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1 Introduction

Blood is circulated around the entire body performing a nandj physiological functions. Its
main functions are the transport of oxygen and nutrientetls of the body, removal of waste
products such as carbon dioxide and urea, and circulationadécules and cells which me-
diate the organism’s defense and immune response and playdarhental role in the tissue
repair process. Abnormal blood flow is often correlated veitbroad range of disorders and
diseases which include hypertension, anemia, atherosttemalaria, and thrombosis. Under-
standing the rheological properties and dynamics of blagts @and blood flow is crucial for
many biomedical and bioengineering applications. Examjplelude the development of blood
substitutes, the design of blood flow assisting devices,drad delivery. In addition, under-
standing of vital blood related processes in health andadsenay aid in the development of
new effective treatments.

Blood is a physiological fluid that consists of erythrocytesed blood cells (RBCs), leuko-
cytes or white blood cells (WBCs), thrombocytes or platlend plasma containing various
molecules and ions. RBCs constitute approximatély of the total blood volume, WBCs
around0.7%, and the rest is taken up by blood plasma and its substanags.mi@roliter of
blood contains abodut million RBCs, roughly5 thousand WBCs, and approximately a quarter
million platelets.

Figure 1 shows a scanning electron micrograph of blood .celisnan RBCs have a relatively

Fig. 1: A scanning electron micrograph of blood cells. From leftight: human erythrocyte,
thrombocyte (platelet), leukocyte.

simple structure in comparison to other cells. RBCs reserbidoncave disks and contain a
viscous cytosol enclosed by a membrane. At the stage of th& fleBnation, the nucleus and
other organelles that are generally present in other eokiargells are ejected, leaving behind a
relatively homogeneous cytoplasm and no inner cytoskeld®®C cytoplasm is a hemoglobin
rich solution, which is able to bind oxygen. Therefore, th@mRBC function is oxygen supply
and delivery to body tissues. RBCs are extremely deformadecan pass through capillaries
with a diameter several times smaller than the RBC size.
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In comparison to RBCs, WBCs have one or multiple nuclei, &ffiesthan RBCs and have a
spherical shape. WBCs are an important part of the body’surmersystem. They protect the
body against invading bacteria, parasites, and virusesllrygkthese microorganisms through
phagocytosis ingestion and other antigen-specific cytotmechanisms. There exist different
types of leukocytes (e.g., neutrophils, eosinophils, pa#gs, monocytes, and lymphocytes),
each of which is designed to fight a specific type of infection.

Freely circulating WBCs are able to adhere to the vasculdotelium, which is a crucial step
in the immune response [1]. Rolling along the vessel wativedl WBCs to efficiently monitor
for potential molecular signals, since the rolling velgaitt the vessel wall is much smaller
than that of the blood flow. In fact, microfluidic experimef2$ showed that WBCs adhere
only above a critical threshold of shear. Firm adhesion okéeytes is generally recognized
as the final step of the WBC adhesive dynamics within a vesglefurther cross-endothelium
migration into the surrounding tissue.

In this chapter we present a cell model [3, 4] which is coriderd by a network of viscoelastic
springs combined with bending energy and constraints fdase-area and volume conserva-
tion. The model is used within the framework of the DissipatParticle Dynamics (DPD)
method [5] (see appendix A for details) and is able to repcedealistic mechanical and rhe-
ological properties and dynamics of blood cells. Simulatiesults include several single cell
tests, blood flow in microtubes ranging frorfi to 40 microns in diameter, and WBC adhesive
dynamics, and are compared with available experiments.

