
D 4 Blood cells and blood flow

D. A. Fedosov

Institut für Festkörperforschung

Forschungszentrum Jülich GmbH
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1 Introduction

Blood is circulated around the entire body performing a number of physiological functions. Its
main functions are the transport of oxygen and nutrients to cells of the body, removal of waste
products such as carbon dioxide and urea, and circulation ofmolecules and cells which me-
diate the organism’s defense and immune response and play a fundamental role in the tissue
repair process. Abnormal blood flow is often correlated witha broad range of disorders and
diseases which include hypertension, anemia, atherosclerosis, malaria, and thrombosis. Under-
standing the rheological properties and dynamics of blood cells and blood flow is crucial for
many biomedical and bioengineering applications. Examples include the development of blood
substitutes, the design of blood flow assisting devices, anddrug delivery. In addition, under-
standing of vital blood related processes in health and disease may aid in the development of
new effective treatments.
Blood is a physiological fluid that consists of erythrocytesor red blood cells (RBCs), leuko-
cytes or white blood cells (WBCs), thrombocytes or platelets, and plasma containing various
molecules and ions. RBCs constitute approximately45% of the total blood volume, WBCs
around0.7%, and the rest is taken up by blood plasma and its substances. One microliter of
blood contains about5 million RBCs, roughly5 thousand WBCs, and approximately a quarter
million platelets.
Figure 1 shows a scanning electron micrograph of blood cells. Human RBCs have a relatively

Fig. 1: A scanning electron micrograph of blood cells. From left to right: human erythrocyte,
thrombocyte (platelet), leukocyte.

simple structure in comparison to other cells. RBCs resemble biconcave disks and contain a
viscous cytosol enclosed by a membrane. At the stage of the RBC formation, the nucleus and
other organelles that are generally present in other eukaryotic cells are ejected, leaving behind a
relatively homogeneous cytoplasm and no inner cytoskeleton. RBC cytoplasm is a hemoglobin
rich solution, which is able to bind oxygen. Therefore, the main RBC function is oxygen supply
and delivery to body tissues. RBCs are extremely deformableand can pass through capillaries
with a diameter several times smaller than the RBC size.
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In comparison to RBCs, WBCs have one or multiple nuclei, are stiffer than RBCs and have a
spherical shape. WBCs are an important part of the body’s immune system. They protect the
body against invading bacteria, parasites, and viruses by killing these microorganisms through
phagocytosis ingestion and other antigen-specific cytotoxic mechanisms. There exist different
types of leukocytes (e.g., neutrophils, eosinophils, basophils, monocytes, and lymphocytes),
each of which is designed to fight a specific type of infection.
Freely circulating WBCs are able to adhere to the vascular endothelium, which is a crucial step
in the immune response [1]. Rolling along the vessel wall allows WBCs to efficiently monitor
for potential molecular signals, since the rolling velocity at the vessel wall is much smaller
than that of the blood flow. In fact, microfluidic experiments[2] showed that WBCs adhere
only above a critical threshold of shear. Firm adhesion of leukocytes is generally recognized
as the final step of the WBC adhesive dynamics within a vessel with further cross-endothelium
migration into the surrounding tissue.
In this chapter we present a cell model [3, 4] which is constructed by a network of viscoelastic
springs combined with bending energy and constraints for surface-area and volume conserva-
tion. The model is used within the framework of the Dissipative Particle Dynamics (DPD)
method [5] (see appendix A for details) and is able to reproduce realistic mechanical and rhe-
ological properties and dynamics of blood cells. Simulation results include several single cell
tests, blood flow in microtubes ranging from10 to 40 microns in diameter, and WBC adhesive
dynamics, and are compared with available experiments.

