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Capsules and red blood cells suspended in various flows exhibit a rich dy-
namics due to the deformability of the enclosing membranes. To accurately
capture statics and dynamics, mechanical models of the membrane must be
available incorporating shear elasticity, bending rigidity, and membrane vis-
cosity. In the approach described in this chapter, the membrane of a red blood
cell is modeled as a network of interconnected nonlinear springs emulating the
membrane spectrin network. Dissipative forces in the network mimic the ef-
fect of the lipid bilayer. The macroscopic elastic properties of the network
are analytically related to the spring parameters to circumvent ad-hoc ad-
justment. Chosen parameters values yield model membranes that reproduce
optical tweezer stretching experiments. When probed with an attached os-
cillating microbead, predicted viscoelastic properties are in good agreement
with experiments using magnetic optical twisting cytometry. In shear flow, red
blood cells respond by tumbling at low shear rates and tank-treading at high
shear rates. In transitioning between these regimes, the membrane exhibits
substantial deformation controlled largely by flexural stiffness. Raising the
membrane or internal fluid viscosity shift the transition threshold to higher
shear rates and reduces the tank-treading frequency. Simulations reveal that
a purely elastic membrane model devoid of a viscous properties cannot ade-
quately capture the cell dynamics. Results are presented to demonstrate the
dependence of transition thresholds from biconcave to parachute shapes in
capillary flow on the cell properties and the mean flow velocity.
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6.1 Introduction

Red blood cells are soft biconcave capsules with an average diameter 7.8 µm
and an interior viscous liquid enclosed by a viscoelastic membrane. The cell
membrane consists of a nearly incompressible lipid bilayer attached to a spec-
trin protein network held together by short actin filaments known as the
cytoskeleton. This membrane structure ensures the integrity of the cell in
narrow capillaries whose cross-section is smaller than the size of the biconcave
disk (e.g., Fung 1993). Consistent with the spectrin cytoskeleton structure,
the membrane can be modeled as a network of viscoelastic springs mediating
elastic and viscous response. Flexural stiffness can be introduced as a network
bending energy, and constraints on the surface area and volume can be im-
posed to enforce the area incompressibility of the lipid bilayer and the volume
incompressibility of the interior fluid.

A number of theoretical and numerical analyses have sought to describe
cell behavior and deformation in a variety of flows. Examples include mod-
els of ellipsoidal cells enclosed by viscoelastic membranes (e.g., Abkarian et
al. 2007, Skotheim & Secomb 2007), numerical models based on shell theory,
(e.g., Fung 1993, Eggleton & Popel 1998, Pozrikidis 2005), and discrete de-
scriptions at the spectrin protein level (e.g., Discher et al. 1998, Li et al. 2005)
or at a mesoscopic level (e.g., Noguchi & Gompper 2005, Dupin et al. 2007,
Pivkin & Karniadakis 2008). The membranes of healthy red blood cells ex-
hibit nonlinear elastic response in steady stretching and viscous response in
dynamic testing. Most existing membrane models incorporate only the elastic
response. Fluid-and solid-like models demand high computational costs due
to the strong coupling of solid mechanics and fluid flow.

Semicontinuum models of deformable cells employ boundary-element,
immersed-boundary, and front-tracking methods to combine a discrete mem-
brane representation with the interior and exterior flow (e.g., Eggleton &
Popel 1998, Pozrikidis 2005). A membrane is described by a set of point par-
ticles whose motion is coupled to a flow computed on an Eulerian grid. Most
models assume that the fluid viscosities are equal and ignore thermal fluctua-
tions (e.g., Noguchi & Gompper 2005). Modeling a cell at the spectrin-protein
level is constrained by high computational cost.

Mesoscopic modeling of viscoelastic capsules and red blood cells are cur-
rently being developed to describe three-dimensional motion (e.g., Noguchi &
Gompper 2005, Dupin et al. 2007, Pivkin & Karniadakis 2008). Noguchi &
Gompper (2005) simulated the deformation of vesicles enclosed by viscoelastic
membranes using the method of multi-particle collision dynamics (e.g., Mal-
evanets & Kapral 1999). Dupin et al. (2007) combined a lattice-Boltzmann
method (e.g., Succi 2001) with a discrete membrane representation neglect-
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ing the membrane viscosity and the occurrence of thermal fluctuations. The
implementation smears the sharp interface between the external and internal
fluid requited by the impenetrability of the membrane.

The elasticity of the red blood cell membrane is attributed to a spectrin
network of approximately 27×103 nodes. The population number was reduced
(coarse-grained) by Pivkin & Karniadakis (2008) by employing a dissipative
particle dynamics (DPD) approach to represent cell membranes with networks
of only 500 DPD particles connected with springs. (e.g., Hoogerbrugge &
Koelman 1992) Their model is the starting point for the work discussed in
this chapter.

First, a theoretical analysis will be presented for a membrane network
model exhibiting specified macroscopic membrane properties without param-
eter adjustment. The predicted cell mechanical properties will be compared
with optical tweezers stretching experiments by Suresh et al. (2005), and
the predicted rheological properties will be compared with magnetic optical
twisting cytometry experiments by Puig-de-Morales-Marinkovic et al. (2007).
Red blood dynamics in shear flow showing tumbling and tank-treading will
be studied in detail with a view to delineating the effect of the membrane
shear moduli, bending rigidity, external, internal, and membrane viscosities.
Simulations of cell motion in Poiseuille flow will confirm that the biconcave-to-
parachute transition depend on the flow strength and membrane properties.
Comparison with available experiments will demonstrate that the computa-
tional model is able to accurately describe realistic red blood cell motion.

Comparison of the numerical simulations with theoretical predictions
by Abkarian et al. (2007), Skotheim & Secomb (2007), and others will reveal
discrepancies suggesting that the current theoretical models are only qualita-
tively accurate due to strong simplifications.

6.2 Mathematical framework

In the theoretical model, the membrane of a red blood cell is represented by
a viscoelastic network. The motion of the internal and external fluids is de-
scribed by the method of dissipative particle dynamics (DPD) (e.g., Hooger-
brugge & Koelman 1992). The membrane model is sufficiently general to
be used with other simulation techniques, such as Brownian dynamics, lat-
tice Boltzmann, multiparticle collision dynamics, and the immerse-boundary
method.
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6.2.1 Dissipative particle dynamics

Dissipative particle dynamics (DPD) is a mesoscopic simulation technique for
computing the flow of complex fluids. A DPD system of N particles represents
lumps of atoms or molecules described by the particle position, ri, velocity,
vi, and mass mi, where i = 1, . . . , N . Particle interactions are mediated by
conservative (C), dissipative (D), and random (R) interparticle forces given
by

FC
ij = FC

ij (rij) r̂ij , FD
ij = −γ ωD(rij) (vij · r̂ij)r̂ij ,

FR
ij = σ ωR(rij)

ξij√
dt

r̂ij , (6.2.1)

where rij is the distance between the ith and jth particle, r̂ij = rij/rij is
a unit vector, rij = |rij |, and vij = vi − vj . The coefficients γ and σ are
the amplitudes of the dissipative and random forces, and the factors ωD and
ωR are weights. The random force definition employs normally distributed
random variables ξij with zero mean, unit variance, and pairwise symmetry,
ξij = ξji. The forces vanish beyond a cutoff radius, rc, which defines the DPD
length scale.