2 Red blood cells

A healthy human RBC has a biconcave shape with an averagestdinwf approximatelys
um. Figure 2 shows a schematic of a RBC membrane which congdiat8md bilayer with an
attached cytoskeleton formed by a network of the spectoteims linked by short filaments of
actin. The lipid bilayer is considered to be a nearly viscand area preserving membrane [6],
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Fig. 2: A schematic of the RBC membrane structure.

while RBC elasticity is attributed to the attached spectrtwork, as is the integrity of the
entire RBC when subjected to severe deformations in thdlaaps as small a8 ym. The
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RBC membrane encloses a viscous cytosol whose viscosigveya times larger than that
of blood plasma under physiological conditions. Mechdracal rheological characteristics of
RBCs and their dynamics are governed by: membrane elaslizianous properties, bending
resistance, and the viscosities of the external/interoalsl

2.1 RBC membrane model

The RBC membrane shown in figure 3 is constructed\pyparticles{x;_;_n,} which corre-

Fig. 3: A sketch of a RBC membrane network.

spond to a two-dimensional triangulated network [4, 7] oa RBC surface measured experi-
mentally [8] and is given by

4(x2 + y2) 22 +q? (22 + y?)?
Z:iDO\/l_Tg ag + aq DS +GZT§ , (1)

where Dy = 7.82 um is the average diametery, = 0.0518, a; = 2.0026, anda, = —4.491.
The surface area and volume of this RBC are equaBfoum? and94 um?, respectively.
The vertices of the network are connectedMysprings with the following potential energy
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wherel; is the length of the spring, /,, is the maximum spring extension,; = [;/l,,, p is
the persistence lengthz 1" is the energy unit, is the spring constant, andis a power. The
above equation consists of the attractive wormlike chaiemial and a repulsive potential for
n > 0 such that a non-zero equilibrium spring length can be imgose

Membrane viscosity is incorporated into the RBC model tgioa dissipative force for each
spring. The general framework of the fluid particle modeld®pws us to define dissipati\lég
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and randorrFfj: forces, which satisfy the fluctuation-dissipation balapoaviding consistent
temperature of the RBC membrane in equilibrium. The forcesaa follows

FZ = _’YTVij - VC(Vij - €jj)e;, 3)

tr dWZ
fit = 2k (VIS + Va7 =) @
wherey™ andy“ are dissipative parametess; is the relative velocity of spring ends;[dW ;]
is the trace of a random matrix of independent Wiener incresW ;, anddW;, = dW;; —
tr[dW;]1/3 is the traceless symmetric part.
The bending resistance of the RBC membrane is modeled by

Vi= Y k[l —cos(6; — )], (5)

JEL.. N,

wherek; is the bending constar; is the instantaneous angle between two adjacent triangles
having the common edgg andé, is the spontaneous angle.

Moreover, the RBC model requires the area and volume coasenvconstraints, which mimic
area-incompressibility of the lipid bilayer and incompsuslity of a cytosol, respectively. Such
constraints are imposed as follows

3 ka(Aj = Ao)® | k(A= AF)? | Ko(V = V§)?
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where NV, is the number of triangles in the membrane netwotk s the triangle area, and;,
k, andk, are the local area, global area and volume constraint cesffs; respectively. The
terms A andV are the total RBC area and volume, whil¢* andV/** are the specified total
area and volume, respectively. More details on the RBC moatebe found in [3, 4].

2.2 Membrane macroscopic properties and boundary conditios

Linear analysis of a regular hexagonal network allows usniguely relate the model param-
eters and the network macroscopic elastic properties (shesa-compression, and Young’s
moduli), see [3, 4] for details. Thus, the membrane shearutusds given by

_ V3kpT T 1 1 N V3ky(n 4+ 1) @)
N 4pl,, g 416”rl ’

Ho 21 —wf  A(1—wg)? 4

wherel, is the equilibrium spring length angy = [, /1,,,. The area-compressidi and Young'’s
Y moduli are equal t@u + k, + kg and4d K po/ (K + 1), respectively.

The relation between the model bending coefficigrand the macroscopic bending rigidity

of the Helfrich model [10] can be derived &s = 2k./+/3 for a spherical membrane [4, 11].
This expression describes bending contribution of thegnierequation (5), but may not fully
represent actual bending resistance of the RBC membraoe siembrane bending may also
result in local in-plane deformations.