2 Red blood cells

A healthy human RBC has a biconcave shape with an average diameter of approximately8
µm. Figure 2 shows a schematic of a RBC membrane which consists of a lipid bilayer with an
attached cytoskeleton formed by a network of the spectrin proteins linked by short filaments of
actin. The lipid bilayer is considered to be a nearly viscousand area preserving membrane [6],

Fig. 2: A schematic of the RBC membrane structure.

while RBC elasticity is attributed to the attached spectrinnetwork, as is the integrity of the
entire RBC when subjected to severe deformations in the capillaries as small as3 µm. The
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RBC membrane encloses a viscous cytosol whose viscosity is several times larger than that
of blood plasma under physiological conditions. Mechanical and rheological characteristics of
RBCs and their dynamics are governed by: membrane elastic and viscous properties, bending
resistance, and the viscosities of the external/internal fluids.

2.1 RBC membrane model

The RBC membrane shown in figure 3 is constructed byNv particles{xi=1...Nv
} which corre-

Fig. 3: A sketch of a RBC membrane network.

spond to a two-dimensional triangulated network [4, 7] on the RBC surface measured experi-
mentally [8] and is given by
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whereD0 = 7.82 µm is the average diameter,a0 = 0.0518, a1 = 2.0026, anda2 = −4.491.
The surface area and volume of this RBC are equal to135 µm2 and94 µm3, respectively.
The vertices of the network are connected byNs springs with the following potential energy
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wherelj is the length of the springj, lm is the maximum spring extension,xj = lj/lm, p is
the persistence length,kBT is the energy unit,kp is the spring constant, andn is a power. The
above equation consists of the attractive wormlike chain potential and a repulsive potential for
n > 0 such that a non-zero equilibrium spring length can be imposed.
Membrane viscosity is incorporated into the RBC model through a dissipative force for each
spring. The general framework of the fluid particle model [9]allows us to define dissipativeFD

ij
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and randomFR
ij forces, which satisfy the fluctuation-dissipation balanceproviding consistent

temperature of the RBC membrane in equilibrium. The forces are as follows

F
D
ij = −γT

vij − γC(vij · eij)eij, (3)

F
R
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· eij, (4)

whereγT andγC are dissipative parameters,vij is the relative velocity of spring ends,tr[dWij]

is the trace of a random matrix of independent Wiener incrementsdWij, anddWS
ij = dWS

ij −
tr[dWS

ij]1/3 is the traceless symmetric part.
The bending resistance of the RBC membrane is modeled by

Vb =
∑

j∈1...Ns

kb [1− cos(θj − θ0)] , (5)

wherekb is the bending constant,θj is the instantaneous angle between two adjacent triangles
having the common edgej, andθ0 is the spontaneous angle.
Moreover, the RBC model requires the area and volume conservation constraints, which mimic
area-incompressibility of the lipid bilayer and incompressibility of a cytosol, respectively. Such
constraints are imposed as follows

Va+v =
∑
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2
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0 )2
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0
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0 )2
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, (6)

whereNt is the number of triangles in the membrane network,A0 is the triangle area, andkd,
ka andkv are the local area, global area and volume constraint coefficients, respectively. The
termsA andV are the total RBC area and volume, whileAtot

0 andV tot
0 are the specified total

area and volume, respectively. More details on the RBC modelcan be found in [3,4].

2.2 Membrane macroscopic properties and boundary conditions

Linear analysis of a regular hexagonal network allows us to uniquely relate the model param-
eters and the network macroscopic elastic properties (shear, area-compression, and Young’s
moduli), see [3,4] for details. Thus, the membrane shear modulus is given by

µ0 =

√
3kBT

4plmx0
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, (7)

wherel0 is the equilibrium spring length andx0 = l0/lm. The area-compressionK and Young’s
Y moduli are equal to2µ0 + ka + kd and4Kµ0/(K + µ0), respectively.
The relation between the model bending coefficientkb and the macroscopic bending rigiditykc
of the Helfrich model [10] can be derived askb = 2kc/

√
3 for a spherical membrane [4, 11].

