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Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques,

the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and

can be considered as an improved DPD approach. Advantages of the SDPD method over con-

ventional DPD include the possibility of using an arbitrary equation of state, direct input of

transport properties, and a well-defined physical scale of discretized elements or fluid particles.

The SDPD method has been already applied to a number of mesoscopic problems involving

complex fluids. Despite several advantages of the SDPD method over the conventional DPD

model, the original formulation of SDPD by Español and Revenga (2003) lacks angular mo-

mentum conservation, leading to unphysical results for problems where the conservation of

angular momentum is essential. To overcome this limitation, the SDPD method is extended by

introducing a particle spin variable such that local and global angular momentum conservation

is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes

equation for fluids with spin, while thermal fluctuations are incorporated similar to the DPD

method. In this chapter, we describe the basics of the SDPD method and show several of its

applications including particle margination in blood flow. In addition, the SDPD method with

angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow

with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast

between inner and outer fluids. For both problems, the new SDPD method leads to simulation

predictions in agreement with the corresponding analytical theories, while the original SDPD

method fails to capture properly physical characteristics of the systems due to violation of an-

gular momentum conservation.

1 Introduction

Mesoscopic hydrodynamic simulations, such as the lattice Boltzmann (LB) method1, dissi-

pative particle dynamics (DPD)2–4, multi-particle collision dynamics (MPC)5, 6, smoothed

particle hydrodynamics (SPH)7, 8 etc., are frequently used to investigate a wide range of

problems including colloidal and polymer solutions, dynamics of microswimmers, tissue

growth, and flow behavior of vesicles and cells. All these examples include mesoscopic

length scales (e.g., the size of suspended particles) rendering the modeling on atomistic

level impossible. A continuum approximation is also not appropriate for such problems

due to the loss of necessary mesoscopic details. Thus, large scientific efforts have been

invested to derive reliable and efficient mesoscopic simulation techniques, which are able

to tackle a wide range of problems.

A recently established mesoscopic method, smoothed dissipative particle dynamics

(SDPD)9, combines advantages of two popular techniques namely SPH and DPD. The

SDPD method for fluid flow is directly derived from the Navier-Stokes equation using a

Lagrangian discretization similar to SPH, while the inclusion of thermal fluctuations in

SDPD is similar to that in the DPD formalism. SDPD can also be considered as an im-

proved DPD method. Advantages of the SDPD method over conventional DPD include
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the possibility of using an arbitrary equation of state, direct input of transport properties,

and a well-defined physical scale of discretized elements or fluid particles. In addition, it

has been shown that the SDPD method produces proper scaling of thermal fluctuations for

different fluid particle sizes10. The SDPD method has been already applied to a number

of problems including simulations of different particles11 and polymers12 in a suspension,

single red blood cells in tube flow13, margination of leukocytes14, and margination of dif-

ferent particles15 in blood flow.

Despite the advantages of SDPD over the DPD method, the original SDPD formula-

tion9 does not conserve angular momentum, both locally and globally. Recent numerical

simulations using the MPC method16 have shown that angular momentum conservation

is essential in some problems including Taylor-Couette flow with two immiscible fluids

and vesicle tank-treading in shear flow. A violation of angular momentum conservation

may lead to an asymmetric stress tensor and spurious unphysical torques, resulting in erro-

neous simulation results. To derive a consistent version of SDPD with angular momentum

conservation, we introduce a spin variable, such that each SDPD particle possesses an an-

gular velocity17. This idea is similar to that of the fluid particle (FPM) model18, where

every particle possesses an angular velocity; however, FPM lacks a direct connection to

the discretization of the Navier-Stokes equation. Also, a spin variable has been introduced

in the single-particle DPD formulation19, where a colloidal particle can be represented by

a single DPD particle with spin. Consistent SDPD formulation with angular momentum

conservation is obtained by a direct discretization of the Navier-Stokes equation for a fluid

with spin20.