A typical conservative force is

FC
ij (rij) =

{

aij(1 − rij/rc) for rij ≤ rc,
0 for rij > rc,

(6.2.2)

where ai and aj are conservative force coefficients for the ith and jth particle.
The random force weight function ωR(rij) is chosen to be

ωR(rij) =

{

(1 − rij/rc)
m for rij ≤ rc,

0 for rij > rc.
(6.2.3)

In the original DPD method, m was set to unity. Different exponent values can
be used to alter the fluid viscosity and increase the Schmidt number Sc = ν/D,
where D is the self-diffusion,and ν = µ/ρ is the kinematic viscosity (e.g., Fan
et al. 2006, 2008).

Temperature control is achieved by balancing random and dissipative
forces according to the fluctuation-dissipation theorem,

ωD(rij) =
[

ωR(rij)
]2

, σ2 = 2γkBT, (6.2.4)

where T is the equilibrium temperature and kB is the Boltzmann constant
(e.g., Espanol & Warren 1995).
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The particles move in space according to the Newton’s second law of
motion,

dri

dt
= vi,

dvi

dt
=

1

mi

∑

j 6=i

Fij , (6.2.5)

where ri is the particle position and Fij is the force exerted on the ith by the
jth particle. The particle equation of motion is integrated with the velocity
Verlet algorithm (e.g., Allen & Tildesley 1987).

6.2.2 Mesoscopic viscoelastic membrane model

The cell membrane is represented by a two-dimensional curved triangulated
network defined by Nv vertices, xi, connected by Ns springs (edges) to form
Nt triangular faces, where i = 1, . . . , Nv. The total energy of the network
consists of an in-plane elastic energy, a viscous dissipation energy (IP), a
bending energy (B), a surface area energy (A), and a volume energy (V),

V ({xi}) = VIP + VB + VA + VV . (6.2.6)

The individual energy components are discussed in this section.

Elastic energy and viscous dissipation

The in-plane elastic energy is given by

VIP =
∑

j=1,...,Ns

[UIPS(ℓj) + UIPV (∆vj)] +

Nt
∑

k=1

Cq

Aq
k

, (6.2.7)

where IPS stands for the in-plane spring energy and IPV stands for the in-
plane viscous dissipation. The first sum in (6.2.7) expresses the contribution
of viscoelastic springs; ℓj is the length of the jth spring and ∆vj is the relative
velocity of the spring end points. The second sum expresses a stored elastic
energy assigned to each triangular patch; Ak is the area of the kth triangle.
The constant Cq and exponent q will be defined.

We employ the worm-like chain (WLC) model alone or in combination
with a stored elastic energy (WLC-C) or a power function (POW) potential
(WLC-POW). The WLC energy is given by

UWLC =
kBTℓm

4p

3x2 − 2x3

1 − x
. (6.2.8)

where x = ℓ/ℓm ∈ (0, 1), ℓm is the maximum spring extension, and p is the
persistence length. The power-function energy is given by

UPOW =
kp

(n − 1)ℓn−1
, (6.2.9)
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where kp is a spring constant and n is a specified exponent.

Attractive forces exerted by WLC springs cause element compression.
The second term in the WLC-C model (6.2.7) contributes an elastic energy
that tends to expand the area. The equilibrium state of a single triangular
plaquette with WLC-C energy defines an equilibrium spring length, ℓ0. A
relationship between the WLC spring parameters and Cq can be obtained by
setting the Cauchy stress derived from the virial theorem to zero (e.g., Allen
& Tildesley 1987),

CWLC
q =

√
3Aq+1

0

4pqℓm
kBT

4x2
0 − 9x0 + 6

1 − x0
, (6.2.10)

where x0 = ℓ0/ℓm and A0 =
√

3l20/4 (e.g., Dao et al. 2006). Given the
equilibrium length and spring parameters, this formula provides with a value
for Cq in (6.2.7) for a chosen q.

Similar considerations apply to the WLC-POW model where a finite
spring length can be defined by balancing the WLC and POW forces. In this
manner, p and kp can be related to the WLC parameters and a chosen expo-
nent, n. Since the POW term is able to mediate WLC area compression, the
stored elastic energy is omitted and Cq is set to zero. The viscous component
associated with each spring will be defined.

Bending energy

The bending energy is concentrated at the element edges according to
the bending potential

VB =

Ns
∑

j=1

kb [1 − cos(θj − θ0)] , (6.2.11)

where kb is a bending modulus, θj is the instantaneous angle formed between
two adjacent triangles sharing the jth edge, and θ0 is the spontaneous angle.
A schematic illustration of these angles is shown in figure 6.2.1.

Area and volume constraints

The last two terms in (6.2.6) enforce area conservation of the lipid bi-
layer and incompressibility of the interior fluid as area and volume constraints,

VA =
ka

2Atot
0

(A − Atot
0 )2 +

kd

2A0

Nt
∑

j=1

(Aj − A0)
2, (6.2.12)
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Figure 6.2.1 Illustration of two equilateral triangles on the surface of a
sphere of radius L.

and

VV =
k2

v

2V tot
0

(V − V tot
0 )2, (6.2.13)

where ka, kd and kv are constraint constants for global area, local area, and
volume constraints, A and V are the instantaneous membrane area and cell
volume, and Atot

0 and V tot
0 are their respective specified values.

Nodal forces

Nodal forces fi are derived from the elastic network energy by taking
partial derivatives,

fi = −∂V ({xi})
∂xi

, (6.2.14)

for i = 1, . . . , Nv. Exact expressions are outlined in the appendix.

6.2.3 Triangulation

According to Evans & Skalak (1980), the average shape of a normal red blood
cell is described by

z = ±D0

(

1 − 4(x2 + y2)

D2
0

)1/2
(

a0 + a1
x2 + y2

D2
0

+ a2
(x2 + y2)2

D4
0

)

, (6.2.15)

where D0 = 7.82 µm is the cell diameter, a0 = 0.0518, a1 = 2.0026, and
a2 = −4.491. The cell area and volume are, respectively, 135 µm2 and 94
µm3.

In the simulations, the membrane network structure is generated by
triangulating the unstressed equilibrium shape described by (6.2.15). The cell
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Network Continuum

shear, area-compression,
Young’s moduli
bending rigidity

spring, bending
parameters

area, volume constraints ?

Figure 6.3.1 Illustration of a membrane network and corresponding con-
tinuum model.

shape is first imported into a commercial grid generation software to produce
an initial triangulation based on the advancing-front method. Subsequently,
free-energy relaxation is performed by flipping the diagonals of quadrilateral
elements formed by two adjacent triangles, while the vertices are constrained
to move on the prescribed surface. The relaxation procedure includes only
elastic in-plane and bending energy components.

6.3 Membrane mechanical properties

Several parameters must be chosen in the membrane network model to ensure
a desired mechanical response. Figure 6.3.1 depicts a network model and
its continuum counterpart. To circumvent ad-hoc parameter adjustment, we
derive relationships between local model parameters and network macroscopic
properties for an elastic hexagonal network. A similar analysis for a two-
dimensional particulate sheet of equilateral triangles was presented by Dao et
al. (2006).

Figure 6.3.2 illustrates an element in a hexagonal network with vertex
v placed at the origin of a local Cartesian system. Using the virial theorem,
we find that the Cauchy stress tensor at v is

ταβ =− 1

S

[

f(r1)

r1
rα
1 rβ

1 +
f(r2)

r2
rα
2 rβ

2 +
f(|r2 − r1|)
|r2 − r1|

(rα
2 −rα

1 )(rβ
2 −rβ

1 )

]

−
(

q
Cq

Aq+1
+

ka(Atot
0 − NtA)

Atot
0

+
kd(A0 − A)

A0

)

δαβ , (6.3.1)

where α and β stand for x or y, f(r) is the spring force, Nt is the total number
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Figure 6.3.2 Illustration of an element in a hexagonal triangulation.

of triangles, Atot
0 = NtA0, S = 2A0, δαβ is the Kronecker delta, and S is the

area of the hexagonal element centered at v. (e.g., Allen & Tildesley 1987).