This expression describes bending contribution of the energy in equation (5), but may not fully
represent actual bending resistance of the RBC membrane since membrane bending may also
result in local in-plane deformations.
The membrane shear viscosityηm is related to the dissipative parametersγT , γC as ηm =√
3(γT + γC/4). HereγT accounts for a large portion of viscous contribution, and henceγC is

set toγT/3 in all simulations.
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In practice, the given macroscopic RBC properties serve as an input to be used to calculate the
necessary mesoscopic model parameters from the equations above without any manual adjust-
ment. A simulation of a RBC in equilibrium shows that the membrane may develop local bumps
due to stress anomalies in a membrane triangulation since a network on a closed surface cannot
consist of triangles whose edges have the same lengths. Suchlocal stress artifacts depend on
the network regularity and the ratio of the membrane elasticand bending contributions given by
the Föppl-von Kármán numberκ = Y R2

0/kc, whereR0 =
√

Atot
0 /(4π). To eliminate the stress

artifacts we employ a“stress-free”model obtained by computational annealing. Thus, the equi-
librium lengthli0 of each spring is set to the edge length after triangulation for i = 1, . . . , Ns.
This results in an individual maximum spring extensionlim = li0 × x0 (x0 is a constant) and the
spring parameters calculated for each spring using equation (7) for givenµ0. This modification
provides a network free of local stress anomalies.
Both internal and external fluids are simulated by a collection of free particles and are sepa-
rated by the RBC membrane through bounce-back reflections ofthem at a membrane surface.
Moreover, a dissipative force between fluid particles and membrane vertices is set properly to
account for the no-slip boundary conditions at the membranesurface. More details on boundary
conditions can be found in [4,11].

2.3 Membrane stretching

The modeled RBC is subjected to stretching analogous to thatimposed on cells in optical tweez-
ers experiments [12]. A stretching forceFs up to200 pN is applied to the outermostN+ = ǫNv

vertices with the largestx coordinates in the positivex direction, and to the outermostN− = N+

vertices with the smallestx coordinates in the negativex direction, as shown in figure 4 (left).
The vertex fractionǫ is set to0.02, corresponding to the contact diameter of an attached silica
beaddc = 2 µm used in the experiments.
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Fig. 4: Schematic illustration of RBC deformation (left) and stretching response (right) for
different number of verticesNv in the network representation. The diamonds represent experi-
mental results of Suresh et al. [12].

For each external force, the cell is allowed to relax to an equilibrium stretched state. The
axial diameter,DA, defined as the maximum distance between the sets of pointsN+ andN−,
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and the transverse diameter,DT , defined as the maximum distance between two points from
the set of all vertices projected on a plane perpendicular tothe axial diameter, are averaged
during a specified simulation time. Results presented in figure 4 (right) obtained withµ0 =
6.3× 10−6 N/m are in good agreement with experimental data for all levels of coarse graining.
Noticeable discrepancies for the transverse diameter may be due to experimental error. The
optical measurements were performed from a single observation angle. Numerical simulations
show that stretched cells may rotate in theyz plane. Consequently, measurements from a single
observation angle are likely to underpredict the maximum transverse diameter.

2.4 Membrane rheology: twisting torque cytometry

In recent experiments, Puig-de-Morales-Marinkovic et al.[13] applied optical magnetic twist-
ing cytometry (OMTC) to infer a dynamic complex modulus of the cell membrane. In this
procedure, the cell membrane response is measured locally by observing the motion of an at-
tached ferro-magnetic microbead driven by an oscillating magnetic field. The experiments have
confirmed that the membrane is a viscoelastic material. Our viscoelastic membrane model will
be tested against the results of optical magnetic twisting cytometry. The numerical simulations
emulate the aforementioned experiments where the motion ofa microbead attached to the top
of the biconcave cell due an oscillating torque is studied, as shown in figure 5 (left). The data
allow us to infer membrane properties such as the complex modulus.
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Fig. 5: Illustration of the numerical setup of the twisting torque cytometry (left). Response of
an attached microbead subject to an oscillating torque exerted on the bead (right).

