative and random forces, respectively. In addition, ωD andωR are weight
functions, andξi j is a normally distributed random variable with zero mean, unit
variance, andξi j = ξ ji. All forces are truncated beyond the cutoff radiusrc, which
defines the length scale in the DPD system. The conservative force is given by
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FC
i j (ri j) =

{
ai j(1− ri j/rc) f or ri j ≤ rc,

0 f or ri j > rc,
(2)

whereai j is the conservative force coefficient between particlesi and j.
The random and dissipative forces form a thermostat and mustsatisfy the

fluctuation-dissipation theorem in order for the DPD systemto maintain equilib-
rium temperatureT (18). This leads to:

ωD(ri j) =
[
ωR(ri j)

]2
, σ2 = 2γkBT, (3)

wherekB is the Boltzmann constant. The choice for the weight functions is as fol-
lows

ωR(ri j) =

{
(1− ri j/rc)

k f or ri j ≤ rc,
0 f or ri j > rc,

(4)

wherek = 1 for the original DPD method. However, other choices (e.g.,k = 0.25)
for these envelopes have been used (21, 27) in order to increase the viscosity of the
DPD fluid.

The time evolution of velocities and positions of particlesis determined by the
Newton’s second law of motion

dr i = vidt, (5)

dvi =
1
mi

∑
j 6=i

(
FC

i j +FD
i j +FR

i j

)
dt. (6)

The above stochastic equations of motion can be integrated using a modified
velocity-Verlet algorithm (34); for systems governed by mixed hard-soft potentials
sub-cycling techniques similar to the ones presented in (84) can be employed.

2.2 DPD Method for Colloidal Particles

To simulate colloidal particles by single DPD particles, weuse a new formulation
of DPD, in which the dissipative forces acting on a particle are explicitly divided
into two separate components:central and shear (non-central) components. This
allows us to redistribute and hence, balance the dissipative forces acting on a single
particle to obtain the correct hydrodynamics. The resulting method was shown to
yield the quantitatively correct hydrodynamic forces and torques on a single DPD
particle (63), and thereby produce the correct hydrodynamics for colloidal particles
(61). This formulation is reviewed below.

We consider a collection of particles with positionsr i and angular velocitiesΩ i.
We definer i j = r i − r j, ri j = |r i j|, ei j = r i j/ri j, vi j = vi − v j. The force and torque
on particlei are given by
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Fi = ∑
j

Fi j,

Ti =−∑
j

λi jr i j ×Fi j.
(7)

Here, the factorλi j (introduced in (72)) is included as a weight to account for the
different contributions from the particles in different species (solvent or colloid)
differentiated in sizes while still conserving the angularmomentum. It is defined as

λi j =
Ri

Ri +R j
, (8)

whereRi andR j denote the radii of the particlesi and j, respectively. The force
exerted by particlej on particlei is given by

Fi j = FU
i j +FT

i j +FR
i j + F̃i j. (9)

The radial conservative forceFU
i j can be that of standard DPD and is given in

equation (2). Thetranslational force is given by

FT
i j =−

[
γ⊥i j f 2(r)1+(γ‖i j − γ⊥i j ) f 2(r)ei jei j

]
·vi j

=−γ‖i j f 2(ri j)(vi j ·ei j)ei j − γ⊥i j f 2(ri j)
[
vi j − (vi j ·ei j)ei j

]
.

(10)

It accounts for the drag due to the relative translational velocity vi j of particlesi
and j. This force is decomposed into two components: one along andthe other per-
pendicular to the lines connecting the centers of the particles. Correspondingly, the

drag coefficients are denoted byγ‖i j andγ⊥i j for a “central” and a “shear” compo-
nents, respectively. We note that the central component of the force is identical to
the dissipative force of standard DPD (eq. (1)).

Therotational force is defined by

FR
i j =−γ⊥i j f 2(ri j)

[
r i j × (λi jΩ i +λ jiΩ j)

]
, (11)

while therandom force is given by

F̃i jdt = f (ri j)

[
1√
3

σ‖
i jtr[dWi j]1+

√
2σ⊥

i j dWA
i j

]
·ei j, (12)

whereσ‖
i j =

√
2kBT γ‖i j andσ⊥

i j =
√

2kBT γ⊥i j are chosen to satisfy the fluctuation-

dissipation theorem,dWi j is a matrix of independent Wiener increments, anddWA
i j

is defined asdWAµν
i j = 1

2(dWµν
i j − dWνµ

i j ). We can also use the generalized weight

function f (r) = (1− r
rc
)k as in the previous section withk = 0.25 (22) in equa-

tions (10)- (12). The numerical results in previous studies(62, 63) showed higher
accuracy withk = 0.25 compared to the usual choicek = 1. The standard DPD is
recovered whenγ⊥i j ≡ 0, i.e., when the “shear” components of the forces are ignored.
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Colloidal particles are simulated as single DPD particles,similarly to the solvent
particles but of larger size. The particle size can be adjusted with the coefficient
ai j of the conservative force (see eq. (2)). However, the standard linear force in
DPD defined in eq. (2) is too soft to model any hard-sphere typeof particles. To
resolve this problem, we adopt an exponential conservativeforce for the colloid-
colloid and colloid-solvent interactions, but keep the conventional DPD linear force
for the solvent-solvent interactions. We have found that these hybrid conservative in-
teractions produced colloidal particles dispersed in solvent without overlap, which
was quantified by calculating the radial distribution function of colloidal particles
(61). Moreover, the timestep is not significantly decreased, in contrast to the small
timesteps required for the Lennard-Jones potential (72). The radial exponential con-
servative force is defined as

FU
i j =

ai j

1− ebi j
(ebi jri j/re

c − ebi j), (13)

whereai j andbi j are adjustable parameters, andre
c is its cutoff radius. The size of a

colloidal particle can thus be controlled by adjusting the value ofai j in eq. (13).

2.3 Multiscale Red Blood Cell (MS-RBC) Model

Here, we will use the DPD formulation described in section 2.1. The average equi-
librium shape of a RBC is biconcave as measured experimentally (20), and is repre-
sented by

z =±D0

√
1− 4(x2+ y2)

D2
0

[
a0+ a1

x2+ y2

D2
0

+ a2
(x2+ y2)2

D4
0

]
, (14)

whereD0 = 7.82 µm is the average diameter,a0 = 0.0518,a1 = 2.0026, anda2 =
−4.491. The surface area and volume of this RBC are equal to 135µm2 and 94
µm3, respectively.

In simulations, the membrane network structure is generated by triangulating
the unstressed equilibrium shape described by (14). The cell shape is first imported
into a grid generator to produce an initial triangulation based on the advancing-front
method. Subsequently, free-energy relaxation is performed by flipping the diagonals
of quadrilateral elements formed by two adjacent triangles, while the vertices are
constrained to move on the prescribed surface. The relaxation procedure includes
only elastic in-plane and bending energy components described below.

Figure 2 shows the membrane model represented by a set of points{xi}, i∈ 1...Nv

that are the vertices of a two-dimensional triangulated network on the RBC surface
described by equation (14). The vertices are connected byNs edges which formNt

triangles. The potential energy of the system is defined as follows

V ({xi}) =Vin−plane+Vbending+Varea +Vvolume. (15)
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Fig. 2 MS-RBC membrane model withNv = 100, 500, and 3000 from left to right, respectively.

The in-plane elastic energy mimics the elastic spectrin network, and is given by

Vin−plane = ∑
j∈1...Ns

[
kBT lm(3x2

j −2x3
j)

4p(1− x j)
+

kp

(n−1)ln−1
j

]
, (16)

wherel j is the length of the springj, lm is the maximum spring extension,x j = l j/lm,
p is the persistence length,kBT is the energy unit,kp is the spring constant, andn is
a power. Note that the spring forces in membrane are a combination of conservative
elastic forces, that may be expressed in terms of the energy potential above, and
dissipative forces to be defined below. The first term in (16) corresponds to the
attractive wormlike chain (WLC) potential, and the second term defines a repulsive
force forn > 0 to be called the power force (POW), so that we abbreviate this spring
model as WLC-POW. Note that ifn = 1 the power force energy should be defined
as−kp log(l j). A non-zero equilibrium spring length is defined by the balance of
these two forces.

The bending energy represents the bending resistance of thelipid bilayer and is
defined as

Vbending = ∑
j∈1...Ns

kb [1− cos(θ j −θ0)] , (17)

wherekb is the bending constant,θ j is the instantaneous angle between two adjacent
triangles having the common edgej, andθ0 is the spontaneous angle. The above
bending energy is a discretization (76) of the macroscopic Helfrich model (36).