6.3.1 Shear modulus

The shear modulus is derived from the network deformation by applying to a
material vector embedded in the surface, r1, an engineering shear strain γ, so
that the deformed material vector is

r′1 = r1 · J =

[

rx
1 + 1

2 ry
1

1
2 rx

1γ + ry
1

]

, (6.3.2)

where

J =

[

1 γ/2
γ/2 1

]

+ O(γ2) (6.3.3)

is the linear strain tensor and r1 = (rx
1 ; ry

1), as shown in figure 6.3.2. Because
the shear deformation is area preserving, only spring forces contribute to the
membrane shear modulus.

Expanding τxy in a Taylor series, we find that

τ ′
xy = τxy +

∂τ ′
xy

∂γ

∣

∣

∣

∣

γ=0

γ + O(γ2). (6.3.4)

The linear shear modulus of the network is

µ0 =
∂τ ′

xy

∂γ

∣

∣

∣

∣

γ=0

. (6.3.5)
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For example, differentiating the first term of τxy yields

∂

∂γ

(f(r′1)

r′1
rx′

1 ry′

1

)

γ=0
=

(∂ f(r1)
r1

∂r1

(rx
1ry

1)
2

r1
+

f(r1)r1

2

)

r1=ℓ0
. (6.3.6)

Using the vector-product definition of the area of a triangle, we obtain

(rx
1ry

1)2 + (rx
2ry

2)2 + (rx
2 − rx

1 )2(ry
2 − ry

1)2 = 2A2
0. (6.3.7)

The linear shear modulus of the WLC-C and WLC-POW models is

µWLC−C
0 =

√
3kBT

4pℓmx0

( 3

4(1 − x0)2
− 3

4
+ 4x0 +

x0

2(1 − x0)3
)

(6.3.8)

and

µWLC−POW
0 =

√
3kBT

4pℓmx0

( x0

2(1 − x0)3
− 1

4(1 − x0)2
+

1

4

)

+

√
3kp(m + 1)

4ℓm+1
0

.

(6.3.9)

6.3.2 Compression modulus

The linear elastic area compression modulus K is found from the in-plane
pressure following a small area expansion as

p = −1

2
(τxx + τyy) =

3 ℓ

4A
f(ℓ) + q

Cq

Aq+1
+

(ka + kd)(A0 − A)

A0
. (6.3.10)

Defining the compression modulus as

K = − ∂p

∂ log A

∣

∣

∣

A=A0

= −1

2

∂p

∂ log ℓ

∣

∣

∣

ℓ=ℓ0
= −1

2

∂p

∂ log x

∣

∣

∣

x=x0

, (6.3.11)

and using equations (6.3.10) and (6.3.11), we obtain

KWLC−C=

√
3kBT

4pℓm(1 − x0)2
[

(q+
1

2
) (4x2

0−9x0+6)+
1 + 2(1 − x0)

3

1 − x0

]

+ka+kd

(6.3.12)

and

KWLC−POW = 2µWLC−POW
0 + ka + kd. (6.3.13)

For q = 1, we find

KWLC−C = 2µWLC−C
0 + ka + kd. (6.3.14)
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For the nearly constant-area membrane enclosing a red blood cell, the com-
pression modulus is much larger than the shear elastic modulus.

The Young modulus and Poisson’s ratio of the two-dimensional sheet
are given by

Y = 4
Kµ0

K + µ0
, ν =

K − µ0

K + µ0
. (6.3.15)

As K → ∞, we obtain Y → 4µ0 and ν → 1, as required. To ensure a nearly
constant area, we set ka + kd ≫ µ0. In practice, the values µ0 = 100 and
ka+kd = 5000, yield a nearly incompressible membrane with Young’s modulus
about 2% smaller than the asymptotic value 4µ0.

The analytical expressions given in (6.3.15) were verified by numerical
tests on a regular two-dimensional sheet of springs. The two-dimensional sheet
was confirmed to be isotropic for small shear strains and stretches, but was
found to be anisotropic for large deformations (e.g., Fedosov 2010).

6.3.3 Bending rigidity

Helfrich (1973) proposed an expression for the bending energy of the mem-
brane of a red blood cell,

Ec =
kc

2

∫∫

(C1 + C2 − 2C0)
2 dA + kg

∫∫

C1C2 dA, (6.3.16)

where C1 and C2 are the principal curvatures, C0 is the spontaneous curvature,
and kc, kg are bending rigidities. The second term on the right-hand side
of(6.3.16) is constant and thus inconsequential for any closed surface.

A relationship between the bending modulus, kb, and the macroscopic
membrane bending rigidity, kc, can be derived for a spherical shell. Figure
6.2.1 shows two equilateral triangles with edge length r whose vertices lie on
a sphere of radius L. The angle between the triangle normals n1 and n2 is
denoted by φ. In the case of a spherical shell, the total energy in (6.3.16) is
found to be

Ec = 8πkc

(

1 − C0

C1

)2

+ 4πkg = 8πkc

(

1 − L

L0

)2

+ 4πkg, (6.3.17)

where C1 = C2 = 1/L and C0 = 1/L0. In the network model, the energy of
the triangulated sphere is

VB = Ns kb [1 − cos(φ − φ0)]. (6.3.18)

Expanding cos(φ − φ0) in a Taylor series around φ − φ0 provides us with the
leading term

VB =
1

2
Nskb(φ − φ0)

2 + O
(

(φ − φ0)
4
)

. (6.3.19)
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With reference to figure 6.3.2, we find that 2a ≈ φL or φ = r/(
√

3L), and
φ0 = r/(

√
3L0).

For a sphere, A = 4πL2 ≈ NtA0 =
√

3Ntr
2/4 =

√
3Nsr

2/6, and
r2/L2 = 8π

√
3/Ns. Finally, we obtain

VB=
1

2
Nskb

( r√
3L

− r√
3L0

)2
=

Nskbr
2

6L2

(

1− L

L0

)2
=

4πkb√
3

(

1− L

L0

)2
. (6.3.20)

Equating the macroscopic bending energy Ec to VB for kg = −4kc/3 and
C0 = 0, we obtain kb = 2kc/

√
3 in agreement with the limit of a continuum

approximation (e.g., Lidmar et al. 2003).

The spontaneous angle φ0 is set according to the total number of vertices
on the sphere, Nv. It can be shown that cosφ = 1−1/[6(L2/r2−1/4)] and the
number of side is Ns = 2Nv − 4. The bending stiffness, kb, and spontaneous
angle, φ0, are given by

kb =
2√
3

kc, φ0 = arccos
(

√
3(Nv − 2) − 5π√
3(Nv − 2) − 3π

)

. (6.3.21)

6.3.4 Membrane viscosity

Since interparticle dissipative interaction is an intrinsic part of the formula-
tion, incorporating dissipative and random forces into springs fits naturally
into the DPD scheme. Straightforward implementation of standard DPD dis-
sipative and random interactions expressed by (6.2.1) is insufficient. The
reason is that, when projected onto the connecting vector, the contribution
of the inter-particle relative velocity, vij , is negligible for small dissipative
coefficients γ. Large values promote numerical instability.