In the numerical model, the microbead is represented by a setof vertices deployed on a rigid
sphere. A group of cell vertices near the bottom of the microbead simulates the area of attach-
ment. The torque on the microbead is applied only to the bead vertices. Figure 5 (right) presents
a typical response to an oscillating torque. The bead motion, monitored by the displacement of
the center of mass, oscillates with the applied torque frequency. The oscillation is shifted by a
phase angle,φ, that depends on the applied frequency. In the case of a purely elastic material
and in the absence of inertia, the phase angleφ would be zero for any torque frequency.
The linear complex modulus of a viscoelastic material can beextracted from the phase angle
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and torque frequency using the relations

g′(ω) =
∆T

∆d
cosφ, g′′(ω) =

∆T

∆d
sinφ, (8)

whereg′(ω) andg′′(ω) are two-dimensional storage and loss moduli and∆T and∆d are the
torque and bead displacement amplitudes. In the absence of inertia, the phase angleφ ranges
between0 andπ/2.
Figure 6 compares the computed complex modulus with experimental data [13]. Good agree-
ment is found for bending rigiditykc = 4.8 × 10−19 J and membrane viscosityηm = 0.022
Pa s. Since the Young’s modulus of healthy RBCs is fixed by the cell stretching test, figure 6
essentially illustrates the dependence ofg′ on the membrane bending rigidity. To ensure good
agreement with experiments, the bending rigidity of a healthy cell must be in the range4 to
5× 10−19 J, which is twice the widely adopted value,kc = 2.4× 10−19 J.
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Fig. 6: Graphs of the functionsg′ andg′′ obtained from simulations with different membrane
viscosities and bending rigidities. The numerical resultsare compared with experimental data
by Puig-de-Morales-Marinkovic et al. [13]. The inset illustrates the effect of inertia for high
frequencies of the driving torque.

For small displacements, the loss modulusg′′ depends mainly on the membrane viscosity and is
insensitive to the membrane’s elastic properties. The simulated loss modulus follows a power
law in frequency with exponentα = 0.85. In the experiments, the exponent is approximately
0.75. The agreement is fair in view of fitting errors in only two frequency decades in simulations
and experiments. The inset in figure 6 shows that inertial effects affectg′ at high frequencies.
Decreasing the bead mass would allow us to obtain rheological data for higher torque frequen-
cies, but the computational cost is high since a small time step is required. When the loss
modulus dominates the storage modulus, the bead-displacement amplitude at fixed torque am-
plitude is extremely small and hard to measure in the laboratory. However, bead displacements
in simulations can be successfully detected on a scale of several nanometers.
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2.5 Tube flow

The mean velocity of Poiseuille flow in a circular tube is defined as

v̄ =
1

S

∫∫

v(r) S. , (9)

whereS is the cross-sectional area andv(r) is the axial velocity. For a Newtonian fluid,̄v =
vc/2, wherevc is the centerline velocity.
At low flow rates, a RBC suspended in tube flow retains its biconcave shape. As the driving
pressure gradient increases, the cell obtains the parachute-like shape shown in figure 7 (left) for
a tube with diameter9µm, in agreement with experimental observations [14]. To identify the
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Fig. 7: Parachute shape of a cell suspended in Poiseuille flow through a 9µm diameter tube
(left). Excess axial eigenvalue of the gyration tensor above that for a biconcave disk for different
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biconcave-to-parachute transition, we compute the gyration tensor

Gmn =
1

Nv

∑

i

(rim − rCm)(r
i
n − rCn ), (10)

whereri are the membrane vertex coordinates,rC is the membrane center of mass, andm,
n stand forx, y, or z. The eigenvalues of the gyration tensor allow us to characterize the
cell shape. For the equilibrium biconcave shape, the gyration tensor has two large eigenvalues
corresponding to the midplane of the biconcave disk, and onesmall eigenvalue corresponding
to the disk thickness. At the biconcave-to-parachute transition, the small eigenvalue increases
indicating that the cell elongates along the tube axes.
Figure 7 (right) illustrates the dependence of the axial eigenvalue on the mean flow velocity for
different membrane bending rigidities. The dashed line describes the biconcave-to-parachute
transition. For healthy cells, the transition occurs at a mean velocity of about65 µm/s. The tran-
sition for larger bending rigidity occurs at stronger flows.The critical mean velocity changes
almost linearly with the bending rigiditykc. These results are consistent with numerical simu-
lations by Noguchi & Gompper [15].
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Next we model blood flow in tubes . Blood is simulated with a number of RBCs suspended in
a solvent. The flow property of interest is the relative apparent viscosity of the RBC suspension
defined as