The area and volume conservation constraints which accountfor area-incompressibility
of the lipid bilayer and incompressibility of the inner cytosol, respectively, are ex-
pressed as

Varea =
ka(A−Atot

0 )2

2Atot
0

+ ∑
j∈1...Nt

kd(A j −A0)
2

2A0
, (18a)

Vvolume =
kv(V −V tot

0 )2

2V tot
0

, (18b)

whereka, kd andkv are the global area, local area and volume constraint coeffi-
cients, respectively. The termsA andV are the total area and volume of RBC, while
Atot

0 andV tot
0 are the specified total area and volume, respectively. Note that the

above expressions define global area and volume constraints, and the second term
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in equation (18a) incorporates the local dilatation constraint. Detailed description
and discussion of the RBC model can be found in (24, 25).

Particle forces are derived from the above energies as follows

fi =−∂V ({xi})/∂xi, i ∈ 1...Nv. (19)

Exact force expressions can be found in (23).

2.3.1 Mechanical Properties

Linear analysis of the regular hexagonal network having theabove energies yields a
relationship between macroscopic elastic properties (shear, area-compression, and
Young’s moduli) of the network and model parameters (24, 25). The membrane
shear modulus is thus given by

µ0 =

√
3kBT

4plmx0

(
x0

2(1− x0)3 − 1
4(1− x0)2 +

1
4

)
+

√
3kp(n+1)

4ln+1
0

, (20)

wherel0 is the equilibrium spring length andx0 = l0/lm. The corresponding area-
compression and Young’s moduli are found as follows

K0 = 2µ0+ ka + kd, Y0 =
4K0µ0

K0+ µ0
. (21)

The bending coefficientkb of equation (17) can be expressed in terms of the
macroscopic bending rigiditykc of the Helfrich model (36) askb = 2kc/

√
3.

2.3.2 Membrane Viscoelasticity

The above model defines a purely elastic membrane, however the RBC membrane
is known to be viscoelastic. To incorporate viscosity into the model, the spring def-
inition is modified by adding viscous contribution through dissipative and random
forces. Such a term fits naturally in the DPD method (40), where inter-particle dis-
sipative interactions are an intrinsic part of the method. Straightforward implemen-
tation of the dissipative interactions asFD

i j = −γ(vi j · ei j)ei j (γ is the dissipative
parameter,vi j = vi − v j is the relative velocity of verticesi and j connected by
a spring, andei j is the direction along the spring with unit length) appears to be
insufficient. Experience shows that smallγ results in a negligible viscous contri-
bution sincevi j ·ei j ∼ 0, while large values ofγ require considerably smaller time
steps to overcome the numerical instability. Better performance is achieved with
a viscous spring dissipation term−γvi j, which is similar to a “dashpot”, and in
combination with a spring force represents the Kelvin-Voigt model of a viscoelastic
spring. For this term the fluctuation-dissipation balance needs to be imposed to en-
sure the maintenance of the equilibrium membrane temperaturekBT . We follow the
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general framework of the fluid particle model (17), and defineFD
i j = −Ti j · vi j and

Ti j = γT 1+γCei jei j, whereγT andγC are the dissipative coefficients. This definition
results in the dissipative interaction term of the kind

FD
i j =−

[
γT 1+ γCei jei j

]
·vi j =−γT vi j − γC(vi j ·ei j)ei j, (22)

where the second term is analogous to the dissipative force in DPD. From the
fluctuation-dissipation theorem, random interactions aregiven by

FR
i jdt =

√
2kBT

(√
2γT dWS

i j +
√

3γC − γT
tr[dWi j]

3
1
)
·ei j, (23)

where tr[dWi j] is the trace of a random matrix of independent Wiener incre-

mentsdWi j, anddWS
i j = dWS

i j − tr[dWS
i j]1/3 is the traceless symmetric part, while

dWS
i j = [dWi j +dWT

i j]/2 is the symmetric part. Note, that the last equation imposes

the condition 3γC > γT . The defined dissipative and random forces in combination
with an elastic spring constitute a viscoelastic spring whose equilibrium tempera-
turekBT is constant. To relate the membrane shear viscosityηm and the dissipative
parametersγT , γC we employ the idea used for the derivation of membrane elastic
properties (see (23, 24) for details) and obtain the following relation

ηm =
√

3γT +

√
3γC

4
. (24)

Clearly,γT accounts for a large portion of viscous contribution, and thereforeγC is
set toγT/3 in all simulations.

2.3.3 RBC-Solvent Boundary Conditions

The RBC membrane encloses a volume of fluid and is itself suspended in a solvent.
In particle methods, such as DPD, fluids are represented as a collection of interacting
particles. Thus, in order to impose appropriate boundary conditions (BCs) between
the membrane and the external/internal fluids two matters need to be addressed:

i) enforcement of membrane impenetrability to prevent mixing of the inner and the
outer fluids,

ii) no-slip BCs imposed through pairwise point interactions between the fluid parti-
cles and the membrane vertices.

Membrane impenetrability is enforced by imposing bounce-back reflection of
fluid particles at the moving membrane triangular plaquettes. The bounce-back re-
flection enhances the no-slip boundary conditions at the membrane surface as com-
pared to specular reflection; however, it does not guaranteeno-slip. Additional dis-
sipation enhancement between the fluid and the membrane is required to achieve
no-slip at the membrane boundary. For this purpose, the DPD dissipative force be-
tween fluid particles and membrane vertices needs to be properly set based on the
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idealized case of linear shear flow over a flat plate. In continuum, the total shear
force exerted by the fluid on the areaA is equal toAηγ̇, whereη is the fluid’s vis-
cosity andγ̇ is the local wall shear-rate. In DPD, we distribute a number of particles
on the wall to mimic the membrane vertices. The force on a single wall particle
exerted by the sheared fluid can be found as follows

Fv =

∫

Vh

ng(r)FDdV, (25)

whereFD is the DPD dissipative force (17) between fluid particles andmembrane
vertices,n is the fluid number density,g(r) is the radial distribution function of fluid
particles with respect to the wall particles, andVh is the half sphere volume of fluid
above the wall. Here, the total shear force on the areaA is equal toNAFv, whereNA

is the number of wall particles enclosed byA. The equality ofNAFv = Aηγ̇ results
in an expression of the dissipative force coefficient in terms of the fluid density and
viscosity, and the wall densityNA/A, while under the assumption of linear shear
flow the shear ratėγ cancels out. This formulation results in satisfaction of the no-
slip BCs for the linear shear flow over a flat plate. It also serves as an excellent
approximation for no-slip at the membrane surface in spite of the assumptions made.
Note that in the absence of conservative interactions between fluid and wall particles
g(r) = 1.

2.3.4 RBC Aggregation Interactions

For a blood suspension the attractive cell-cell interactions are crucial for simulation
of aggregation into rouleaux. These forces are approximated phenomenologically
with the Morse potential given by

φ(r) = De

[
e2β (r0−r)−2eβ (r0−r)

]
, (26)

wherer is the separation distance,r0 is the zero force distance,De is the well depth
of the potential, andβ characterizes the interaction range. For the MS-RBC model
the Morse potential interactions are implemented between every two vertices of
separate RBCs if they are within a defined potential cutoff radius rM as shown in
figure 3. The Morse interactions consist of a short-range repulsive force whenr < r0

and of a long-range attractive force forr > r0. However, such repulsive interactions
cannot prevent two RBCs from an overlap. To guarantee no overlap among RBCs
we employ a short range Lennard-Jones potential and specular reflections of RBC
vertices on membranes of other RBCs. The Lennard-Jones potential is defined as

ULJ(r) = 4ε
[(σLJ

r

)12
−
(σLJ

r

)6
]
, (27)

whereε andσLJ are energy and length characteristic parameters, respectively. These
interactions are repulsive and vanish beyondr > 21/6σLJ . In addition, specular re-
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Fig. 3 Aggregation interactions for the MS-RBC model.

flections of RBC vertices on surfaces of other RBCs are necessary due to coarseness
of the triangular network, which represents the RBC membrane.

2.3.5 RBC Adhesion Interactions

Adhesion of Pf-RBCs to coated surfaces is mediated by the interactions between
receptors and ligands which are the adhesion sites distributed on a cell and a surface,
respectively. A potential bond between a receptor and a ligand may be formed only
if the receptor is close enough to the free ligand, which is characterized by the
reactive distancedon. A ligand is called free if it is not bound to any receptors.
During the time a receptor is within the distancedon to a free ligand, a bond can be
formed with on-ratekon. Reversely, existing bonds are ruptured with off-rateko f f or
if their length exceeds the rupture distancedo f f . The rateskon andko f f are defined
as follows

kon = k0
on exp

(
−σon(l − l0)2

2kBT

)
, ko f f = k0

o f f exp

(
σo f f (l − l0)2

2kBT

)
, (28)

wherek0
on andk0

o f f are the reaction rates at the distancel = l0 between a receptor
and a ligand with the equilibrium spring lengthl0 defined below. The effective on
and off strengthsσon andσo f f define a decrease or an increase of the corresponding
rates within the interaction lengthsdon anddo f f , andkBT is the unit of energy. The
force exerted on the receptors and ligands by an existing bond is given by

F(l) = ks(l − l0), (29)

whereks is the spring constant. The probabilities of bond formationand dissociation
are defined asPon = 1−exp(−kon∆ t) andPo f f = 1−exp(−ko f f ∆ t), where∆ t is the
time step in simulations. This adhesion model is a slight modification of the well-
known adhesive dynamics model developed by Hammer and Apte (35) primarily for
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leukocytes. In their modelσon = σts andσo f f = ks −σts, whereσts is the transition
state spring constant.