Best performance is achieved by assigning to each spring a viscous dis-
sipation force −γvij , where γ is a scalar coefficient. However, any alteration
of the dissipative forces requires a corresponding change in fluctuating forces
consistent with the fluctuation-dissipation balance to ensure a constant mem-
brane temperature, kBT . The general framework of the fluid-particle model
is employed with the following definitions

FD
ij = −Tij · vij , Tij = A(rij) I + B(rij) eijeij , (6.3.22)

and

FR
ij dt =

√

2kBT
(

Ã(rij) dWS
ij

+B̃(rij)
1

3
tr[dWij ] I + C̃(rij) dWA

ij

)

· eij , (6.3.23)
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where superscripts R and D stand for “random” and “dissipative”, I is the
identity matrix, tr[dWij ] is the trace of a random matrix of independent
Wiener increments dWij whose symmetric and anti-symmetric parts are de-
noted with superscripts S and A, and

dWS
ij ≡ dWS

ij −
1

3
tr[dWS

ij ] I (6.3.24)

is the traceless symmetric part (e.g., Espanol 1998) . The scalar weight func-
tions A(r), B(r), Ã(r), B̃(r), and C̃(r) are related by

A(r)=
1

2

[

Ã2(r)+C̃2(r)
]

,

B(r)=
1

2

[

Ã2(r)−C̃2(r)
]

+
1

3

[

B̃2(r)−Ã2(r)
]

. (6.3.25)

The standard forms of the dissipative and random forces are recovered by
setting Ã(r) = C̃(r) = 0 and B(r) = γ. We employ spatially constant weight
functions A(r) = γT , B(r) = γC , and C̃(r) = 0. where γT and γC are
dissipative coefficients. Accordingly,

Tij = γT I + γCeijeij (6.3.26)

and the dissipative interaction force becomes

FD
ij = −

(

γT 1 + γCeijeij

)

· vij = −γT vij − γC(vij · eij) eij . (6.3.27)

The first term on the right-hand side provides the main viscous contribution.
The second term is identical in form to the central dissipative force of stan-
dard DPD introduced in section 6.2.1. To satisfy the fluctuation-dissipation
balance, the following random interaction force ensuring 3γC > γT is used,

FR
ijdt = (2kBT )1/2

(

(2γT )1/2dWS
ij + (3γC − γT )1/2 1

3
tr[dWij ] I

)

· eij .

(6.3.28)

These stipulations for the dissipative and the random forces in combination
with an elastic spring constitute a mesoscopic viscoelastic spring.

To relate the membrane shear viscosity, ηm, to the model dissipative
parameters γT and γC , an element of the hexagonal network shown in figure
6.3.2 is subjected to a constant shear rate, γ̇. The shear stress τxy at short
times can be approximated from the contribution of the dissipative force in
(6.3.27),

τxy = − 1

2A0

[

γT γ̇
(

(r1
y)2 + (r2

y)2 + (r2
y − r1

y)2
)

+
γC γ̇

l20

(

(r1
xr1

y)2 + (r2
xr2

y)2 + (r2
x − r1

x)2(r2
y − r1

y)2
)]

(6.3.29)

= γ̇
√

3 (γT +
1

4
γC ).
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Figure 6.4.1 A slice through a sample equilibrium simulation. Red parti-
cles are membrane vertices, blue particles represent the external fluid,
and green particles represent the internal fluid. (Color coded in the
electronic file.)

The membrane viscosity is given by

ηm =
τxy

γ̇
=

√
3 (γT +

1

4
γC). (6.3.30)

As stated in section 6.2.1, simulations with the central viscous force
alone corresponding to γT = 0 indicate that γT accounts for the largest por-
tion of the membrane dissipation. Accordingly, the numerical results are
insensitive to the value of γC . Since large values lead to numerical instability,
γC is set to its minimum value, 1

3 γT , in the simulations.

6.4 Membrane-solvent interfacial conditions

The cell membrane encloses a viscous fluid and is surrounded by a liquid
solvent. Figure 6.4.1 shows a snapshot of a simulation at equilibrium. where
red particles are membrane vertices, blue particles represent the external fluid,
and green particles represent the internal fluid. To prevent mixing of the
internal and external fluids, we require impenetrability and enforce adherence
or no-slip implemented by pairwise interactions between fluid particles and
membrane nodes.

Bounce-back reflection of fluid particles at the triangular plaquettes
satisfies membrane impenetrability and better enforces no-slip compared to
specular reflection. However, bounce-back reflection alone does not guaran-
tee no-slip, nor does it suppress large unphysical density fluctuations. Fluid
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particles whose centers are located at a distance less than a cutoff radius, rc,
require special treatment to account for interactions in the spherical cap lying
outside the fluid domain. In practice, this necessitates the DPD dissipative
force coefficient between fluid particles and membrane vertices to be properly
set (e.g., Fedosov 2010).

The continuum linear shear flow over a flat plate is used to determine
the dissipative force coefficient γ for the fluid in the vicinity of the membrane.
For the continuum, the total shear force on area A of the plate is Aηγ̇, where
η is the fluid viscosity and γ̇ is the local shear-rate. To mimic the membrane
surface, wall particles are distributed over the plate to match the configuration
of the cell network model. The force on a single wall particle in this system
exerted by the surrounding fluid under shear can be expressed as

Fv =

∫∫∫

Vh

n g(r)FD dV, (6.4.1)

where FD is the DPD dissipative force between fluid and wall particles, n
is the fluid number density, g(r) is the radial distribution function of fluid
particles relative to the wall particles, and Vh is the half-sphere volume of
fluid above the plate. Thus, the total shear force on the area A is equal to
NAFv, where NA is the number of plate particles residing in the area A. When
conservative interactions between fluid particles and the membrane vertices
are neglected, the radial distribution function simplifies to g(r) = 1.

Setting NAFv = Aηγ̇ yields an expression for the dissipative force co-
efficient γ in terms of the fluid density and viscosity and the wall density,
NA/A. Near a wall where the half-sphere lies within the range of the linear
wall shear flow, the shear rate cancels out. This formulation has been veri-
fied to enforce satisfactory no-slip boundary conditions without unacceptable
wall density fluctuations for the linear shear flow over a flat plate, and is an
excellent approximation for no-slip at the membrane surface.

6.5 Numerical and physical scaling

The dimensionless constants and variables in the DPD model must be scaled
with physical units. The characteristic length scale rM is based on the cell di-
ameter at equilibrium, DM

0 , where [DM
0 ] = rM and the superscript M denotes

model units. The equilibrium spring length, ℓM
0 , appears to be too small a

scale since the cell dimensions depend generally on the relative volume-to-area
ratio. For example, although a red blood cell and a spherical capsule with
the same volume may have different surface areas, but they may still have
the same ℓM

0 after triangulation. If the volume-to-area ratio is fixed, DM
0 is

proportional to ℓM
0 .
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The length scale adopted in the present work is

rM =
DP

0

DM
0

[m], (6.5.1)

where the superscript P denotes physical units, and [m] stands for meters.
Young’s modulus is used as an additional scaling parameter. An energy unit
scale can be derived by equating the model and physical Young’s moduli,

Y M (kBT )M

(rM )2
= Y P (kBT )P

m2
, (6.5.2)

yielding the model energy scale,

(kBT )M =
Y P

Y M

(rM )2

m2
(kBT )P =

Y P

Y M

(

DP
0

DM
0

)2

(kBT )P . (6.5.3)

Once the model energy unit is defined, the membrane bending rigidity can be
expressed in energy units. With the above length and energy scales, the force
scale for membrane stretching is given by

NM =
(kBT )M

rM
=

Y P

Y M

DP
0

DM
0

(kBT )P

m
=

Y P

Y M

DP
0

DM
0

NP . (6.5.4)

Membrane rheology and dynamics require a time scale in addition to
the scales previously defined. A general model time scale is defined as

τ =
tPi
tMi

s =

(

DP
0

DM
0

ηP
o

ηM
o

Y M
0

Y P
0

)α

s, (6.5.5)

where ηo is the exterior fluid viscosity and α is a chosen scaling exponent
similar to the power-law exponent in rheology.