λapp =
ηapp
ηo

, ηapp =
nfR2

0

8ū
, (11)

wheren is the suspension number density,f is the force exerted on each particle,R0 is the tube
radius,ηo is the solvent viscosity, and̄u is the bulk velocity calculated using equation (9). The
productnf is the streamwise pressure gradient,∆P/L, whereL is the tube length.
The inset plot of figure 8 shows a sample snapshot of blood flowing in a tube of diameter
D = 20 µm after steady state is achieved. We observe a RBC core formation with a thin
plasma layer next to the tube walls. Figure 8 presents the relative apparent blood viscosity for
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Fig. 8: Relative apparent viscosity in comparison with experimental data [16] for different
hematocrit values and tube diameters. The inset plot shows asnapshot of RBCs in Poiseuille
flow in a tube of a diameterD = 20 µm at hematocrit0.45.

different hematocrit values (Ht) and tube diameters in comparison with experiments [16]. The
apparent blood viscosity decreases with tube diameter which is called the Fahraeus-Lindqvist
effect [17] found in experiments of blood flow in glass tubes.RBCs in tube flow migrate to the
tube center yielding a cell-free layer (CFL) near the wall absent of RBCs. The fluid viscosity
of the CFL region is much smaller than that of the tube core populated with RBCs providing
an effective lubrication for the core to flow. The thickness of the CFL is directly related to the
Fahraeus-Lindqvist effect. Thus, in small tubes the CFL thickness is significant with respect to
the tube diameter resulting in a smaller relative apparent viscosity in comparison with that in
larger tubes, where the CFL thickness becomes negligible with respect to the tube diameter.
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3 White blood cells

Leukocytes or WBCs have a more complex structural organization than RBCs, see figure 1.
In comparison with RBCs, WBCs contain the nucleus characterized by low deformability, a
complex cytoplasm with many organelles, and the cytoskeleton, which connects the cell mem-
brane, cytoplasm, and nucleus. WBCs are less deformable than RBCs and are spherical in shape
with diameter between7 µm and20 µm. However, WBCs are also able to undergo significant
deformation when entering the smallest blood capillaries.
WBCs may adhere to the vascular endothelium , which is important for their physiological
function in the immune response. WBC adhesion is mediated byreceptors concentrated on a
small area of microvilli tips [20], which are observed as theruffles [18, 19] on the WBC sur-
face. These receptors are known to be from the selectin family and have fast association and
dissociation kinetics [21], which facilitates WBC adhesion even under fast blood flow condi-
tions. Trajectories of a rolling adhered WBCs are often characterized by a “stop-and-go” motion
rather than rolling with a constant velocity along the vessel wall [22, 23]. The sporadic rolling
behavior is attributed to a stochastic nature of formation and dissociation of receptor-ligand
bonds. However, at high shear rates WBC rolling was observedto be less erratic and shows
smaller variations in rolling velocity than at low shear rates [23]. In addition, rolling at high
shear rates is further stabilized by an increase in the number of receptor-ligand bonds [23].