During the course of a simulation the receptor/ligand interactions are considered
every time step. First, all existing bonds between receptors and ligands are checked
for a potential dissociation according to the probabilityPo f f . A bond is ruptured if
ξ < Po f f and left unchanged otherwise, whereξ is a random variable uniformly
distributed on[0,1]. If a bond is ruptured the corresponding ligand is availablefor
new binding. Second, all free ligands are examined for possible bond formations.
For each free ligand we loop over the receptors within the distancedon, and bond
formation is attempted for each found receptor according tothe probabilityPon. This
loop is terminated when a bond is formed. Finally, the forcesof all remaining bonds
are calculated and applied.

Note that this algorithm permits only a single bond per ligand, while receptors
may establish several bonds if several ligands are free within their reaction radius.
This provides an additional capability for the adhesive dynamics model compared
with that employing one-to-one interactions between receptors and ligands. Also,
this assumption appears to furnish a more realistic representation of adhesive inter-
actions of Pf-RBCs with a coated surface. Pf-RBCs display a number of parasitic
nanometer-size protrusions or knobs on the membrane surface (39, 41, 55), where
receptors that mediate RBC adherence are clustered.

2.4 Low-Dimensional RBC (LD-RBC) Model

Here, we will employ the DPD formulation presented in section 2.2. The LD-RBC
is modeled as a ring of 10 colloidal DPD particles connected by wormlike chain
(WLC) springs. The intrinsic size of colloidal particle is determined by the radius
of the sphere effectively occupied by a single DPD particle (61), which is defined
by the distribution of its surrounding solvent particles.

To construct the cell model, however, we allow particles in the same RBC to over-
lap, i.e., the colloidal particles in the same cell still interact with each other through
the soft standard DPD linear force (see eq. (2)). The radius,a, of each colloidal par-
ticle is chosen to be equal to the radius of the ring, and hencethe configuration of
RBC is approximately a closed-torus as shown in figure 4.

The WLC spring force interconnecting all cell particles in each RBC is given by

FU
WLC =

kBT
p

[
1

4(1− ri j
lm
)2

− 1
4
+

ri j

lm

]
, (30)

whereri j is the distance between two neighboring beads,p is the persistence length,
andlm is the maximum allowed length for each spring. Since the cellhas also bend-
ing resistance, we incorporate into the ring model bending resistance in the form
of “angle” bending forces dependent on the angle between twoconsecutive springs.
The bending forces are derived from the cosine bending potential given by
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Fig. 4 LD-RBC: A sketch of the low-dimensional closed-torus like RBC model.

UCOS
i jk = kb[1− cosθi jk], (31)

wherekb is the bending stiffness, andθi jk is the angle between two consecutive
springs.

Here,p determines the Young’s modulus, and along withlm anda give the right
size of RBC. To match both axial and transverse RBC deformations with the ex-
perimental data (82),kb is adjusted to reach a good agreement, which also gives
some contribution to the Young’s modulus. The LD-RBC model does not have the
membrane shear modulus.

Since the thickness of LD-RBC model is constant, we estimatethe variations
of the RBC volume and surface area under stretching by calculating the relative
change of the area formed by the ring under stretching. For healthy RBCs we find
that it varies within only 8% in the range of all stretching forces (60). Therefore, the
surface-area and hence the volume of RBCs remain approximately constant in the
LD-RBC model.

2.4.1 Number of Particles in LD-RBC Model

We examine the effect of coarse-graining on stretching response by varying the
number of particles (Nc) to model the LD-RBC. Figure 5 shows the RBC shape
evolution from equilibrium (0pN force) to 100pN stretching force at different
Nc. Note that an increase of the number of particles making up the RBC results in a
smoother RBC surface. However, this feature seems to be lesspronounced for higher
Nc. Also, when we stretch the RBCs with differentNc, we find that an increase of
Nc results in better agreement with the experimental data (82), but afterNc = 10, the
change becomes very small (60). To gain sufficiently good agreement and keep the
computation cost low, we chooseNc = 10 for all the simulations shown herein; this
is the accurate minimalistic model that we employ in our studies.
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Fig. 5 LD-RBC shape evolution at differentNc (number of particles in LD-RBC model) and
stretching forces.

2.4.2 Aggregation Model

For LD-RBC model, we also employ the Morse potential, see equation (26), to
model the total intercellular attractive interaction energy. The interaction between
RBCs derived from the Morse potential includes two parts: a short-ranged repulsive
force and a weak long-ranged attractive force. The repulsive force is in effect when
the distance between two RBC surfaces isr < r0, wherer0 is usually in nanometer
scale (7, 48, 56). In our simulations,r0 is chosen to be 200nm.

Here,r is calculated based on the center of mass of RBCs, i.e.,r is equal to the
distance between the center of mass of two RBCs minus the thickness of a RBC.
We also calculate the normal vector of each RBC (nc), which is used to determine
if the aggregation occurs between two RBCs according to the angles formed by
the normal vectors of two RBCs with their center line. The RBCnormal vector is
defined as

nc =
∑vk × vk+1

Nc
,vk = xk − xc. (32)

Here,xk is the position of thekth particle in each RBC,xc is the position of the
center of mass, andNc is the number of particles in each RBC. The center linevci j

of two RBCs (celli and cell j) is defined asxci − xc j. The angle formed by the
normal vector of one cell with the center line is determined by their dot product

di =
nci

‖nci‖
· vci j

‖vci j‖
. (33)

The Morse interaction is turned on ifdi > dc andd j > dc, otherwise, it is kept off.
The critical value,dc, is chosen to be equal tocos(π/4), i.e., the critical angle (θc)
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to turn on/off the aggregation interaction isπ/4. This value is found to be suitable
to induce rouleaux formation, but exclude the disordered aggregation. The proposed
aggregation algorithm can be further illustrated by a sketch in figure 6, where the
aggregation between two neighbor RBCs is decided to be on/off according to their
relative orientation.

Fig. 6 Schematic of the aggregation algorithm. Here, the two neighbor RBCs (1 and 2) are to
aggregate or not if the angles,θ1 andθ2, are smaller or greater thanπ/4.

2.5 Scaling of Model and Physical Units

The dimensionless constants and variables in the DPD model must be scaled with
physical units. The superscriptM denotes that a quantity is in “model” units, while
P identifies physical units (SI units). We define the length scale as follows

rM =
DP

0

DM
0

m, (34)

whererM is the model unit of length,D0 is the cell diameter, andm stands for
meters. The energy per unit mass (kBT ) and the force unit (“N” denotes Newton)
scales are given by

(kBT )M =
Y P

Y M

(
DP

0

DM
0

)2

(kBT )P, NM =
Y P

Y M

DP
0

DM
0

NP, (35)

whereY is the membrane Young’s modulus. The time scale is defined as

τ =
DP

0

DM
0

ηP

ηM

Y M

Y P s, (36)
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whereη is a characteristic viscosity (e.g., solvent or membrane).

3 Parameter Estimation

The models described in the previous section require as inputs “microscopic” pa-
rameters, e.g. the persistence lengthp for the WLC potential, but also other param-
eters, e.g. values of the membrane viscosity. These parameters may not be readily
available in the literature and certainly they vary according to the RBC state, i.e a
healthy or infected RBC. To this end, we aim to estimate most of the required param-
eters from single-cell measurements of macroscopic quantities, e.g. shear modulus,
which can then be mapped to “microscopic” (network) parameters using analyt-
ical expressions, such as the one in equation (20). Specifically, the RBC model is
compared against several available experiments which examine cell mechanics, rhe-
ology, and dynamics for healthy and diseased RBCs. First, weobtain the shear mod-
ulus using optical tweezers measurements of a stretched RBC. We then estimate the
membrane rheological parameters using measurements from optical magnetic twist-
ing cytometry and from the response of single RBC in shear flow. In all cases we run
corresponding DPD simulations in order to compare and matchthe experimentally
observed responses. In the following, we describe details of this procedure and we
also demonstrate that while the parameters can be estimatedin a relatively narrow
regime, we can then predict accurately the single RBC mechanics, dynamics and
rheology over a much wider range of operating conditions.

3.1 Shear Modulus Using Optical Tweezers

To mimic the optical tweezers experiments of (82) a modeled RBC undergoes
stretching by applying a stretching force on both ends of thecell. The total stretch-
ing force f M is applied toN− andN+ vertices (N− = N+ = εNv) along the negative
and the positive directions, respectively. These verticescover a near-spherical area
on the RBC surface withε = 0.02 which corresponds to the contact diameter of the
attached silica bead with diameter 2µm used in experiments (82). Note that the vis-
cous properties of the membrane and of the suspending mediumdo not affect final
stretching since the RBC response is measured after convergence to the equilibrium
stretched state is achieved for given force.