6.6 Membrane mechanics

The mechanical properties of cell membranes are typically measured by defor-
mation experiments using either micropipette aspiration techniques or optical
tweezers (e.g., Evans 1983, Discher et al. 1994, Henon et al. 1999, Suresh et
al. 2005). It has been estimated that the shear modulus µ0 of a healthy RBC
lies in the range 2 – 12 µN/m, and the bending rigidity kc lies in the range
1 × 10−19 – 7 × 10−19 J corresponding to 25–171 kBT at room temperature
23◦C.

To set the mechanical properties of the network model, triangulation
of the cell shape described by equation (6.2.15) is first performed yielding an



Chapter 6 Dissipative particle dynamics modeling of red blood cells 17

equilibrium spring length

ℓ0 =
1

Ns

Ns
∑

i=1

ℓi
0. (6.6.1)

A shear modulus of a healthy cell provides us with a scaling base, µ0 = µM
0 .

The WLC spring model requires setting the maximum extension length, ℓM
m .

However, it is more convenient to set the ratio x0 = ℓM
0 /ℓM

m governing the
cell nonlinear response at large deformation. The ratio x0 is fixed at 2.2 in all
simulations (e.g., Fedosov 2010).

Necessary model parameters can be calculated from (6.3.9) for given
values of ℓM

0 , µM
0 , and x0, thereby circumventing manual adjustment. The

calculation of the areal compression modulus KM and Young’s modulus Y M

follows from equations (6.3.13, 6.3.15). for specified area constraint parame-
ters ka and kd. In the simulations, we use µM

0 = 100, ka = 4900, kd = 100, and
kv = 5000. We note that the global areal compression and volume constraints
are strong, while the local area constraint is weak. The bending rigidity kc

is set to 58(kBT )M corresponding to physical units 2.4 × 10−19 J at room
temperature. The exponent m in relation (6.2.8) is set to 2.

6.6.1 Equilibrium shape and the stress-free model

After initial setup, an equilibrium simulation is run to confirm that the cell
retains the biconcave shape. Figure 6.6.1(a) shows an equilibrated shape com-
puted with the WLC-C and the WLC-POW model using typical red blood
cell parameters. If all springs have the same equilibrium length, a network
on a non-developable surface cannot be constructed with triangles having the
same edge lengths. Consequently, the cell surface would necessarily develop
local bumps manifested as stress anomalies at the level of a continuum. In
fact, the potential energy relaxation performed during the triangulation pro-
cess produces triangles with a narrow distribution of spring lengths around
a specified equilibrium value. Accordingly, a network constructed without
annealing implemented by further energy relaxation of the equilibrium shape
would still display pronounced bumps and would fail to relax to an equilibrium
stress-free axisymmetric shape.

The relaxed cell shape is affected by the ratio of the membrane modu-
lus of elasticity to the bending rigidity expressed by the Föppl-von Kármán
number

κ =
Y0R

2
0

kc
, (6.6.2)

where R0 =
√

πA0/4. Figure 6.6.1 (b) displays an equilibrated shape com-
puted with the WLC-C or WLC-POW model. The bending rigidity is ten
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(a) (b) (c)

Figure 6.6.1 Equilibrium shape of a cell computed with the WLC-C or
WLC-POW model for (a) kc = 2.4 × 10−19 J and (b) kc = 2.4 × 10−20 J.
(c). Equilibrium shape with the WLC-POW stress-free model for kc =
2.4 × 10−20 J.

times lower than that of the red blood cell membrane, kc = 2.4 × 10−19 J.
Membrane stress artifacts are significantly pronounced under these conditions.

Shape regularization

A stress-free shape eliminating membrane stress anomalies is obtained
by computational annealing. For each spring, the equilibrium spring length ℓi

0

is adjusted to be the edge length after triangulation, while the ratio x0 is kept
constant at 2.2, for i = 1, . . . , Ns. The maximum spring extension is then set
individually to ℓi

m = li0 × x0. The initial cell network defines local areas for
each triangular plaquette, Aj

0, for j = 1, . . . , Nt. The total cell surface area,

Atot
0 =

Nt
∑

j=1

Aj
0, (6.6.3)

and the total cell volume, V tot
0 , are calculated from the triangulation. After

this adjustment, a new network that is virtually free of irregularities appears.
A stretching test along a diameter repeated along several diameters is used
to verify that the red cell model behaves like a transversely isotropic body, as
discussed in the next section.

The annealing process disqualifies the WLC-C model. The reason is
that the assumed isotropic in-plane area-expansion potential expressed by
the last term in (6.2.7) is not able to accommodate individual equilibrium
spring lengths for each triangle side. Because the POW potential is defined in
terms of spring length, it is endowed with the necessary degrees of freedom for
equilibrium length adjustment. The individual spring parameters pi and ki

s of
the WLC-POW model are recalculated based on ℓi

0, ℓi
m, µM

0 using (6.3.9) in
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Figure 6.6.2 (a) Schematic illustration of cell deformation. (b) Stretching
response with the WLC-POW stress-free model for different coarse-
graining levels or number of vertices Nv in the network representation.
The diamonds represent experimental results by Suresh et al. (2005).

conjunction with the relation fWLC = fPOW for the given spring equilibrium
length.

Figure 6.6.1(c) shows an equilibrium shape computed with the WLC-
POW stress-free model for bending rigidity kc = 2.4×10−20 J. Because mem-
brane stress artifacts are eliminated, arbitrary surface networks can be em-
ployed even for small flexural stiffness. However, if the generated network
departs too much from a regular hexagonal triangulation, the analytic for-
mulas used to estimate the network macroscopic properties are no longer be
reliable.

Stretching test

The reconstructed cell is subjected to stretching analogous to that im-
posed on cells in optical tweezers experiments (Suresh et al. 2005). A stretch-
ing force FP

s up to 200 pN is applied to the outermost N+ = ǫNv vertices
with the largest x coordinates in the positive x direction, and to the outer-
most N− = N+ vertices with the smallest x coordinates in the negative x
direction, as shown in figure 6.6.2(a). The vertex fraction ǫ is set to 0.02,
corresponding to contact diameter of an attached silica bead dc = 2 µm used
in the experiments.

For each external force, the cell is allowed to relax to an equilibrium
stretched state. The axial diameter, DA, defined as the maximum distance
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between the sets of points N+ and N−, and the transverse diameter, DT , de-
fined as the maximum distance between two points from the set of all vertices
projected on a plane perpendicular to the axial diameter, are averaged during
a specified simulation time. Results presented in figure 6.6.2(b) are in good
agreement with experimental data for all levels of coarse graining. Noticeable
discrepancies for the transverse diameter are observed inside the error bars
due to experimental error. The optical measurements were performed from a
single observation angle. Numerical simulations show that stretched cells may
rotate in the yz plane. Consequently, measurements from a single observation
angle are likely to underpredict the maximum transverse diameter.

6.7 Membrane rheology from twisting torque cytometry

Early measurements of cell relaxation time employed a micropipette technique
to study cell extension and recovery (e.g., Hochmuth et al. 1979). The relax-
ation time extracted from an exponential fit of cell recovery after deformation
is on the order of 0.1 s. However, since the deformation is inherently nonuni-
form in these experiments, it is doubtful that the global technique produces an
accurate characteristic membrane time scale (e.g., Yoon et al. 2008, Fedosov
2010).