3.1 Adhesion model

Adhesion of WBCs to endothelium is mediated by the interactions between receptors and lig-
ands which are the adhesion sites distributed on a cell and a wall, respectively. Figure 9 shows
a sketch of a WBC with surface receptors and ligands distributed uniformly on the wall. A po-

Fig. 9: A sketch of a modeled WBC above the lower wall. Receptors are drawn in blue and
ligands in red.

tential bond between a receptor and a ligand may be formed only if the receptor is close enough
to the free ligand, which is characterized by the reactive distancedon. A ligand is called free
if it is not bound to any receptors. During the time a receptoris within the distancedon to a
free ligand, a bond can be formed with on-ratekon. Reversely, existing bonds are ruptured with
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off-rate koff or if their length exceeds the rupture distancedoff . The rateskon andkoff are
defined as follows

kon = k0

on exp

(

−σon(l − l0)
2

2kBT

)

, koff = k0

off exp

(

σoff (l − l0)
2

2kBT

)

, (12)

wherek0
on andk0

off are the reaction rates at the distancel = l0 between a receptor and a ligand
with the equilibrium spring lengthl0 defined below. The effective on and off strengthsσon and
σoff define a decrease or an increase of the corresponding rates within the interaction lengths
don anddoff , andkBT is the unit of energy. The force exerted on the receptors and ligands by
an existing bond is given by

F (l) = ks(l − l0), (13)

whereks is the spring constant. The probabilities of bond formationand dissociation are defined
asPon = 1 − exp (−kon∆t) andPoff = 1 − exp (−koff∆t), where∆t is the time step in
simulations. This adhesion model is a slight modification ofthe well-known adhesive dynamics
model developed by Hammer and Apte [24]. In their modelσon = σts andσoff = ks − σts,
whereσts is the transition state spring constant.
During the course of a simulation the receptor/ligand interactions are considered every time
step. First, all existing bonds between receptors and ligands are checked for a potential disso-
ciation according to the probabilityPoff . A bond is ruptured ifξ < Poff and left unchanged
otherwise, whereξ is a random variable uniformly distributed on[0, 1]. If a bond is ruptured
the corresponding ligand is available for new binding. Second, all free ligands are examined for
possible bond formations. For each free ligand we loop over the receptors within the distance
don, and bond formation is attempted for each found receptor according to the probabilityPon.
This loop is terminated when a bond is formed. Finally, the forces of all remaining bonds are
calculated and applied.
Note that this algorithm permits only a single bond per ligand, while receptors may establish
several bonds if several ligands are free within their reaction radius. This provides an additional
capability for the adhesive dynamics model compared with that employing one-to-one interac-
tions between receptors and ligands. Also, this assumptionappears to furnish a more realistic
representation of adhesive interactions of WBCs with a wall, since leukocyte membrane has a
number of microvilli, where the receptors that mediate celladhesion are clustered.

3.2 WBC adhesive dynamics

Modeling of WBC adhesive dynamics shows different types of cell behavior such as firm ad-
hesion, continuous rolling over a wall, and rolling in a “stop-and-go” manner. Cytoadhesive
dynamics depends on a number of factors such as density and distribution of the available re-
ceptors and ligands, their interactions (e.g., bond formation/dissociation rates, bond strength),
cell properties (e.g., cell shape, elasticity, bending rigidity), and flow conditions (e.g., shear
rate, shear stress). The effect of some of those conditions will be examined next.
The simulations of WBC adhesive dynamics are performed for ranges of unstressed on and off
rates. Similar ranges were considered in [25] for the adhesive dynamics of a solid spherical
particle. Several states of WBC adhesive dynamics can be defined based on the average cell
velocity v̄c and pause timēτp. The average pause time is calculated from the time sequence
{Λi}i=1...T of WBC motion defined as

Λi =

{

1 if vic > 0.01Vm, in motion
0 if vic ≤ 0.01Vm, arrest

, (14)
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wherei denotes a step in time,T is the total number of steps,Vm is the flow velocity at the
channel center, andvic = (xi

c − xi−1
c )/∆t is the WBC center-of-mass velocity whilexi

c is the
cell center-of-mass and∆t is the time interval. This sequence is then analyzed to calculate
the average length of an arrest (average pause time) which isequivalent to the average length
of continuous subsequences of zeros multiplied by∆t. The average cell velocity is defined as
follows

v̄c =
1

T − 1

T
∑

i=2

vic. (15)

The WBC dynamics is divided into four states according to theaverage pause timēτp and cell
velocity v̄c:

1) Firm adhesion:the state of the WBC arrest which is characterized byτ̄p > 0.5 s. Infre-
quent small jumps in the cell velocity are possible due to rare bond dissociation.