Figure 7 (left) compares the simulated axial and transverseRBC diameters
with their experimental counterparts (82) for different coarse-graining levels start-
ing from the spectrin-level (Nv = 27344) to the highly coarse-grained network
of Nv = 500. Excellent correspondence between simulations and experiments is
achieved forµ0 = 6.3 µN/m andY = 18.9 µN/m independently of the level of
coarse-graining. The small discrepancy between simulatedand experimental trans-
verse diameters is probably a consequence of the optical measurements being per-
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Fig. 7 MS-RBC (left): Stretching response of a healthy RBC for different coarse-graining levels.
MS-RBC vs. LD-RBC (right): Stretching response of a healthyRBC and a Pf-RBC (schizont
stage) with the experiments of (82).DA andDT refer to the axial and transverse diameters. (From
(23, 59)).

formed from only a single observation angle. Numerical simulations showed that
RBCs subjected to stretching tend to rotate in y-z plane, andtherefore measure-
ments from a single observation angle may result in underprediction of the maxi-
mum transverse diameter. However, the simulation results remain within the exper-
imental error bars.

Next, we compare the MS-RBC versus the LD-RBC models; figure 7(right)
presents the axial and transverse RBC deformations for a healthy RBC and for
a RBC at the latest stage (schizont) of intra-erythrocytic parasite development in
malaria disease in comparison with experiments (82). Simulation results are in ex-
cellent agreement with the experiments for both RBC models.The Young’s modulus
of a RBC is found to be 18.9 and 180.0 µN/m for healthy RBC and at the schizont
stage, respectively, in case of the MS-RBC model, while the LD-RBC model yields
the values of 20.0 and 199.5 µN/m for the RBC Young’s modulus. Note that the
low-dimensional RBC model is able to capture linear as well as non-linear RBC
elastic response.

3.2 Membrane Rheology from Twisting Torque Cytometry

Twisting torque cytometry (TTC) is the numerical analog of the optical magnetic
twisting cytometry (OMTC) used in the experiments (52, 54),where a ferrimagnetic
microbead is attached to RBC top and is subjected to an oscillating magnetic field.
In simulations a microbead is attached to the modeled membrane, and is subjected
to an oscillating torque as shown in figure 8 (left). In analogy with the experiments,
the modeled RBC is attached to a solid surface, where the wall-adhesion is modeled
by keeping stationary fifteen percent of vertices on the RBC bottom, while other
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vertices are free to move. The adhered RBC is filled and surrounded by fluids hav-
ing viscosities much smaller than the membrane viscosity, and therefore, only the
membrane viscous contribution is measured. The microbead is simulated by a set
of vertices on the corresponding sphere subject to a rigid body motion. The bead
attachment is modeled by including several RBC vertices next to the microbead
bottom into the rigid motion.

A typical bead response to an oscillating torque measured insimulations is given
in figure 8 (right). The bead displacement has the same oscillating frequency as the

displacement
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Fig. 8 Setup of the TTC (left) and the characteristic response of a microbead subjected to an
oscillating torque (right).

applied torque per unit volume, but it is shifted by a phase angle φ depending on
the frequency. The phase angle can be used to derive components of the complex
modulus according to linear rheology as follows

g′(ω) =
∆T
∆d

cos(φ), g′′(ω) =
∆T
∆d

sin(φ), (37)

whereg′(ω) andg′′(ω) are thetwo-dimensional storage and loss moduli (G′ andG′′

in 3D), and∆T and∆d are the torque and bead displacement amplitudes. Note that
under the assumption of no inertial effects, the phase anglesatisfies the condition
0≤ φ < π/2.

Figure 9 presents components of the complex modulus for healthy RBCs com-
pared with experimental data of (54). A good agreement of themembrane mod-
uli in simulations with the experimental data is found for the bending rigidity
kc = 4.8× 10−19 J and the membrane viscosityηm = 0.022 Pa · s. Note that this
corresponds to the bending rigidity twice larger than the widely accepted value of
2.4× 10−19 J. In figure 9 only the membrane bending rigidity is varied since the
Young’s modulus was obtained in the RBC stretching tests above. In summary, TTC
for healthy RBCs revealed that the storage modulus (g′) depends on the membrane
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elastic properties and bending rigidity, while the loss modulus (g′′) is governed by
the membrane viscosity.

3.3 RBC Dynamics in Shear Flow

Experimental observations (1, 29, 30, 86) of RBC dynamics inshear flow show RBC
tumbling at low shear rates and tank-treading at high shear rates. This behavior is
related to existence of a RBC minimum energy state shown in the experiments by
Fischer (29), where a RBC relaxed to its original state marked by several attached
microbeads after some time of tank-treading motion. Hence,the RBC has to exceed
a certain energy barrier in order to transit into a tank-treading motion in shear flow.

Theoretical predictions (1, 79) attempt to capture RBC dynamics in shear flow
depending on the shear rate and the viscosity contrast defined asλ = (ηi +ηm)/ηo.
According to the theories, for a smallλ < 3 a RBC tumbles at low shear rates and
tank-treads at high shear rates. Near the tumbling-to-tank-treading transition there
exists a narrow intermittent region where theories predictan instability such that
RBC tumbling can be followed by tank-treading and vise versa. However, in case
of a large viscosity contrast (λ > 3) the theories predict a well-defined tumbling
regime followed by an intermittent region, while stable tank-treading may not be
present. In addition, the tank-treading state is also characterized by RBC swinging
around the tank-treading axes with certain frequency and amplitude.
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A simulated RBC is suspended into a solvent placed between two parallel walls
moving with constant velocities in opposite directions. Figure 10 (left) shows tum-
bling and tank-treading frequencies with respect to shear rates in comparison with
experiments (30, 86). Comparison of the simulated dynamicswith experiments
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showed that a purely elastic RBC with or without inner solvent (circles and squares)
results in an overprediction of the tank-treading frequencies, because the membrane
assumes no viscous dissipation. Addition of the membrane viscosity (triangles) re-
duces the values of the tank-treading frequencies and provides a good agreement
with experiments for the membrane viscosityηm = 22×10−3 Pa · s. Note that for
all cases a finite intermittent region is observed and it becomes wider for a non-
zero membrane viscosity. This result is consistent with theexperiments, but it dis-
agrees with the theoretical predictions. Similar results for the intermittent region
were reported in simulations of viscoelastic vesicles (42). Moreover, an increase in
the internal fluid or membrane viscosities results in a shiftof the tumbling-to-tank-
treading transition to higher shear rates. Figure 10 (right) shows the average RBC
tank-treading angle and the swinging amplitude. The valuesare consistent with ex-
perimental data (1) and appear to be not very sensitive to themembrane viscosity.
Note that the swinging frequency is equal to twice the tank-treading frequency.

In conclusion, the RBC model accurately captures membrane dynamics in shear
flow, while the theoretical models can predict RBC dynamicsat most qualitatively.
The theoretical models assume ellipsoidal RBC shape and a fixed (ellipsoidal) RBC
tank-treading path. Our simulations showed that a RBC is subject to deformations
along the tank-treading axis. In addition, modeled RBCs show substantial shape
deformations (buckling) in a wide range around the tumbling-to-tank-treading tran-
sition. A degree of these deformations depends on the Föppl-von Kármán number
κ defined asY R2

0/kc, whereR0 =
√

Atot
0 /(4π). As an example, if the RBC bend-

ing rigidity is increased by a factor of five, the aforementioned shape deformations
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become considerably smaller, while if the RBC bending rigidity is increased by a
factor of ten, the shape deformations practically subside.The theoretical models do
not take the bending rigidity into consideration, while experimental data are not con-
clusive on this issue. This again raises the question about the magnitude of bending
rigidity of healthy RBCs since our simulations (TTC and RBC dynamics in shear
flow) indicate that the RBC bending rigidity may be several times higher than the
widely used value ofkc = 2.4×10−19 J.

4 Validation

In the previous section we demonstrated how we can use experimental data from
single-cell measurements to extract the input parameters for the models, but also,
to partially validate the simulated biophysical behavior of single RBCs. In this sec-
tion, we extend this validation further by comparing simulation results based on
the MS-RBC model as well as on the LD-RBC model with differentexperiments.
First, we consider data from microfluidic experiments in channels with very small
cross-sections, i.e., comparable to the smallest capillaries. We also compare with
experimental results from the dynamic response of RBCs going though properly mi-
crofabricated geometric constrictions. Subsequently, wepresent simulation results
for whole blood in terms of the flow resistance in tubes and compare against well
known experimental results. Finally, we demonstrate how these multiscale simula-
tions can be used as a “virtual rheometer” to obtain the humanblood viscosity over
a wide range of shear rate values. This includes the low shearrate regime, where the
formation of rouleaux is shown to determine the strong non-Newtonian behavior of
blood.