In recent experiments, Puig-de-Morales-Marinkovic et al. (2007) ap-
plied optical magnetic twisting cytometry (OMTC) to infer a dynamic com-
plex modulus of the cell membrane. In this procedure, the cell membrane
response is measured locally by observing the motion of an attached ferro-
magnetic microbead driven by an oscillating magnetic field. The experiments
have confirmed that the membrane is a viscoelastic material. Our viscoelas-
tic membrane model will be tested against the results of optical magnetic
twisting cytometry. The numerical simulations emulate the aforementioned
experiments where the motion of a microbead attached to the flat side of the
biconcave cell due an oscillating torque is studied, as shown in figure 6.7.1(a).
The data allow us to infer membrane properties such as the complex modulus.

In the numerical model, the microbead is represented by a set of vertices
deployed on a rigid sphere. A group of cell vertices near the bottom of the
microbead simulates the area of attachment. The torque on the microbead is
applied only to the bead vertices. Figure 6.7.1(b) presents a typical response to
an oscillating torque. The bead motion, monitored by the displacement of the
center of mass, oscillates with the applied torque frequency. The oscillation
is shifted by a phase angle, φ, that depends on the applied frequency. In the
case of a purely elastic material and in the absence of inertia, the phase angle
φ would be zero zero for any torque frequency.

The linear complex modulus of a viscoelastic material can be extracted
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Figure 6.7.1 (a) Illustration of the numerical setup of the twisting torque
cytometry. (b) Response of an attached microbead subject to an oscil-
lating torque exerted on the bead.

from the phase angle and torque frequency using the relations

g′(ω) =
∆T

∆d
cos φ, g′′(ω) =

∆T

∆d
sinφ, (6.7.1)

where g′(ω) and g′′(ω) are two-dimensional storage and loss moduli and ∆T
and ∆d are the torque and bead displacement amplitudes. In the absence of
inertia, the phase angle φ ranges between 0 and π/2.

Figure 6.7.2 compares the computed complex modulus with experi-
mental data by Puig-de-Morales-Marinkovic et al. (2007). Good agreement
is found for bending rigidity kc = 4.8 × 10−19 J and membrane viscosity
ηm = 0.022 Pa s. Numerical twisting cytometry suggests that the storage
modulus behaves as

g′(ω) ∼ (kcY0)
0.65. (6.7.2)

Since the Young modulus of healthy cells is fixed by the cell stretching test,
figure 6.7.2 essentially illustrates the dependence of g′ on the membrane bend-
ing rigidity. To ensure good agreement with experiments, the bending rigidity
of a healthy cell must be in the range 4 to 5 × 10−19 J, which is twice the
widely adopted value, kc = 2.4 × 10−19 J.

For small displacements, the loss modulus g′′ depends mainly on the
surface viscosity and is insensitive to the membrane’s elastic properties. The
simulated loss modulus follows a power law in frequency with exponent α =
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Figure 6.7.2 Graphs of the functions g′ and g′′ obtained from simulations
with different membrane viscosities and bending rigidities. The numer-
ical results are compared with experimental data by Puig-de-Morales-
Marinkovic et al. (2007). The inset illustrates the effect of inertia for
high frequencies of the driving torque.

0.85 to be used in (6.5.5). In the experiments, the exponent is approximately
0.75. The agreement is fair in view of fitting errors in only two frequency
decades in simulation and experiment. The inset in figure 6.7.2 shows that
inertial effects affect g′ at high frequencies. Decreasing the bead mass would
allow us to obtain rheological data for higher torque frequencies, but the
computational cost is high since a small time step is required. When the loss
modulus dominates the storage modulus, the bead-displacement amplitude
at fixed torque amplitude is extremely small and hard to measure in the
laboratory. However, bead displacements in simulations can be successfully
detected on a scale of several nanometers.

6.8 Deformation in shear flow

Experimental observations have shown that red blood cells tumble at low shear
rates and exhibit a tank-treading motion at high shear rates (e.g., Tran-Son-
Tay et al. 1984, Fischer 2004, 2007, Abkarian et al. 2007). Fischer (2004)
attributed this behavior to a minimum elastic energy state of the cell mem-
brane. Cells can be made to tank-tread in the laboratory for several hours.
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When the flow is stopped, the cells relax to the original biconcave shape where
attached microbeads recover their original relative position. It appears that
tank-treading is possible only when a certain elastic energy barrier has been
surpassed. Theoretical analyses have considered ellipsoidal cell models tank-
treading along a fixed ellipsoidal path (e.g., Abkarian et al. 2007, Skotheim
& Secomb 2007). Our simulations show that the dynamics depends on the
membrane shear modulus, shear rate, and viscosity ratio λ = (ηi + ηm)/ηo,
where ηi, ηm, and ηo are the interior, membrane, and outer fluid viscosities.

For viscosity ratio λ < 3, the theory predicts tumbling at low shear
rates and tank-treading motion at high shear rates (e.g., Skotheim & Secomb
2007). The cells exhibit an unstable behavior in a narrow intermittent region
around the tumbling-to-tank-treading transition where tumbling can be fol-
lowed by tank-treading and vice versa. For λ > 3, stable tank-treading does
not necessarily arise. Red blood cells with viscosity ratio λ > 3 have been
observed to tank-tread while exhibiting a swinging motion with a certain fre-
quency and amplitude about an average tank-treading axis. The reliability of
the theoretical predictions will be judged by comparison with the results of
our simulations.

In the first simulation, a cell is suspended in a linear shear flow between
two parallel walls. The viscosities of the external solvent and internal cytosol
fluid are set to ηo = ηi = 0.005 Pa s. Consistent with results of twisting torque
cytometry, the membrane viscosity is set to ηm = 0.022 Pa s. Figure 6.8.1
presents information on the cell tumbling and tank-treading frequencies under
different conditions. Experimental observations by Tran-Son-Tay et al. (1984)
and Fischer (2007) are included for comparison.

In the case of a purely elastic membrane with or without inner solvent
(circles and squares), the numerical results significantly overpredict the tank-
treading frequency compared with experimental measurements. The internal
solvent viscosity could be further increased to improve agreement with ex-
perimental data. However, since the cytosol is a hemoglobin solution with
a well-defined viscosity of about 0.005 Pa s, excess viscous dissipation must
occur inside the membrane (e.g., Cokelet and Meiselman 1968). The data
plotted with triangles in figure 6.8.1 show good agreement with experimental
data for increased membrane viscosity.

The tumbling frequency is nearly independent of the medium viscosi-
ties. Increasing the viscosity of the internal fluid or raising the membrane
viscosity slightly shifts the tumbling-to-treading threshold into higher shear
rates through an intermittent regime. We estimate that the tank-treading
energy barrier of a cell is approximately Ec = 3 to 3.5 × 10−17 J . In a theo-
retical model proposed by Skotheim & Secomb (2007), the energy barrier was
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Figure 6.8.1 Tumbling and tank-treading frequency of a RBC in shear
flow for ηo = 0.005 Pa s, ηi = ηm = 0 (circles); ηo = ηi = 0.005 Pa
s, ηm = 0 (squares); ηo = ηi = 0.005 Pa s, ηm = 0.022 Pa s (triangles).

set to Ec = 10−17 J to ensure agreement with experimental data. Membrane
deformation during tank treading is indicated by an increase in the elastic
energy difference with increasing shear rate to within about 20% of Ec.