The membrane shear viscosity, is related to the dissipative parameters, 1 asn,, =
V3(7yT +~¢/4). Herey™ accounts for a large portion of viscous contribution, anddee/© is
set toy? /3 in all simulations.
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In practice, the given macroscopic RBC properties servenasfut to be used to calculate the
necessary mesoscopic model parameters from the equabowe without any manual adjust-
ment. A simulation of a RBC in equilibrium shows that the meamte may develop local bumps
due to stress anomalies in a membrane triangulation sineéagork on a closed surface cannot
consist of triangles whose edges have the same lengths. |&ailstress artifacts depend on
the network regularity and the ratio of the membrane elastatbending contributions given by
the Foppl-von Karman number= Y R2 /k., whereR, = \/ Alet/(4r). To eliminate the stress
artifacts we employ éstress-free”model obtained by computational annealing. Thus, the equi-
librium length?} of each spring is set to the edge length after triangulation = 1, ..., N,.
This results in an individual maximum spring extensign= [, x z, (z, is a constant) and the
spring parameters calculated for each spring using equéfiofor givenyu,. This modification
provides a network free of local stress anomalies.

Both internal and external fluids are simulated by a coltetof free particles and are sepa-
rated by the RBC membrane through bounce-back reflectiotisenfi at a membrane surface.
Moreover, a dissipative force between fluid particles andnim@ne vertices is set properly to
account for the no-slip boundary conditions at the membsami&ce. More details on boundary
conditions can be found in [4, 11].

2.3 Membrane stretching

The modeled RBC is subjected to stretching analogous tantipatsed on cells in optical tweez-
ers experiments [12]. A stretching foréé up to200 pN is applied to the outermost, = eN,
vertices with the largest coordinates in the positivedirection, and to the outermodt. = N,
vertices with the smallest coordinates in the negativedirection, as shown in figure 4 (left).
The vertex fractior is set t00.02, corresponding to the contact diameter of an attachedsilic
beadd. = 2 um used in the experiments.
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Fig. 4. Schematic illustration of RBC deformation (left) and sthetg response (right) for
different number of verticed, in the network representation. The diamonds representrexpe
mental results of Suresh et al. [12].

For each external force, the cell is allowed to relax to anildgium stretched state. The
axial diameter,D 4, defined as the maximum distance between the sets of p¥inasnd V_,
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and the transverse diametéd;, defined as the maximum distance between two points from
the set of all vertices projected on a plane perpendiculdhéoaxial diameter, are averaged
during a specified simulation time. Results presented inrdigu(right) obtained withu, =

6.3 x 1079 N/m are in good agreement with experimental data for alllieécoarse graining.
Noticeable discrepancies for the transverse diameter reagule to experimental error. The
optical measurements were performed from a single obsernvahgle. Numerical simulations
show that stretched cells may rotate in theplane. Consequently, measurements from a single
observation angle are likely to underpredict the maximuangrerse diameter.

2.4 Membrane rheology: twisting torque cytometry

In recent experiments, Puig-de-Morales-Marinkovic e{E3] applied optical magnetic twist-

ing cytometry (OMTC) to infer a dynamic complex modulus oé tbell membrane. In this

procedure, the cell membrane response is measured logatpserving the motion of an at-

tached ferro-magnetic microbead driven by an oscillatirgnetic field. The experiments have
confirmed that the membrane is a viscoelastic material. @aoelastic membrane model will

be tested against the results of optical magnetic twistypgroetry. The numerical simulations
emulate the aforementioned experiments where the motiannoicrobead attached to the top
of the biconcave cell due an oscillating torque is studiedsl@wn in figure 5 (left). The data
allow us to infer membrane properties such as the complexufned
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Fig. 5: lllustration of the numerical setup of the twisting torqugametry (left). Response of
an attached microbead subject to an oscillating torque &®don the bead (right).