4.1 Single RBC: Comparison with Microfluidic Experiments

Microfabrication techniques allow manufacturing of channels with dimensions com-
parable to the smallest blood vessels. In recent years, microfluidic experiments have
become popular in measuring properties of RBCs and other cells. Even though, at
present time, these experiments typically do not include biochemistry, they can pro-
vide quantitative information about the motion of a single RBC through the chan-
nels at controlled conditions. This information can be usedto validate computational
models. The two examples of RBC model validation using microfluidic devices de-
scribed in this section are taken from refs.(73) and (4), where detailed description
of experiments and simulations can be found.

The first set of experiments was performed in the S. Suresh labat MIT. The chan-
nel structures used in these experiments are illustrated infigure 11(a). At their nar-
rowest point, these sharply converging/diverging channels are 30µm long, 2.7 µm
high and have widths ranging from 3 to 6µm. The experiments were carried out at



24 Authors Suppressed Due to Excessive Length

temperature 37◦C and 41◦C. High-speed imaging was used to measure and quan-
tify the temperature-dependent flow characteristics and shape transitions of RBCs
as they traversed microfluidic channels of varying size.

w = 3 − 6    m
h = 2.7    m

10 µm 10 µm

b)

L = 30    m60o

a)

µ µ

µ

Fig. 11 (a) Schematic view of microfluidic channels used in experiments. (b) Shape characteristics
of RBC traversal across microfluidic channels: Experimental (left) and simulated (right) images of
erythrocyte traversal across 4µm wide, 30µm long, 2.7 µm high channel at room temperature and
an applied pressure difference of 0.085kPa. (From (4)).

The fluid domain in DPD simulations corresponds to the middlepart of the mi-
crofluidic device. The width of the flow domain is 60µm, the length is 200µm, and
the height is 2.7µm. The central part of the simulation domain is the same as in the
experiment. Specifically, the flow is constricted to rectangular cross-section of 4, 5
or 6 µm in width and 2.7µm in height. The walls are modeled by freezing DPD par-
ticles in combination with bounce-back reflection, similarto those in (66). Periodic
inlet/outlet boundary conditions are employed, and the flowis sustained by apply-
ing an external body force. The RBC model consists of 500 points. Bounce-back
reflection is employed at the membrane surface. The internalRBC fluid is 9, 8.5
and 7.6 times more viscous than the external fluid in simulations corresponding to
temperature of 22◦C, 37◦C and 41◦C, respectively (68). The effect of temperature in
the experiment on the viscosity of the suspending medium is modeled by changing
the viscosity of the DPD fluid surrounding the RBC. Specifically, the viscosity of
the external fluid at 37◦C and 41◦C is decreased by 22 % and 28 % compared to the
viscosity at 22◦C, while the membrane viscosity is decreased by 50 % and 63.5 %,
respectively, to match the experimentally measured RBC relaxation times at these
temperatures.

Figure 11(b) presents a qualitative comparison of experiment with the DPD
model for RBC traversal across a 4µm wide channel. Here, the cell undergoes a
severe shape transition from its normal biconcave shape to an ellipsoidal shape with
a longitudinal axis up to 200% of the average undeformed diameter. Figure 12(a)
illustrates how the longitudinal axis of the cell, measuredat the center of the chan-
nel, changes with different channel widths. Experimental and simulated longitudinal
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Fig. 12 Quantitative flow behavior of RBC traversal of microfluidic channels. (a) Measured and
simulated cell lengths at the center of the microfluidic channel for varying channel widths. (b)
Comparison of DPD simulation results (open markers) with experimentally measured mean ve-
locities (filled markers) of RBC traversal as a function of measured local pressure differences for
3, 4, 5 and 6µm channel widths (height = 2.7µm, length = 30µm). Error bars on experimental
data points represent an average +/- one standard deviationof a minimum of 18 cells. Error bars
on modeling data points indicate minimum and maximum variations resulting from a case study
exploring the sensitivity of the RBC traversal to channel geometry and cell volume. (From (73)).

RBC axes typically differ no more than 10-15%. Figure 12(b) presents pressure–
velocity relationships for RBC flow across channels of different cross-sectional di-
mensions. Average cell velocity measurements were taken between the point just
prior to the channel entrance (the first frame in Figure 11(b)) and the point at which
the cell exits the channel (the final frame in Figure 11(b)). The DPD model ade-
quately captures the scaling of flow velocity with average pressure difference for
4–6 µm wide channels. The significant overlap in the experimental data for 5–6
µm wide channels can be attributed largely to variations in cell size and small varia-
tions in channel geometry introduced during their microfabrication. For the smallest
channel width of 3µm, the experimentally measured velocities are as much as half
those predicted by the model. This may be attributed to several factors, including
non-specific adhesive interactions between the cell membrane and the channel wall
due to increased contact. Furthermore, this 3µm x 2.7 µm (8.1µm2) cross-section
approaches the theoretical 2.8µm diameter (6.16µm2) limit for RBC transit of ax-
isymmetric pores (5). Therefore, very small variations in channel height (due, for
example, to channel swelling/shrinking due to small variations in temperature and
humidity) can have significant effects.

For the effect of temperature on the flow dynamics of the RBC werefer the
reader to (73) where the ratio of the local pressure gradientand average cell veloc-
ity (∆P/V ) as a function of temperature is examined. The main finding isthat there
exists a threshold cross-section below which the RBC viscous components begin
to play a significant role in its dynamic flow behavior; this effect is less profound
at higher temperatures. Since the energy dissipation in themembrane is typically
higher than in the internal fluid, one might expect the influence of membrane vis-
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cosity on the flow behavior of the RBC across such small cross-sections to be large
compared to the internal fluid viscosity (19).

The second set of experiments was performed in the J. Han Lab at MIT. The
microfluidic device consists of two channels, 4.2 µm in height. Rows of 3 by 10µm
triangular obstacles are placed into the channels as shown in Figure 13(a). The dis-
tance between the obstacles is 3µm, while the distance between rows of obstacles is
10µm. The only difference between the two channels in the device is the orientation
of the obstacles; one channel is the other flipped by 180◦.

(a) (b)

Fig. 13 (a) Two parallel channels, one with opening geometries thatare the reverse of the other, are
connected to common inlet and outlet reservoirs. The heightof the device is 4.2µm, the distance
between the pillars is 3µm, and the distance between rows of pillars is 10µm. (b) Snapshot from
video of labeled cells moving through the device. Liquid flowis from right to left. (From (4)).

For low-Reynolds number flows, the resistance and average fluid velocities in the
absence of cells must be the same for both channels. When the RBC concentration
is low, the cells move with different average velocities in the two channels. This
indicates that for openings of the same minimal cross-section area, the geometry
(rate) of constriction affects the amount of force requiredfor cell traversal. Also, the
channels appear to be sensitive to some specific properties of RBCs, therefore the
device can be used to estimate these properties for a given cell from its velocity at
known applied pressure gradient.

In simulations, the solid walls are assembled from randomlydistributed DPD
particles whose positions are fixed. In addition, bounce-back reflections are used to
achieve no-slip conditions and prevent fluid particles frompenetrating the walls (66).
A portion of the microfluidic device with dimensions 200 by 120 by 4.2 microns
containing 5 rows of pillars (10 pillars in each row) is modeled. The fluid region
is bounded by four walls while periodic boundary conditionsare used in the flow
direction. Here, the RBC is simulated using 5,000 DPD particles to obtain accurate
results unlike most of the other simulations, including theprevious example, where
500 DPD points per RBC were sufficient. This is due to the fast dynamic changes
of the RBC membrane as the RBC travels through the narrow constrictions. Param-
eters of the healthy cell model are derived from RBC spectrinnetwork properties
as described in previous sections. In addition, membrane fluctuation measurements
and optical tweezers experiments are used to define simulation parameters. Specifi-
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cally, we required that the amplitude of thermal fluctuations of the membrane at rest
to be within the range of experimental observations (65). Wealso required that the
characteristic relaxation time of the RBC model in simulations be equal to the ex-
perimentally measured value of 0.18 seconds. The RBC model is immersed into the
DPD fluid. The membrane particles interact with internal andexternal fluid particles
through the DPD forces. By changing the direction of the bodyforce, the motion of
the cell through channels with converging and diverging pores is simulated using
the same channel geometry.

The DPD model is able to capture the effect of obstacle orientation quite ac-
curately. Quantitative comparison of simulation results with experimental data for
healthy cell velocity as a function of applied pressure gradient is shown in figure 14.
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Fig. 14 Average velocity of healthy RBCs as a function of pressure gradient and comparison
of simulation and experimental results. Results for converging (a) and diverging geometries (b).
(From (4)).