We will show several applications of the SDPD method. The SDPD method will be

applied to the problem of micro- and nano-particle margination (i.e., particle migration

toward the walls) in blood flow, which is a crucial step in drug delivery since it is a pre-

condition for particle adhesion at the vessel walls. The importance of angular momentum

conservation will be illustrated using two examples. First, the Taylor-Couette flow with

two immiscible fluids is simulated showing that the extended SDPD method results in pre-

dictions in agreement with the analytical solution derived from the Navier-Stokes equation.

The second problem to test the SDPD method with angular momentum conservation is a

tank-treading vesicle in shear flow, which has been described theoretically by Keller and

Skalak21. Vesicle tank-treading in shear flow corresponds to rotational motion of a mem-

brane around the vesicle center-of-mass, while the vesicle preserves its stationary shape

with a finite inclination angle. The new SDPD formulation results in predictions of vesicle

inclination angles for several viscosity contrasts between inner and outer fluids in agree-

ment with the Keller-Skalak theory21, while the SDPD method without angular momentum

conservation clearly fails to capture quantitatively correct dynamics.

2 Smoothed particle hydrodynamics

The basic equations to describe viscous fluid flow are the Navier-Stokes (NS) equations20.

In a Lagrangian description, the NS equations take the form

ρ
dv

dt
= −∇p+ η∇2

v +
(η

3
+ ξ
)

∇∇ · v, (1)

where v is the fluid’s velocity, ρ is the fluid’s density, p is the pressure, η is the dynamic

shear viscosity, and ξ is the bulk viscosity. For the closure of the equations above, we also
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need to add the continuity equation given by

dρ

dt
+ ρ∇ · v = 0. (2)

The smoothed particle hydrodynamics (SPH) method7, 22 for fluid flow is a Lagrangian

discretization of Eqs. (1) and (2). In the SPH method, a field variable g̃(r) is replaced by

the convolution integral of a field g(r) and a kernel function W (r, h) as,

g̃(r) ≈

∫

V

g(r′)W (r− r
′, h) dV ′, (3)

where the kernel function has to be differentiable and depends on the distance |r− r
′| and

the smoothing length h. In addition, the integral over W (r − r
′, h) has to be normalized

and the condition lim
h→0

W (r− r
′, h) = δ (r− r

′) needs to be satisfied. For W (r, h) being

the delta function, we would have g̃(r) = g(r). The convolution integral is discretized

using small fluid volumes (or particles) such that ρ(r′)dV ′ → mj with mj being the mass

and ρ(r′) → ρ(rj) being the mass density of particle j at the position vector rj . The

discretized convolution integral is then given by

g̃(ri) ≈

N
∑

j=1

mj

ρ(rj)
g(rj)W (|ri − rj |, h), (4)

where N is the number of particles (Lagrangian discretization points) within the volume

V characterized by the smoothing radius h. Furthermore, derivatives of the field variable

g(r) follow similar approximation strategy which is described in Appendix A. Further in

the text, we will also use the notations ρ(rj) = ρj , g(rj) = gj , and W (|ri−rj |, h) = Wij .

Using the SPH formalism, the continuity equation (2) becomes (see Eq. (31))

dρi
dt

=
∑

j

mjvij · ∇iWij , (5)

where ∇iWij can be analytically calculated. The particle density ρi is defined as

ρi =
∑

j

mjWij . (6)

Hence, the density of particle i can be computed using its neighboring particles located

within a sphere with a radius h. Similarly, different terms of the NS equation (1) can be

discretized to obtain the equations which govern particle dynamics. Using the Newton’s

second law of motion midvi/dt = Fi and the rules in Eqs. (32)-(36) of Appendix A we

obtain the two forces: conservative (C) and dissipative (D) given by

F
C
ij =

(

pi
ρ2i

+
pj
ρ2j

)

Fijrij ,

F
D
ij = −

(

5η

3
− ξ

)

Fij

ρiρj
vij − 5

(η

3
+ ξ
) Fij

ρiρj
êij(êij · vij), (7)

where pi is the particle pressure, êij = rij/|rij |. A function F (rij) = Fij ≥ 0 is defined

such that ∇iWij = −rijFij , and Fi =
∑

j

(

F
C
ij + F

D
ij

)

, where the sum runs over all

neighboring particles j of the particle i within the radius h. The conservative force controls
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locally the pressure field in the system. The dissipative force provides translational friction

leading to the reduction of the velocity difference between two particles.