In the numerical model, the microbead is represented by afsedrtices deployed on a rigid
sphere. A group of cell vertices near the bottom of the mieazbsimulates the area of attach-
ment. The torque on the microbead is applied only to the begttes. Figure 5 (right) presents
a typical response to an oscillating torque. The bead motmmitored by the displacement of
the center of mass, oscillates with the applied torque faqy. The oscillation is shifted by a
phase anglep, that depends on the applied frequency. In the case of aypeledtic material
and in the absence of inertia, the phase apgl®uld be zero for any torque frequency.

The linear complex modulus of a viscoelastic material caeXieacted from the phase angle
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and torque frequency using the relations

, AT . AT |
J(w)= F 000, g'(w)=F 5o, ®

whereg'(w) andg”(w) are two-dimensional storage and loss moduli &ifl and Ad are the
torque and bead displacement amplitudes. In the absencemifi the phase angleranges
betweerD andr /2.

Figure 6 compares the computed complex modulus with exmatiah data [13]. Good agree-
ment is found for bending rigidity,. = 4.8 x 107! J and membrane viscosity, = 0.022

Pa s. Since the Young’s modulus of healthy RBCs is fixed by #flestretching test, figure 6
essentially illustrates the dependencey'obn the membrane bending rigidity. To ensure good
agreement with experiments, the bending rigidity of a lgattell must be in the rangé to

5 x 1071 J, which is twice the widely adopted value,= 2.4 x 10~ J.
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Fig. 6: Graphs of the functiong’ and ¢” obtained from simulations with different membrane
viscosities and bending rigidities. The numerical resats compared with experimental data
by Puig-de-Morales-Marinkovic et al. [13]. The inset iltuestes the effect of inertia for high
frequencies of the driving torque.

For small displacements, the loss modujlisiepends mainly on the membrane viscosity and is
insensitive to the membrane’s elastic properties. The lsitad loss modulus follows a power
law in frequency with exponent = 0.85. In the experiments, the exponent is approximately
0.75. The agreement is fair in view of fitting errors in only twodueency decades in simulations
and experiments. The inset in figure 6 shows that inertigotdf affecty’ at high frequencies.
Decreasing the bead mass would allow us to obtain rheolbdgta for higher torque frequen-
cies, but the computational cost is high since a small tirep & required. When the loss
modulus dominates the storage modulus, the bead-dispéateamplitude at fixed torque am-
plitude is extremely small and hard to measure in the laboyaHowever, bead displacements
in simulations can be successfully detected on a scale efaavanometers.
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2.5 Tube flow

The mean velocity of Poiseuille flow in a circular tube is defiras

=3 [[o0)s (©)

whereS is the cross-sectional area an@) is the axial velocity. For a Newtonian fluid, =
v./2, Whereuv, is the centerline velocity.

At low flow rates, a RBC suspended in tube flow retains its btewe shape. As the driving
pressure gradient increases, the cell obtains the paetikatshape shown in figure 7 (left) for
a tube with diameted.m, in agreement with experimental observations [14]. To idgmhe
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Fig. 7: Parachute shape of a cell suspended in Poiseuille flow thraugum diameter tube
(left). Excess axial eigenvalue of the gyration tensor atibat for a biconcave disk for different
bending rigidities (right).

biconcave-to-parachute transition, we compute the gymagnsor
1 4 .
Gmn - E Z(Tin - T%)(T‘; - Tg)v (10)

wherer’ are the membrane vertex coordinateS,is the membrane center of mass, and

n stand forz, y, or z. The eigenvalues of the gyration tensor allow us to charaetg¢he
cell shape. For the equilibrium biconcave shape, the gymagnsor has two large eigenvalues
corresponding to the midplane of the biconcave disk, andsomal eigenvalue corresponding
to the disk thickness. At the biconcave-to-parachute itians the small eigenvalue increases
indicating that the cell elongates along the tube axes.