In order to evaluate contributions of individual mechanical properties of the cell
to overall dynamic behavior, we run additional simulations. The DPD model pro-
vides a unique opportunity to perform this analysis, since experimental evaluation of
these contributions is laborious or impossible. Larger cells are found to travel with
lower velocities; however, the velocity variation due to cell size is not significant.
Additional simulations were performed in which the membrane shear modulus and
membrane viscosity were varied independently of each other. The results showed
that the RBC velocity in the device is sensitive to shear modulus, while (in contrast
to the device described above) variation of membrane viscosity did not affect the
RBC traversal significantly. This finding may seem to be counter intuitive; when the
membrane viscosity is increased one would expect higher energy dissipation and
therefore lower RBC velocity. Indeed, increased membrane viscosity increases the
time it takes for a RBC to traverse an individual opening between pair of obstacles.
However, it also slows down the recovery of RBC shape when thecell is traveling
between rows of obstacles, making it easier to enter the nextopening. As a result,
the particular design of this device lessens the dependenceof the cell velocity on
membrane viscosity.
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4.2 Whole Healthy Blood

Next, we present simulation results for whole blood modeledas a suspension of
healthy RBCs using the two RBC models without changing the parameters that we
have established from single-cell measurements. We first consider flow in a tube
in order to assess flow resistance in microvessels, and subsequently, we focus on
Couette flow in order to compare the predicted blood viscosity from rheometric
measurements.

4.2.1 Flow Resistance

Here, we simulate blood flow in tubes of diameters ranging from 10µm to 40µm. In
case of the MS-RBC model, it is important to model carefully the excluded volume
(EV) interactions among cells, which are often implementedthrough a repulsive
force between membrane vertices of different cells. A certain range (force cutoff
radius) of the repulsive interactions may impose a non-zerominimum allowed dis-
tance between neighboring RBC membranes, which will be called “screening dis-
tance” between membranes. The choice of a smaller cutoff radius may result in
overlapping of cells, while a larger one would increase the screening distance be-
tween cells, which may be unphysical and may strongly affectthe results at high
volume fractions of RBCs. A better approach is to enforce EV interactions among
cells by employing reflections of RBC vertices on the membrane surfaces of other
cells yielding essentially a zero screening distance between two RBC surfaces. In
addition, we employ anet repulsion of RBCs from the wall by properly setting the
repulsive force coefficient between the wall particles and the cell vertices.

Figure 15 shows plots of the apparent blood viscosity with respect to the plasma
viscosity. The apparent viscosity is defined as followsηapp = π∆PD4

128QL , where∆P
is the pressure difference,Q is the flow rate, andL is the length of the tube. It
increases for higherHt values since higher cell crowding yields larger flow resis-
tance. It is more convenient to consider the relative apparent viscosity defined as
ηrel =

ηapp
ηs

, whereηs is the plasma viscosity. Figure 15(a) shows the simulatedηrel

values in comparison with the empirical fit to experiments (71) for the tube diame-
ter range 10−40 µm andHt values in the range 0.15−0.45. Excellent agreement
between simulations and experiments is obtained for the proper EV interactions for
all cases tested. The pressure gradients employed here are 2.633×105, 1.316×105,
and 6.582×104 Pa/m for tubes of diameters 10, 20, and 40µm, respectively. In the
case of low hematocritHt (e.g., 0.15) the velocity profiles closely follow parabolic
curves in the near-wall region. In the central region of the tube a substantial reduc-
tion in velocity is found for all volume fractions in comparison with the parabolic
profiles indicating a decrease in the flow rate (26). Figure 15(b) shows results from
both the MS-RBC and LD-RBC models for a wider range of tube diameters. The
agreement is good between the models and the experimental data represented by
an empirical fit; however, it is clear that for vessels with diameter below 15− 20
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microns the LD-RBC model fails as the membrane rheology becomes important,
which the low-dimensional model does not account for.
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Fig. 15 Flow resistance in healthy blood: (a) Relative apparent viscosity compared with exper-
imental data (71) for various hematocrit values and tube diameters. The inset plot is a snapshot
of RBCs in Poiseuille flow in a tube of a diameterD = 20 µm at Ht = 0.45. (b) Comparison of
MS-RBC and LD-RBC models; the lines are the empirical correlation by Pries et al. (71). (From
(23, 59)).

RBCs in Poiseuille flow migrate to the tube center forming a core in the flow.
The inset of Figure 15 shows a sample snapshot of RBCs flowing in a tube of di-
ameterD = 20 µm. A RBC core formation is established with a thin plasma layer
next to the tube walls called thecell-free layer (CFL) (26). The thickness of the
CFL is directly related to the Fahraeus and the Fahraeus-Lindqvist effects, both of
which were accurately captured by the DPD model, see (26). Todetermine the CFL
thickness we computed the outer edge of the RBC core, which issimilar to CFL
measurements in experiments (43, 49). Figure 16 shows a sample CFL edge from
simulations forHt = 0.45 andD = 20 µm and local CFL thickness distribution,
which is constructed from a set of discrete local measurements of CFL thickness
taken every 0.5 µm along thex (flow) direction. The fluid viscosity of the CFL re-
gion is much smaller than that of the tube core populated withRBCs providing an
effective lubrication for the core to flow.

4.2.2 Aggregation and Rouleaux Formation

Here, we present simulations in a wide range of shear rate values including the low
shear rate regime with and without the aggregation models described in sections
2.3.4 and 2.4.2. The viscosity was derived from simulationsof plane Couette flow
using the Lees-Edwards periodic boundary conditions in which the shear rate and
the density of cells were verified to be spatially uniform. The experimental vis-
cosities of well-prepared erythrocytes without rouleaux and of whole blood were
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Fig. 16 An example of a CFL edge (left) and local CFL thickness distribution (right) forHt = 0.45
andD = 20 µm. (From (23)).

measured at hematocrit 45% and at temperature 37oC by (8, 53, 78) using rota-
tional Couette viscometers. At the same conditions for boththe MS-RBC and the
LD-RBC suspensions the viscosities were computed, with andwithout rouleaux,
as functions of the shear rate over the range 0.005s−1 to 1000.0s−1. RBC suspen-
sion viscosities were normalized by the viscosity values oftheir suspending media.
These data are compared in Figure 17(a) as relative viscosity against shear rate
at constant hematocrit. The MS-RBC model viscosity curves lie very close to the
viscosities measured in three different laboratories. Themodel, consisting only of
RBCs in suspension, clearly captures the effect of aggregation on the viscosity at
low shear rates, and suggests that particles other than RBCshave little effect on the
viscosity. The measured values for whole blood are more consistent than those for
erythrocyte solutions, which may reflect differences in thepreparation of the latter.
The LD-RBC model underestimates somewhat the experimentaldata, but is gener-
ally in good agreement over the whole range of shear rates, and again demonstrates
the effect of aggregation. This is remarkable in view of the simplicity and economy
of that model.

The dependence of whole blood and erythrocyte solution viscosity on hematocrit
(Ht) is demonstrated in Figure 17(b). The curves are measured viscosities correlated
with Ht at constant shear rate by Chien et al. (8), and the points are calculated with
the LD-RBC model. This clearly shows how the latter capturestheHt dependence
of viscosity, and that the model again demonstrates aggregation to be crucial for a
quantitative account of the difference between the viscosity of whole blood and that
of washed erythrocyte suspensions.
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Fig. 17 Validation of simulation results for whole blood and Ringererythrocyte solutions (ESs).
(a) Plot of non-Newtonian viscosity relative to solvent viscosity as a function of shear rate at
Ht = 45% and 37oC: simulated curves of this work, as indicated, andexperimental points: Whole
blood: green crosses - Merrill et al. (53); black circles - Chien et al. (8), black squares - Skalak
et al. (78). Ringer ES: red circles - Chien et al. (8); red squares - Skalak et al. (78). (b) Plot of
relative viscosity as a function of hematocrit (Ht ) at shear rates 0.052 (black) and 52.0 (blue)s−1:
simulated (LD-RBC points), and Chien et al. (8)experimental fits for whole blood (solid lines) and
Ringer ES (dashed lines). (From (59)).

5 Application to Malaria Modeling

Plasmodium falciparum (Pf) causes one of the most serious forms of malaria re-
sulting in several million deaths per year. Pf-parasitizedcells (Pf-RBCs) experience
progressing changes in their mechanical and rheological properties as well as in their
morphology (9, 77) during intra-erythrocytic parasite development, which includes
three stages from the earliest to the latest: ring→ trophozoite→ schizont. Progres-
sion through these stages leads to considerable stiffeningof Pf-RBCs as found in
optical tweezers stretching experiments (82) and in diffraction phase microscopy
by monitoring the membrane fluctuations (65). Pf development also results in vac-
uoles formed inside of RBCs possibly changing the cell volume. Thus, Pf-RBCs at
the final stage (schizont) often show a “near spherical” shape, while in the preced-
ing stages maintain their biconcavity. These changes greatly affect the rheological
properties and the dynamics of Pf-RBCs, and may lead to obstruction of small cap-
illaries (77) impairing the ability of RBCs to circulate.In vitro experiments (2) to
investigate the enhanced cytoadherence of Pf-RBCs in flow chambers revealed that
their adhesive dynamics can be very different than the well-established adhesive
dynamics of leukocytes. For example, the adhesive dynamicsof Pf-RBCs on puri-
fied ICAM-1 is characterized by stable and persistent flipping (rolling) behavior for
a wide range of wall shear stresses (2) but also by intermittent pause and sudden
flipping due to the parasite mass inertia.