An intermittent regime is observed with respect to the shear rate in
all cases. Consistent with the experiments, the width of the transition zone
broadens as the membrane viscosity increases. Similar results regarding inter-
mittency were reported by Kessler et al. (2008). for viscoelastic vesicles. We
conclude that theoretical predictions of cell dynamics in shear flow are qual-
itative correct at best due to the assumption of ellipsoidal shape and fixed
ellipsoidal tank-treading path. Experiments by Abkarian et al. (2007) have
shown and the present simulations have confirmed that the cell deforms along
the tank-treading axis with strains of order 0.1 − 0.15.

Cell deformation in shear flow depends on the ratio of the membrane
elastic to bending modulus, expressed by the Föppl-von Kármán number κ
defined in (6.6.2). Figures 6.8.2 (a) and (b) show several snapshots of tumbling
and tank-treading cells with bending rigidity set to ten times that commonly
used for red blood cells, kc = 2.4 × 10−18 J, corresponding to Föppl-von
Kármán number κ = 85. Tumbling to tank-treading transition occurs at shear
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(a) γ = 8 s -1

γ = 16 s -1

(b) γ = 32 s -1

γ = 190 s -1

Figure 6.8.2 Snapshots of (a) a tumbling and (b) a tank-treading cell at
different shear rates, for viscosities ηo = ηi = 0.005 Pa s, ηm = 0.022 Pa
s, bending rigidity kc = 2.4 × 10−18 J, and Föppl-von Kármán number
κ = 85. Blue particles are added as tracers during post-processing for
visual clarity. (Color in the electronic file.)

rates 20–25 s−1. The results show negligible deformation during tumbling and
small deformation during tank-treading following the transition.

Figure 6.8.3 presents analogous results for tumbling and tank-treading
cells with bending rigidity kc = 2.4 × 10−19 J corresponding to κ = 850.
Significant shape deformation is observed during tumbling and tank-treading.
However, the frequency of the motion is hardly changed from that corre-
sponding to κ = 85. Since the discrete network cannot adequately capture
the membrane bending on length scales comparable to the element size, a
further decrease of the bending rigidity results in buckling. To screen out
the effect of the membrane discretization, simulations were performed with
Nv = 1000 and 3000 membrane network vertices and similar results were
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(a) γ = 8 s -1

γ = 16 s -1

(b) γ = 32 s -1

γ = 190 s-1

Figure 6.8.3 Snapshots of (a) a tumbling and (b) a tank-treading cell at
different shear rates for viscosity ηo = ηi = 0.005 Pa s, ηm = 0.022 Pa
s, bending rigidity kc = 2.4 × 10−19 J, and Föppl-von Kármán number
κ = 850. Blue particles are added as tracers during post-processing for
visual clarity. (Color in the electronic file.)

obtained for corresponding Föppl-von Kármán numbers.

The simulations suggest that the membrane bending rigidity is several
times larger than the widely accepted value kc = 2.4 × 10−19 J. Simulations
of twisting torque cytometry presented previously in this chapter corroborate
this assertion. An increase in the membrane shear modulus raises the Föppl-
von Kármán number and the tank-treading energy barrier Ec, and hence also
shifts the tumbling-to-tank-treading transition to higher shear rates.

We have seen that a cell oscillates or swings around tank-treading axes
with a certain frequency and amplitude, as shown in figures 6.8.2 and 3.
Figure 6.8.4 presents graphs of the average tank-treading angle and swinging
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Figure 6.8.4 Graphs of the swinging average angle in degrees (filled
symbols) and amplitude (open symbols) for (a) ηo = 0.005 Pa s and
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amplitude. The numerical results are consistent with experimental data by
Abkarian et al. (2007). The average swinging angle is larger for a purely
elastic membrane without inner cytosol. The inclination angle is independent
of the internal fluid and membrane viscosities and the swinging amplitude is
insensitive to the fluid and membrane properties. The swinging frequency is
exactly twice the tank-treading frequency.

6.9 Tube flow

The mean velocity of Poiseuille flow in a circular tube is defined as

v̄ =
1

S

∫∫

v(r) dS, (6.9.1)

where S is the cross-sectional area and v(r) is the axial velocity. For a New-
tonian fluid, v̄ = vc/2, where vc is the centerline velocity.

At low flow rates, a cell suspended in tube flow retains its bicon-
cave shape. As the driving pressure gradient increases, the cell obtains the
parachute-like shape shown in figure 6.9.1 for a tube with diameter 9µm, in
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Figure 6.9.1 Parachute shape of a cell suspended in Poiseuille flow
through a 9µm diameter tube.

agreement with experimental observations (e.g., Tsukada et al. 2001). To
identify the biconcave-to-parachute transition, we compute the gyration ten-
sor

Gmn =
1

Nv

∑

i

(ri
m − rC

m)(ri
n − rC

n ), (6.9.2)

where ri are the membrane vertex coordinates, rC is the membrane center
of mass, and m,n stand for x, y, or z. (e.g., Mattice & Suter 1994). The
eigenvalues of the gyration tensor allow us to accurately characterize the cell
shape. For the equilibrium biconcave shape, the gyration tensor has two large
eigenvalues corresponding to the midplane of the biconcave disk, and one
small eigenvalues corresponding to the disk thickness. At the biconcave-to-
parachute transition, the small eigenvalue increases indicating that the cell
elongates along the tube axes.

Figure 6.9.2 illustrates the dependence of the axial eigenvalue on the
mean flow velocity for different membrane bending rigidities and shear mod-
uli. The dashed line describes the biconcave-to-parachute transition. For
healthy cells, the transition occurs at a mean velocity of about 65 µm/s. The
transition occurs at larger bending rigidity or membrane shear modulus at
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Figure 6.9.2 Excess axial eigenvalue of the gyration tensor above that
for a biconcave disk for (a) different bending rigidities and (b) different
membrane shear moduli. The cell volume fraction is C = 0.05.

stronger flows. The critical mean velocity changes almost linearly with the
bending rigidity, kc, and shear modulus, µ0. These results are consistent with
numerical simulations by Noguchi & Gompper (2005). Stiffer capsules suffer
smaller elongation along at the same mean velocity. The results in figure 6.9.2
corroborate the notion that stiffer cells exhibit stronger resistance to flow.

The relative apparent viscosity of the suspension is defined as

λapp =
ηapp

ηo
, ηapp =

nfR2
0

8ū
, (6.9.3)

where n is the cell number density, f is the force exerted on each cell, R0 is the
tube radius, ηo is the solvent viscosity, and ū is the bulk velocity calculated
using equation (6.9.1). The product nf is the streamwise pressure gradient,
∆P/L, where L is the tube length. Figure 6.9.3 reveals a slight increase in the
apparent viscosity with cell stiffening due to increased flow resistance. The
effect is small even for a tenfold increase in the membrane elastic modulus
due to the low cell concentration, C = 0.05. A stronger effect is expected at
at higher volume fractions.

6.10 Summary

We have presented a mesoscopic model of red blood cells implemented by the
dissipative particle dynamics (DPD) method. The spectrin cytoskeleton is
represented by a network of interconnected viscoelastic springs comprising a
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Figure 6.9.3 Relative apparent viscosity for (a) different bending rigidities
and (b) different membrane shear moduli. The cell volume fraction is
C = 0.05.

membrane with elastic and viscous properties. The surface network accounts
for bending resistance attributed to the lipid bilayer and incorporates local
and global area constraints to ensure constant volume and surface area. The
model was validated by a number of tests on membrane mechanics, rheology,
and cell dynamics in shear and Poiseuille flow.