Figure 7 (right) illustrates the dependence of the axiateiglue on the mean flow velocity for
different membrane bending rigidities. The dashed linecdiess the biconcave-to-parachute
transition. For healthy cells, the transition occurs at ameelocity of abou65 ym/s. The tran-
sition for larger bending rigidity occurs at stronger flowghe critical mean velocity changes
almost linearly with the bending rigidity.. These results are consistent with numerical simu-
lations by Noguchi & Gompper [15].
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Next we model blood flow in tubes . Blood is simulated with a im@mof RBCs suspended in
a solvent. The flow property of interest is the relative appawiscosity of the RBC suspension
defined as

o nfR?
Aapp = Uni)p’ Napp = ];u 0> (11)
wheren is the suspension number densitys the force exerted on each particl, is the tube
radius,n, is the solvent viscosity, andis the bulk velocity calculated using equation (9). The
productn f is the streamwise pressure gradieht?/ L, wherelL is the tube length.

The inset plot of figure 8 shows a sample snapshot of blood figwn a tube of diameter
D = 20 pum after steady state is achieved. We observe a RBC core famaitith a thin
plasma layer next to the tube walls. Figure 8 presents tlagivelapparent blood viscosity for

Ht=0.15
35
i Ht=10.3
i Ht=0.45
3_
%‘ i O experiments
g25F O simulations
2 I O
£ B
% i
g 2[ 8
o i
CU -
o I 9 B
215k 8
= |
o [ @]
x T @) 8 S
1
RN FEEEE SRNEE SN RRENY SRNES SRNES RN RNy SRR |
0.50

5 10 15 20 25 30 35 40 45 50
Tube diameter ( Lm)

Fig. 8: Relative apparent viscosity in comparison with experirakedata [16] for different
hematocrit values and tube diameters. The inset plot shosvepshot of RBCs in Poiseuille
flow in a tube of a diamete = 20 um at hematocri.45.

different hematocrit valuesH;) and tube diameters in comparison with experiments [16¢ Th
apparent blood viscosity decreases with tube diameterhwikicalled the Fahraeus-Lindqvist
effect [17] found in experiments of blood flow in glass tub@8Cs in tube flow migrate to the
tube center yielding a cell-free layer (CFL) near the wabeifit of RBCs. The fluid viscosity
of the CFL region is much smaller than that of the tube coreupaipd with RBCs providing
an effective lubrication for the core to flow. The thickne$she CFL is directly related to the
Fahraeus-Lindqvist effect. Thus, in small tubes the CFtkihess is significant with respect to
the tube diameter resulting in a smaller relative apparestosity in comparison with that in
larger tubes, where the CFL thickness becomes negligilifenespect to the tube diameter.
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3 White blood cells

Leukocytes or WBCs have a more complex structural orgaisizahan RBCs, see figure 1.
In comparison with RBCs, WBCs contain the nucleus charae@rby low deformability, a
complex cytoplasm with many organelles, and the cytostie|evhich connects the cell mem-
brane, cytoplasm, and nucleus. WBCs are less deformabidlB&s and are spherical in shape
with diameter betweefi ym and20 ym. However, WBCs are also able to undergo significant
deformation when entering the smallest blood capillaries.

WBCs may adhere to the vascular endothelium , which is ingportor their physiological
function in the immune response. WBC adhesion is mediategdgptors concentrated on a
small area of microvilli tips [20], which are observed as th#les [18, 19] on the WBC sur-
face. These receptors are known to be from the selectin yaamnidl have fast association and
dissociation kinetics [21], which facilitates WBC adhes®ven under fast blood flow condi-
tions. Trajectories of a rolling adhered WBCs are often abtarized by a “stop-and-go” motion
rather than rolling with a constant velocity along the véssdl [22, 23]. The sporadic rolling
behavior is attributed to a stochastic nature of formatiod dissociation of receptor-ligand
bonds. However, at high shear rates WBC rolling was obsetwdxt less erratic and shows
smaller variations in rolling velocity than at low shearaaf23]. In addition, rolling at high
shear rates is further stabilized by an increase in the nuoflyeceptor-ligand bonds [23].