In this section, we apply the computational framework we developed for healthy
RBCs to Pf-RBCs. In particular, we first consider single RBCsfor validation pur-



32 Authors Suppressed Due to Excessive Length

poses and subsequently we simulate whole infected blood as suspension of a mix-
ture of healthy and Pf-RBCs. We examine the mechanical, dynamic and rheologic
responses as well as the adhesive dynamics of infected RBCs.

5.1 Single Cell

We include in this section comparison with optical tweezersexperiments and with
microfluidics to assess the fidelity of the RBC models to reproduce the mechanics
and dynamics of Pf-RBCs.

5.1.1 Mechanics
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Fig. 18 Stretching response of Pf-RBCs using the MS-RBC for different stages compared with the
experiments (82).DA andDT refer to the axial and transverse diameters. (From (23)).

In malaria disease, progression through the parasite development stages leads to a
considerable stiffening of Pf-RBCs compared to healthy ones (65, 82). Furthermore,
in the schizont stage the RBC shape becomes near-spherical whereas in the preced-
ing stages RBCs maintain their biconcavity. Figure 18 showssimulation results for
Pf-RBCs at different stages of parasite development. The simulation results were ob-
tained with the MS-RBC model using 500 points. Table 1 presents the shear moduli
of healthy and Pf-RBCs at different stages; these values areconsistent with the ex-
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periments of (65, 82). The bending rigidity for all cases is set to 2.4×10−19 J, which

HealthyRing TrophozoiteSchizont
6.3 14.5 29 60 & 40∗

Table 1 Shear moduli of healthy and Pf-RBCs inµN/m at T = 23o C. The “*” denotes a “near-
spherical” RBC at the schizont stage.

is the value of bending rigidity for healthy RBCs, as the membrane bending stiffness
for different stages is not known. The curve for the schizontstage marked as “near-
spherical” corresponds to stretching an ellipsoidal shapewith axesax = ay = 1.2az.
Here, the membrane shear modulus of 40µN/m matches the stress-strain response
with the experiment, i.e., it is smaller than that for the biconcave-shape simulation.
For the near-spherical cell the membrane is subject to stronger local stretching for
the same uniaxial deformation compared to the biconcave shape. For the deflated
biconcave shape, the inner fluid volume can be deformed in response to stretching,
while in the near-spherical shape the fluid volume applies additional resistance onto
the stretched membrane. Hence, the cell geometry plays an important role, and it
has to be closely modeled for accurate extraction of parameters from the optical
tweezers experiments.

5.1.2 Microfluidics

(a) (b)

Fig. 19 (a) Experimental images of ring-stage P. falciparum-infected (red arrows) and uninfected
(blue arrows) RBCs in the channels at a pressure gradient of 0.24 Pa/µm. The small fluorescent
dot inside the infected cell is the GFP-transfected parasite. At 8.3 s, it is clear that the uninfected
cell moved about twice as far as each infected cell. (b) DPD simulation images of P. falciparum-
infected RBCs traveling in channels of converging (left) and diverging (right) opening geometry at
0.48 Pa/µm. (From (4)).

The microfluidic device with triangular obstacles described in section 4.1 is used
also here to perform experiments for the late ring-stageP.falciparum-infected RBCs
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Fig. 20 Average velocity of ring-stage malaria infected RBCs as a function of pressure gradient
and comparison of simulation and experimental results. Results for converging (a) and diverging
(b) geometries. (From (4)).

that are infected with a gene encoding green fluorescent protein (GFP). For both the
converging and diverging geometries infected RBCs exhibitlower average veloci-
ties that healthy RBCs (see figure 19(a)). In the DPD simulations, the infected cells
are modeled with increased shear modulus and membrane viscosity values obtained
from optical tweezers as explained in the previous section.We model the parasite
as a rigid sphere of two microns in diameter (16) placed inside the cell (see fig-
ure 1(b)). Snapshots from simulations showing passage of aninfected RBC through
channels with converging and diverging pore geometries areshown in figure 19(b).
The DPD model is able to capture the effect of changes of RBC properties arising
from parasitization quite accurately. A quantitative comparison of the simulation re-
sults with experimental data for the average velocity of Pf-RBCs as a function of
applied pressure gradient is shown in figure 20.

5.1.3 Pf-RBC Adhesive Dynamics

Here, we present typical results for the adhesive dynamics of Pf-RBCs in shear
flow for various values of the wall shear stress (WSS). The models employed are
described in section 2.3.5 with some modifications in order for the simulated RBC
dynamics to be comparable with that found in experiments (2)using purified ICAM-
1 as a wall coating. Figure 21 shows several successive snapshots of a cell rolling
on the wall for the schizont stage of a Pf-RBC. The dynamics ofthe Pf-RBC is
characterized by a “flipping” behavior initiated first by thecell peeling off the wall
due to the force of the hydrodynamic flow after flat RBC adhesion (the first snap-
shot in figure 21). After the majority of the initial cell contact area with the wall
is peeled off, a RBC flips over on its other side which is facilitated by the remain-
ing small contact area with the wall. During these steps Pf-RBCs undergo strong
membrane deformations as illustrated in figure 21. A similarbehavior was found
in experiments (2) of Pf-RBCs which showed flipping (rolling) along a wall coated
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Fig. 21 Top and side views of successive snapshots of a single flipping of an infected RBC at the
schizont stage. Coordinates along the wall for different snapshots are shifted in order to separate
them for visual clarity. Blue particles are added as tracersduring post-processing to illustrate the
membrane dynamics. (From (23)).

with purified ICAM-1. In agreement with the simulations, RBCs in experiments also
showed strong membrane deformations characterized by local membrane buckling.

Figure 22 presents the corresponding displacement along thex coordinate (a) and
instantaneous RBC velocity (b). An infected RBC rolls in a relatively stable motion
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Fig. 22 Pf-RBC displacement (a) and velocity (b) along the wall for the schizont stage. (From
(23)).

which resembles a staircase. The segments of smaller displacements correspond to
the stage of a flat RBC adhesion followed by its slow peeling off the wall (see figure
21), while the fragments of larger displacements representthe stage of RBC fast
flipping described above. The RBC velocity is in agreement with its displacement
showing high peaks or fast cell motion during the time segments with larger dis-
placements. The average cell velocity is approximately 5.8 µm/s. Figure 23 shows
RBC displacement along thez cross-flow coordinate (a) and instantaneous contact
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area (b). The displacement across the wall shows a jerky motion of an infected RBC
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Fig. 23 RBC displacement across the wall (a) and the cell contact area (b) for the schizont stage.
(From (23)).

within several microns. This is due to the discrete number ofbonds and their ran-
dom rupture or dissociation. Thus, if there is a non-uniformdistribution of bonds
over the contact area at some instance of time, a Pf-RBC may bepulled to one side.
In addition, the hydrodynamic force on the RBC may be non-zero in z direction,
since the cell is not symmetric due to the local deformationsshown in figure 21.
The RBC contact area in figure 23(b) is correlated with its displacement and ve-
locity in figure 22. Minima in the contact area coincide with maxima in the RBC
velocity corresponding to the stage of fast cell flipping from its one side to the other.
The cell contact area remains within the range of 10−50 µm2, while the average
value is equal to 38.6 µm2.

To investigate the dependence of RBC adhesive dynamics on WSS, the velocity
of the upper plate is changed. Note that the shear rate is altered at the same time.
However, the WSS appears to be a key parameter which governs RBC adhesive
dynamics, since adhered RBCs are driven by fluid stresses androll along the wall
with a much smaller velocity than that of the shear flow.

Several initial simulations with a varying WSS and other fixed parameters re-
vealed that a Pf-RBC may exhibit firm adhesion at a WSS lower than 0.317Pa for
the case described above and can completely detach from the wall at higher WSS.
At low WSS, adhesion forces are strong enough to counteract the stress exerted on
the cell by the flow resulting in its firm sticking to the lower wall. On the contrary,
at high WSS existing bonds do not provide sufficiently strongadhesive interactions
which yields RBC detachment from the wall. RBC visualizations showed that its
detachment at high WSS occurs during the relatively fast motion of RBC flipping,
since the contact area at that step corresponds to its minimum. However, in exper-
iments (2) Pf-RBCs which moved on a surface coated with the purified ICAM-1
showed persistent and stable rolling over long observationtimes and for a wide
range of WSS between 0.2 Pa and 2Pa. This suggests that there must be a mech-
anism which stabilizes rolling of infected RBCs at high WSS.This fact is not sur-
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prising since, for example, leukocyte adhesion can be actively regulated depending
on flow conditions and biochemical constituents present (28, 80).