The macroscopic properties of the membrane were related to the net-
work parameters by theoretical analysis. The predicted mechanical properties
of the cells agree with optical tweezers experiments even for a highly coarse-
grained membrane representation with respect to the number of vertices in
the spectrin network. Cell rheology was probed by numerical experiments
simulating twisting torque cytometry. The predicted membrane viscosity is
consistent with the experimental value 0.022 Pa s, which is about twenty two
times that of water. The numerical results indicate that the bending rigid-
ity of the the membrane can be two to three times higher than the widely
accepted value kc = 2.4 × 10−19 J.

Red blood cell deformation was simulated in shear and Poiseuille flow.
In shear flow, a cell exhibits tumbling at low shear rates and tank-treading
at high shear rates. A narrow intermittent region appears where these modes
interchange. The theoretical model is able to quantitatively capture cell dy-
namics in shear flow. Comparison of the numerical results with existing the-
oretical predictions suggest that the latter suffers from oversimplification .
Near the tumbling-to-tank-treading transition, simulated cells exhibit strong
deformation. The cell bending rigidity is estimated to be several times the
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accepted value of kc = 2.4 × 10−19 J. Further experimental data on cell de-
formations around the tumbling-to-tank-treading transition could confirm the
complex dynamics observed in the simulations. Simulations of cell motion in
Poiseuille flow through a 9 µm diameter tube demonstrated a transition to a
parachute shape at a mean velocity of about 65 µm/s. The threshold occurs
at higher mean velocities for stiffer cells with a higher bending rigidity or
shear modulus.

Most of the current cell models assume that the cell membrane is purely
elastic. The simulations described in this chapter show that membrane viscos-
ity is essential for capturing single cell rheology and dynamics. The presented
model is general enough to be used with other simulation methods, includ-
ing Lattice-Boltzmann, Brownian dynamics, the immersed-boundary method,
and multiparticle collision dynamics.
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Appendix

The modeled membrane is described by the potential energy V ({xi})
given in (6.2.6)) with contributions defined in (6.2.7) – (6.2.13). Nodal forces
corresponding to these energies are derived according to equation (6.2.14) and
then divided into three parts: two-point interactions mediated by springs de-
fined in (6.2.8) and 6.2.9), three-point interactions representing stored elastic
energy and mediating area and volume conservation constraints according to
(6.2.7), (6.2.12), and (6.2.13), and four-point interactions implementing flex-
ural stiffness between adjacent faces.

Figure 6A.1(a) shows a sample triangular element of a membrane net-
work. We introduce the distance matrix aij = pi − pj , where i and j take
the values 1, 2, and 3, and the normal vector ξ = a21 × a31. The area of the
triangle is

Ak =
1

2
|ξ| =

1

2
(ξ2

x + ξ2
y + ξ2

z)1/2. (6A.1)

The stored elastic energy for a single triangle generates the following nodal
forces according to (6.2.7),

fsi
=−∂ (Cq/A

q
k)

∂si
=α

(

ξx
∂ξx

∂si
+ ξy

∂ξy

∂si
+ ξz

∂ξz

∂si

)

, (6A.2)
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Figure 6A.1 (a) Illustration of a triangular element of the surface network,
and (b) Sketch of two adjacent triangular elements of the network.

where

α = 2q q Cq

(ξ2
x + ξ2

y + ξ2
z)q/2+1

=
q Cq

4Aq+2
k

, (6A.3)

si stands for x, y, and z, and i = 1, 2, 3. Explicitly,

(fx1
, fy1

, fz1
) = α (ξ × a32) , (fx2

, fy2
, fz2

) = α (ξ × a13) ,

(fx3
, fy3

, fz3
) = α (ξ × a21) . (6A.4)

The global area conservation constraint represented by the first term
on the right-hand side of (6.2.12) produces the nodal forces

fsi
= − ∂

∂si
[
ka(A − Atot

0 )2

2Atot
0

] = −ka(A − Atot
0 )

Atot
0

∂A

∂si
= βa

Nt
∑

k=1

∂Ak

∂si

= βa

Nt
∑

k=1

1

4Ak

(

ξk
x

∂ξk
x

∂si
+ ξk

y

∂ξk
y

∂si
+ ξk

z

∂ξk
z

∂si

)

, (6A.5)

where βa = −ka(A − Atot
0 )/Atot

0 , the superscript k denotes the kth triangle,
and i = 1, . . . , Nv. For a single triangle, the nodal forces have the functional
form shown in (6A.4) with α = βa/(4Ak).

For a single triangle, the local area conservation constraint expressed
by the second term on the right-hand side of (6.2.12) produces nodal forces
given by (6A.4) with α = −kd(Ak − A0)/(4A0Ak).
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Global volume conservation expressed by (6.2.13) produces the nodal
forces

fsi
= − ∂

∂si
[
kv(V − V tot

0 )2

2V tot
0

]=−kv(V − V tot
0 )

V tot
0

∂V

∂si
=βv

Nt
∑

k=1

∂Vk

∂si
, (6A.6)

where Vk = 1
6 (ξk · tk

c ), and tk
c = (pk

1 + pk
2 + pk

3)/3 is the center of mass of the
kth triangle shown in figure 6.A.1. The nodal forces for a single triangle arise
from the volume constraint as

(fx1
, fy1

, fz1
) =

βv

6
(
1

3
ξ + tc × a32),

(fx2
, fy2

, fz2
) =

βv

6
(
1

3
ξ + tc × a13), (6A.7)

(fx3
, fy3

, fz3
) =

βv

6
(
1

3
ξ + tc × a21).

Four-point interactions are encountered in the bending energy between
two adjacent faces expressed by (6.2.11). Figure 6A.2(a) shows an arrange-
ment of two adjacent triangular elements in the network. The triangle normal
vectors are ξ = a21 × a31 and ζ = a34 × a24, and the corresponding areas are
A1 = |ξ|/2, and A2 = |ζ|/2. Bending energy produces the nodal forces

fsi
= − ∂

∂si

[

kb[1 − cos(θ − θ0)]
]

= −kb sin(θ − θ0)
∂θ

∂si
, (6A.8)

where θ is the angle subtended between the normals ξ and ζ, given by

cos θ = (
ξ

|ξ| ·
ζ

|ζ| ). (6A.9)

We write sin(θ− θ0) = sin θ cos θ0 − cos θ sin θ0, where sin θ = ±(1− cos2 θ)1/2

taken with the plus sign if ([ξ − ζ] · [t1
c − t2

c ]) ≥ 0 and with the minus sign
otherwise, where t1

c and t2
c are the centers of mass vectors of the first and

second triangle. The derivative of θ with respect to si are given by

∂θ

∂si
=

∂

∂si
arccos(

ξ

|ξ| ·
ζ

|ζ| ) = − 1√
1 − cos2 θ

∂

∂si
(

ξ

|ξ| ·
ζ

|ζ| ). (6A.10)

Analytical calculation of the derivatives produces the following nodal forces
due to four-point interactions,

(fx1
, fy1

, fz1
) = b11 (ξ × a32) + b12 (ζ × a32) ,

(fx2
, fy2

, fz2
) = b11 (ξ × a13) + b12 (ξ × a34 + ζ × a13)+b22(ζ × a34),

(fx3
, fy3

, fz3
) = b11 (ξ × a21) + b12 (ξ × a42 + ζ × a21)+b22(ζ × a42),

(fx4
, fy4

, fz4
) = b12 (ξ × a23) + b22 (ζ × a23) , (6A.11)
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where

b11 = −βb cos θ/|ξ|2, b12 = βb/(|ξ||ζ|), b22 = −βb cos θ/|ζ|2, (6A.12)

and

βb = kb(sin θ cos θ0 − cos θ sin θ0)/
√

1 − cos2 θ. (6A.13)
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