2) Stop-and-go rolling:the cell motion is described by frequent interchanges between WBC
arrest and mobility. This state is defined by0.1 s < τ̄p ≤ 0.5 s.

3) Stable rolling: the state corresponds to WBC motion with a relatively stablerolling ve-
locity. It is established if̄τp ≤ 0.1 s andv̄c < 0.8Vm.

3) Free motion:the WBC is moving freely with the channel flow, when adhesion interactions
are not able to resist a lift on the cell due to hydrodynamic flow. This state is characterized
by τ̄p ≤ 0.1 s andv̄c ≥ 0.8Vm.

The time interval is chosen to be∆t = 0.01 s. The simulations are run for10 s, while data
analysis is performed for times after1 s to exclude flow startup effects.
Figure 10 presents the center-of-mass displacements (xc) and velocities (vc) for different WBC
adhesion states. The “A” plots show that firm adhesion is characterized by relatively long times
of cell arrests. However, rare events of sudden motion may bepresent due to erratic bond
dissociation. They are represented by several submicron steps in the WBC displacement and
the corresponding peaks in the cell velocity shown in figure 10 “A”. Note that WBC velocity
fluctuates around the zero value and frequently displays small negative values; however, no net
motion in the negativex direction is observed. This may be due to the presence of thermal fluc-
tuations and/or a retraction of a WBC and its bonds to the wallafter deformation by the flow,
since the center-of-mass velocity is measured based on current and previous positions with the
time interval∆t = 0.01 s. The stop-and-go rolling shown in figure 10 “B” is well described by
a staircase-like displacement directly related to frequent peaks in the cell velocity and intermit-
tent WBC stops. In contrast, stable rolling is characterized by a near linear WBC displacement
shown in figure 10 “C”. Finally, under free motion (fig. 10 “D”)WBCs move in shear flow near
the channel center with the average velocity slightly lowerthanVm = 1500 µm/s. The adhe-
sive interactions are not strong enough to counterbalance cell-wall hydrodynamic interactions,
which force WBCs to migrate to the channel center. After WBC detachment from the wall, no
further interaction with the wall is encountered.
Figure 11 shows the WBC adhesion dynamics states for wide ranges of unstressed on (k0

on) and
off (k0

off ) rates normalized by the flow shear rate. This plot is calledon-off state diagramsimilar
to that by Korn and Schwarz [25]. Firm adhesion occurs if the bond dissociation rate is small.
Under this condition bond rupture is a rare event, while bonds are formed with a faster rate to
keep a WBC in arrest. At low values ofk0

on the border between firm adhesion and stop-and-go
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Fig. 10: Center-of-mass displacements (xc) and velocities (vc) for various adhesion states of a
WBC. A - firm adhesion, B - stop-and-go rolling, C - stable rolling, and D - free motion.

rolling motion (black dashed line in figure 11) is achieved bya proper balance between the
association and dissociation rates. However, this border shows no dependence on the ratek0

on

at its high values. This behavior is due to a limited number ofavailable receptors and ligands
for binding. Thus, if there are no free receptors or analogously no free ligands left for binding,
a further increase ofk0

on will have no effect on the firm adhesion of a WBC.
As we increase the bond dissociation ratek0

off for a fixedk0
on, WBC firm adhesion transits into

the stop-and-go rolling state. Note that this behavior is observed in a thin stripe region of the
on-off state diagram in figure 11 right above the “firm adhesion” region. In light of this, the
stop-and-go rolling can also be thought of as an unstable firmadhesion. Hence, if the ratek0

off

becomes significant enough in comparison withk0
on to allow relatively frequent random ruptures

of bonds, a WBC is subject to a stop-and-go motion characterized by step-like displacements
and velocity jumps shown in figure 10 “B”.
Upon a further increase ink0