3.1 Adhesion model

Adhesion of WBCs to endothelium is mediated by the inteoastibetween receptors and lig-
ands which are the adhesion sites distributed on a cell arallarespectively. Figure 9 shows
a sketch of a WBC with surface receptors and ligands digedbuniformly on the wall. A po-

Fig. 9: A sketch of a modeled WBC above the lower wall. Receptorsravendin blue and
ligands in red.

tential bond between a receptor and a ligand may be formeadfahle receptor is close enough
to the free ligand, which is characterized by the reactiwtagiced,,,. A ligand is called free

if it is not bound to any receptors. During the time a recepgawithin the distancel,,, to a
free ligand, a bond can be formed with on-r&tg. Reversely, existing bonds are ruptured with
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off-rate k., or if their length exceeds the rupture distantg;. The ratesk,, andk,;; are
defined as follows

Ton(l — 1p)? oopf(l = 1o)*
Kon = Koy exp <_W , hogs = koppexp ff%T : (12)

wherek), andk;, , are the reaction rates at the distance [, between a receptor and a ligand
with the equilibrium spring length, defined below. The effective on and off streng#f)s and
0.7y define a decrease or an increase of the corresponding rates wie interaction lengths
don, andd, sy, andkgT is the unit of energy. The force exerted on the receptors igashdis by
an existing bond is given by

F(l> = ks(l - l0>7 (13)
wherek, is the spring constant. The probabilities of bond formatiad dissociation are defined
asP,, = 1 —exp(—ko,At) and P,sr = 1 — exp (—korrAt), whereAt is the time step in
simulations. This adhesion model is a slight modificatiothefwell-known adhesive dynamics
model developed by Hammer and Apte [24]. In their maggl = o, ando,sr = ks — 0y,
whereo,, is the transition state spring constant.
During the course of a simulation the receptor/ligand imtéons are considered every time
step. First, all existing bonds between receptors and digame checked for a potential disso-
ciation according to the probabiliti,;;. A bond is ruptured i < F,;; and left unchanged
otherwise, wheré is a random variable uniformly distributed ¢ 1]. If a bond is ruptured
the corresponding ligand is available for new binding. $eall free ligands are examined for
possible bond formations. For each free ligand we loop dveréceptors within the distance
d,», and bond formation is attempted for each found receptasrdatg to the probability?,,.
This loop is terminated when a bond is formed. Finally, theeds of all remaining bonds are
calculated and applied.
Note that this algorithm permits only a single bond per lidawhile receptors may establish
several bonds if several ligands are free within their ieaatadius. This provides an additional
capability for the adhesive dynamics model compared wisth #mploying one-to-one interac-
tions between receptors and ligands. Also, this assumpappears to furnish a more realistic
representation of adhesive interactions of WBCs with a veitice leukocyte membrane has a
number of microvilli, where the receptors that mediate adhesion are clustered.

3.2 WBC adhesive dynamics

Modeling of WBC adhesive dynamics shows different typeselif lsehavior such as firm ad-
hesion, continuous rolling over a wall, and rolling in a ‘istand-go” manner. Cytoadhesive
dynamics depends on a number of factors such as density sindbaliion of the available re-
ceptors and ligands, their interactions (e.g., bond foiwnadissociation rates, bond strength),
cell properties (e.g., cell shape, elasticity, bendingdriyg), and flow conditions (e.g., shear
rate, shear stress). The effect of some of those conditidhbevexamined next.

The simulations of WBC adhesive dynamics are performeddoges of unstressed on and off
rates. Similar ranges were considered in [25] for the adleedynamics of a solid spherical
particle. Several states of WBC adhesive dynamics can beedebased on the average cell
velocity 7. and pause time,. The average pause time is calculated from the time sequence
{A;}i=1..7 of WBC motion defined as

A~—{ 1 if o) >0.01V,,, inmotion

e 14
0 if o <0.01V,,, arrest (14
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where: denotes a step in timd, is the total number of step$;, is the flow velocity at the
channel center, and, = (z%, — z'~1)/At is the WBC center-of-mass velocity whilé is the
cell center-of-mass andt is the time interval. This sequence is then analyzed to tatkeu
the average length of an arrest (average pause time) whetuisalent to the average length
of continuous subsequences of zeros multiplied\sy The average cell velocity is defined as

follows

1 T
Ve = ﬁ ; V- (15)
The WBC dynamics is divided into four states according toaherage pause timg and cell
velocity v,

1) Firm adhesion:the state of the WBC arrest which is characterized-py 0.5 s. Infre-
guent small jumps in the cell velocity are possible due te @nd dissociation.