To stabilize RBC binding at high WSS we introduce adaptivityof the bond spring
constant (ks) see equation (29). As the first approximation we assume a linear de-
pendence ofks on the WSS, such thatks is increased or decreased proportionally to
an increase or decrease in the WSS. Figure 24 presents the average rolling velocity
of a Pf-RBC in comparison with experiments of cell rolling ona surface coated with
purified ICAM-1 (2). The simulated average velocities for the “linear” case show a
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Fig. 24 Average rolling velocity of infected RBCs depending on the WSS in comparison with the
experiments of cell rolling on purified ICAM-1 (2). Experimental data include mean values and
curves that correspond to the 10th, 25th, 75th, and 90th percentiles. (From (23)).

near-linear dependence on the WSS and are in good agreement with experiments
up to some WSS value; the simulated value remains between the10th and the 90th
percentiles found in experiments. However, the observed discrepancy at the highest
simulated WSS suggests that a further strengthening of cell-wall bond interactions
may be required. The dependence of the RBC rolling velocity on WSS found in ex-
periments is clearly non-linear. Therefore, the assumption of linear dependence of
ks on the WSS is likely to be an oversimplification. The simulation results marked
“non-linear” in figure 24 adopt a non-linear dependence ofks on the WSS, and yield
excellent agreement with experiments.

In addition, there may be a change in bond association and dissociation kinet-
ics with WSS which would be able to aid in rolling stabilization of infected RBCs
at high shear rates. The DPD simulations suggest that the adhesive dynamics of Pf-
RBCs is not very sensitive to a moderate change (below 30%−40%) ink0

on andk0
o f f ;
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however, cell dynamics may be strongly affected if these parameters are changed
considerably. Moreover, experimental data show a much larger scatter in the aver-
age RBC velocity for different cells observed than that in simulations (not shown).
This is likely to be related to non-uniform distributions ofreceptors on the RBC
membrane and ligands on the wall. In the simulations, distributions of both recep-
tors and ligands are fixed and are nearly homogeneous with approximately the same
area occupied by each receptor or each ligand. A scatter in behavior among distinct
RBCs in the simulations is solely related to the stochastic nature of the adhesive
model. However, in experiments irregular distributions ofreceptors and ligands are
likely to significantly contribute to a scatter in RBC adhesive dynamics.

5.2 Whole Infected Blood

Finally, we simulate blood flow in malaria as a suspension of healthy and Pf-RBCs
at the trophozoite stage and hematocritHt = 0.45. Several parasitemia levels (per-
centage of Pf-RBCs with respect to the total number of cells in a unit volume) from
5% to 100% are considered in vessels with diameters 10 and 20µm. The inset
of figure 25 shows a snapshot of RBCs flowing in a tube of diameter 20 µm at a
parasitemia level of 25%. The main result in figure 25(a) is given by the plot of
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Fig. 25 Flow resistance in malaria: (a) Healthy (red) and Pf-RBCs (blue) in Poiseuille flow in a
tube of diameterD = 20 µm. Ht = 0.45, parasitemia level 25%. Plotted is the relative apparent
viscosity of blood in malaria for various parasitemia levels and tube diameters. Symbol “x” cor-
responds to the schizont stage with a near-spherical shape.Experimental data from the empirical
fit by Pries et al. (71). (From (23)). (b) Bulk viscosity versus parasitemia level for 30% hematocrit
using a Couette device setup at shear rate 230s−1. The square symbols are measurements from
(74) and the triangles are simulations of Huan Lei (Brown University).

the relative apparent viscosity in malaria – a measure of flowresistance as in sec-
tion 4.2 – obtained at different parasitemia levels. The effect of parasitemia level
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appears to be more prominent for small diameters and highHt values. Thus, at
Ht = 0.45 blood flow resistance in malaria may increase up to 50% in vessels of
diameters around 10µm and up to 43% for vessel diameters around 20µm. These
increases do not include any contributions from the interaction of Pf-RBCs with the
glycocalyx (68, 88); such important interactions are complex as they may include
cytoadhesion. In figure 25(b) we also present the bulk viscosity of infected blood
(schizont stage) simulated in a Couette type device at shearrateγ = 230s−1. The
DPD simulations compare favorably with the experimental data obtained with a cor-
responding rheometer in (74). These validated predictionswere obtained without an
explicit adhesion model between Pf-RBCs. It seems that suchcell-cell interactions
are not important at this high shear rate value.

6 Summary

In this chapter we have presented a comprehensive simulation methodology based
on dissipative particle dynamics (DPD), which is effectivein predicting the blood
flow behavior (mechanics, dynamics and rheology) in health and disease. We em-
phasized, in particular, how single-RBC experiments – using optical tweezers and
novel microfluidic devices – can provide data from which we can extract the macro-
scopic parameters of the model, which can then be related to the microscopic param-
eters required by the two RBC models we presented. In addition, these single-RBC
data can serve as a validation test bed over a wide range of operating conditions.
The success of the DPD models is then to predictwhole blood behavior in health or
disease without any further “tuning” of the models’ parameters. We demonstrated
that this is indeed the case for healthy and malaria-infected whole blood in two dif-
ferent set ups, i.e., blood flow in a tube as well as in Couette flow. In particular, we
presented accurate predictions of the bulk viscosity both for healthy blood as well
as for infected blood with parasitemia levels up to 100%.

The two RBC models we presented can be used in a complementaryfashion
in simulations of hematologic disorders. The multiscale model (MS-RBC) can re-
solve structures down to protein level on the lipid bilayer or the spectrin level of
the cytoskeleton and can be used efficiently for whole blood simulations (up to 45%
hematocrit) for capillaries and arterioles of approximately up to 100 microns in di-
ameter. On the other hand, the more economical low-dimensional model (LD-RBC)
does not account for the membrane explicitly and it is only accurate, as we demon-
strated in section 4, for arterioles, i.e. vessels with diameter above 15−20 microns.
That too, however, can become computationally expensive for high hematocrit val-
ues and for large arteries. To this end, a continuum model canbe employed above
a certain vessel size with the Newtonian constitutive law valid for blood for that
size of arterial vessels. This multiscale approach, which is appropriate for the entire
human arterial tree, is demonstrated diagrammatically in the sketch of figure 26.

Next, we comment further on the RBC model parameters used as input from
experimental data, which can be roughly divided into three groups: (1) RBC prop-
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Fig. 26 Applicability of different models with respect to a characteristic vessel size (diameter).

erties, e.g., geometry, shear and bending moduli, membraneviscosity, parasite in
malaria, polymerized hemoglobin in sickle cell anemia, etc.; (2) adhesion proper-
ties, e.g., receptor and ligand densities, on and off rates,and bond stiffness, and
(3) flow properties, e.g., shear rate, fluid viscosity. The flow properties can be ef-
fectively reduced to a single parameter, e.g., the wall shear stress (WSS), which
is the governing parameter and can influence greatly the adhesive dynamics as we
demonstrated in the case of malaria. Often the dominant RBC parameter is the shear
modulus not only in the static but also in the dynamic response. For example, the
increased shear modulus of Pf-RBCs in comparison with healthy RBCs is the main
reason for the flipping motion of Pf-RBCs. Cell geometry could be also very im-
portant, for example more spherical Pf-RBCs will likely roll on a surface than flip;
shape changes are particularly influential in sickle cell anemia, spherocytosis and el-
liptocytosis. On the other hand, the RBC bending rigidity seems to play a secondary
role in the mechanics or dynamics, and in most cases the membrane viscosity also
plays a secondary role, but not for very small capillaries, as we discussed in section
4.1. For diseased RBCs, the adhesion parameters govern the states of adhesion, e.g.,
firm adhesion, flipping, slipping, detachment. For leukocytes, these different states
have been studied thoroughly, e.g. (44) and agree well with the plethora of experi-
mental data. In summary, for fixed flow conditions and cell parameters, the space of
adhesion parameters can be divided into sub-spaces with different adhesion states. A
similar adhesion state diagram can be constructed for diseased RBCs with adhesive
properties, but experimental data are currently lacking.

Finally, we want to clarify that we modeled here whole blood as suspension of
RBCs in plasma, hence ignoring the effect of white cells (about 0.7%) and platelets
(less than 0.5% ) or the effect of other proteins in the plasma, although we modeled
fibrinogen implicitly in section 4 on rouleaux formation. From the numerical mod-
eling standpoint, there is no particular difficulty in also modeling these other cells,
which are significant in specific biomedical studies, e.g. inthrombosis, immune re-
sponse. From the biophysical view point, however, as we demonstrated in sections
4 and 5 their presence is not important for the whole blood rheological properties.
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