off with respect tok0
on a WBC shows stable rolling or detaches from

the wall and undergoes a free motion in the flow. Note that stable rolling is only possible if the
association rate is large enough to facilitate fast bond formation. Thus, stable WBC rolling on
the wall can be described by a dynamic rupture of bonds at the back of the cell contact area and
their quick formation at the front of a WBC. Figure 11 shows that for smallk0

on values, a WBC
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Fig. 11: On-off state diagram of WBC adhesion dynamics states: firm adhesion (squares), stop-
and-go rolling (triangles), stable rolling (circles), andfree motion (crosses). The letters “A-D”
mark simulations shown in figure 10. Dashed lines are drawn for the eye to identify regions
corresponding to different states.

transits into a free motion above the border of the stop-and-go rolling region (blue dashed line).
In addition, a WBC detaches from the wall if the bond dissociation rate becomes comparable
with the rate of bond formation.

4 Summary

Numerical simulations of blood cells and blood flow have shown a tremendous advancement
in recent years allowing for a realistic and quantitative description of blood flow and blood
related processes. The presented RBC model is able to accurately capture RBC mechanics,
rheology, and dynamics. The membrane skeleton is constructed as a network of interconnected
viscoelastic springs that provide RBC elasticity analogously to the spectrin network, and vis-
cous dissipation similarly to that in the lipid bilayer. This network also incorporates the mem-
brane bending rigidity to mimic bending resistance of the lipid bilayer. In addition, local and
global area constraints ensure the membrane incompressibility of real RBCs, while the volume
constraint ensures the incompressibility of the inner solvent.
Adhesive dynamics of WBCs can be captured using the stochastic bond formation/dissociation
model, which is able to reproduce several states of WBC adhesion in flow such as firm adhesion,
stop-and-go rolling, and stable rolling. The predictions are in quantitative agreement with recent
experimental observations and the modeling method for blood cells and blood flow provides
new capabilities for guiding and interpreting futurein vitro andin vivo studies and may aid to
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obtain realistic predictions of blood flow in microcirculation and in microfluidic devices.

Appendices

A Dissipative particle dynamics

Dissipative particle dynamics (DPD) [5, 26] is a mesoscopicparticle method, where each par-
ticle represents amolecular clusterrather than an individual atom, and can be thought of as a
soft lump of fluid. The DPD system consists ofN point particles of massmi, positionri and
velocity vi. DPD particles interact through three forces: conservative (FC

ij), dissipative (FD
ij ),

and random (FR
ij) forces given by

F
C
ij = FC

ij (rij)r̂ij, F
D
ij = −γωD(rij)(vij · r̂ij)r̂ij, F

R
ij = σωR(rij)

ξij√
dt
r̂ij, (16)

where r̂ij = rij/rij, andvij = vi − vj . The coefficientsγ and σ define the strength of
dissipative and random forces, respectively. In addition,ωD andωR are weight functions, and
ξij is a normally distributed random variable with zero mean, unit variance, andξij = ξji. All
forces are truncated beyond the cutoff radiusrc. The conservative force is given by

FC
ij (rij) = aij(1− rij/rc) for rij ≤ rc, (17)

whereaij is the conservative force coefficient between particlesi andj. The random and dis-
sipative forces form a thermostat and must satisfy the fluctuation-dissipation theorem in order
for the DPD system to maintain equilibrium temperatureT [27]. This leads to

ωD(rij) =
[

ωR(rij)
]2
, σ2 = 2γkBT, (18)

wherekB is the Boltzmann constant. The choice for the weight functions is as follows

ωR(rij) = (1− rij/rc)
k for rij ≤ rc, (19)

wherek is an exponent. The time evolution of velocities and positions of particles is determined
by the Newton’s second law of motion

dri = vidt, dvi =
1

mi

∑

j 6=i

(

F
C
ij + F

D
ij + F

R
ij

)

dt. (20)

The above equations of motion are integrated using the modified velocity-Verlet algorithm [26].
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