2) Stop-and-go rollingthe cell motion is described by frequent interchanges bet&BC
arrest and mobility. This state is definedby s < 7, < 0.5 s.

3) Stable rolling: the state corresponds to WBC motion with a relatively stabling ve-
locity. It is established if, < 0.1 s andv, < 0.8V/,.

3) Free motion:the WBC is moving freely with the channel flow, when adhesraarnactions
are not able to resist a lift on the cell due to hydrodynamiw fldhis state is characterized
by 7, < 0.1 sandv. > 0.8V,.

The time interval is chosen to h&t = 0.01 s. The simulations are run far0 s, while data
analysis is performed for times aftérs to exclude flow startup effects.

Figure 10 presents the center-of-mass displacemegtaiid velocities4.) for different WBC
adhesion states. The “A’ plots show that firm adhesion isattarized by relatively long times
of cell arrests. However, rare events of sudden motion maprbsent due to erratic bond
dissociation. They are represented by several submicepssh the WBC displacement and
the corresponding peaks in the cell velocity shown in figus¢/Ax. Note that WBC velocity
fluctuates around the zero value and frequently displayd siegative values; however, no net
motion in the negative direction is observed. This may be due to the presence ahiddtuc-
tuations and/or a retraction of a WBC and its bonds to the afédr deformation by the flow,
since the center-of-mass velocity is measured based oentwand previous positions with the
time intervalAt = 0.01 s. The stop-and-go rolling shown in figure 10 “B” is well des&d by

a staircase-like displacement directly related to freqpeaks in the cell velocity and intermit-
tent WBC stops. In contrast, stable rolling is characterizg a near linear WBC displacement
shown in figure 10 “C”. Finally, under free motion (fig. 10 “DVYBCs move in shear flow near
the channel center with the average velocity slightly lotenV,,, = 1500 um/s. The adhe-
sive interactions are not strong enough to counterbalaaltevall hydrodynamic interactions,
which force WBCs to migrate to the channel center. After WBagdhment from the wall, no
further interaction with the wall is encountered.

Figure 11 shows the WBC adhesion dynamics states for widgesof unstressed okY ) and
off (k;gff) rates normalized by the flow shear rate. This plot is catleebff state diagrarsimilar

to that by Korn and Schwarz [25]. Firm adhesion occurs if thaeddissociation rate is small.
Under this condition bond rupture is a rare event, while Isoace formed with a faster rate to
keep a WBC in arrest. At low values &f the border between firm adhesion and stop-and-go
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Fig. 10: Center-of-mass displacemenis) and velocities4.) for various adhesion states of a
WBC. A - firm adhesion, B - stop-and-go rolling, C - stableing)] and D - free motion.

rolling motion (black dashed line in figure 11) is achievedayproper balance between the
association and dissociation rates. However, this borgievs no dependence on the rafe

at its high values. This behavior is due to a limited numbeailable receptors and ligands
for binding. Thus, if there are no free receptors or analatyono free ligands left for binding,
a further increase df°, will have no effect on the firm adhesion of a WBC.

As we increase the bond dissociation rafg; for a fixedk;,, WBC firm adhesion transits into
the stop-and-go rolling state. Note that this behavior isepbed in a thin stripe region of the
on-off state diagram in figure 11 right above the “firm adhe%i@gion. In light of this, the
stop-and-go rolling can also be thought of as an unstableddhesion. Hence, if the rakﬁff
becomes significant enough in comparison vidthto allow relatively frequent random ruptures
of bonds, a WBC is subject to a stop-and-go motion charaetery step-like displacements

and velocity jumps shown in figure 10 “B”.

Upon a further increase if),  with respect tdi), a WBC shows stable rolling or detaches from
the wall and undergoes a free motion in the flow. Note thatistedbing is only possible if the
association rate is large enough to facilitate fast bonoh&dion. Thus, stable WBC rolling on
the wall can be described by a dynamic rupture of bonds atdhk bf the cell contact area and
their quick formation at the front of a WBC. Figure 11 showattfor smallk?, values, a WBC
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Fig. 11: On-off state diagram of WBC adhesion dynamics states: fitmesion (squares), stop-
and-go rolling (triangles), stable rolling (circles), arfcee motion (crosses). The letters “A-D”
mark simulations shown in figure 10. Dashed lines are drawrilfe eye to identify regions
corresponding to different states.

transits into a free motion above the border of the stop-@mabslling region (blue dashed line).
In addition, a WBC detaches from the wall if the bond dissiorarate becomes comparable
with the rate of bond formation.

4 Summary

Numerical simulations of blood cells and blood flow have sh@vremendous advancement
in recent years allowing for a realistic and quantitativeatgtion of blood flow and blood
related processes. The presented RBC model is able to ée&lgucapture RBC mechanics,
rheology, and dynamics. The membrane skeleton is constiast a network of interconnected
viscoelastic springs that provide RBC elasticity anal@&iptio the spectrin network, and vis-
cous dissipation similarly to that in the lipid bilayer. hetwork also incorporates the mem-
brane bending rigidity to mimic bending resistance of tipedlibilayer. In addition, local and
global area constraints ensure the membrane incomprgysiibireal RBCs, while the volume
constraint ensures the incompressibility of the inner aoty

Adhesive dynamics of WBCs can be captured using the stachmstd formation/dissociation
model, which is able to reproduce several states of WBC aolhésflow such as firm adhesion,
stop-and-go rolling, and stable rolling. The predictioresia quantitative agreement with recent
experimental observations and the modeling method forcdbtmls and blood flow provides
new capabilities for guiding and interpreting futurevitro andin vivo studies and may aid to



D4.16 D. A. Fedosov

obtain realistic predictions of blood flow in microcircula and in microfluidic devices.

Appendices

A Dissipative particle dynamics

Dissipative particle dynamics (DPD) [5, 26] is a mesoscgaidicle method, where each par-
ticle represents enolecular clusterather than an individual atom, and can be thought of as a
soft lump of fluid. The DPD system consists 8fpoint particles of mass:;, positionr; and
velocity v;. DPD particles interact through three forces: consereeﬂmg), dissipative Ffj? ,

and random](‘fj:) forces given by

. S &ij .
F{ = F{(ri)ty,  FD =—w(ry)(vij - 8;)8y, FL = UWR(Tij)\/—;—tfz‘ja (16)

wheret;; = r;;/r;;, andv;; = v, — v;. The coefficientsy and o define the strength of
dissipative and random forces, respectively. In additioh,andw’ are weight functions, and
&i; is a normally distributed random variable with zero meant uariance, and;; = ¢;;. All
forces are truncated beyond the cutoff radiLsThe conservative force is given by

F§(riy) = ag(1 = rig/re) for ry <, 17)

whereaq,; is the conservative force coefficient between parti¢clasd;j. The random and dis-
sipative forces form a thermostat and must satisfy the fatein-dissipation theorem in order
for the DPD system to maintain equilibrium temperatéirf27]. This leads to

wD(Tij) = [wR(rij)}Q , o = 2vkgT, (18)
wherek is the Boltzmann constant. The choice for the weight fumdis as follows
wR(Tij) =(1- Tij/Tc)k for r;; <r, (29)

wherek is an exponent. The time evolution of velocities and posgiof particles is determined
by the Newton’s second law of motion
1 C D R
dr; = vidt, dv; = — > (FG +F)+F)at. (20)
b

The above equations of motion are integrated using the neddrglocity-Verlet algorithm [26].
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