Time evolution of the position and the velocity of a particle i follows the Newton’s

second law as

ṙi = vi, v̇i = Fi =
∑

j

1

mj
Fij . (8)

Equation (8) is integrated using the velocity-Verlet algorithm23. Finally, in simulations the

Lucy function7

W (r) =
105

16πh3

(

1 + 3
r

h

)(

1−
r

h

)3

, (9)

is often used as a kernel function, which leads to F (r) = 315

4πh5

(

1− r
h

)2
. The equation of

state for the pressure is often chosen to be

p = p0

(

ρ

ρ0

)α

+ b, (10)

where ρ0 is the reference density, and the parameters p0, α, and b can be freely selected.

This pressure equation yields the speed of sound c2 = p0α/ρ0, which can be easily con-

trolled through the above parameters resulting in a good approximation of fluid incom-

pressibility22, 24.

3 Smoothed dissipative particle dynamics

The smoothed dissipative particle dynamics (SDPD) method proposed by Español and

Revenga9 is a mesoscopic particle-based hydrodynamic approach which has been derived

from the SPH7, 22 and DPD2, 3 simulation methods. Thus, in addition to the hydrodynamics

described by SPH, consistent thermal fluctuations (i.e., they satisfy a balance between

dissipative and random contributions) similar to those in the DPD method have to be added.

To derive the random contribution, it is convenient to represent the dissipative force in Eq.

(7) in a tensorial form as FD
ij = −T ij · vij , where T ij = A(rij)1+B(rij)êij êij and

A(rij) =

(

5η

3
− ξ

)

Fij

ρiρj
and B(rij) = 5

(η

3
+ ξ
) Fij

ρiρj
. (11)

Following the general framework of the fluid particle model18, a random force can be

defined as

F̃ijdt =
√

2kBT

(

Ã(rij)dW
S

ij +
B̃(rij)

3
tr[dW ij ]1+ C̃(rij)dW

A
ij

)

· êij , (12)

where dW ij is a matrix of independent Wiener increments, tr[dW ij ] is the trace of this

matrix, dW
S

ij = 1

2
(dW ij + dWji) −

1

3
tr[dW ij ] is the traceless symmetric part, and

dWA
ij = 1

2
(dW ij − dWji) is the antisymmetric part. The functions Ã(r), B̃(r), and

C̃(r) are related to A(r) and B(r) of the tensor T ij as A(r) = (Ã(r)2 + C̃(r)2)/2 and
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B(r) = (Ã(r)2 − C̃(r)2)/2 + (B̃(r)2 − Ã(r)2)/3. To further simplify the expression in

Eq. (12), we can select C̃(r) = 0 leading to

Ã(rij) =

(

2

(

5η

3
− ξ

)

Fij

ρiρj

)1/2

and B̃(rij) =

(

2

(

5η

3
+ 8ξ

)

Fij

ρiρj

)1/2

. (13)

The combination of forces in Eqs. (7) and (12) constitute the SDPD method, which de-

scribes hydrodynamics with consistent thermal fluctuations. The evolution of particle posi-

tion and velocity follows Eq. (8). The derivation of SDPD in Ref.9 also includes an energy

conservation equation, which we omit here for simplicity. Note that this formulation vi-

olates the conservation of angular momentum, which can be essential in some physical

problems (several examples will follow). The SDPD method without angular momentum

conservation9 will be called SDPD-a.

4 SDPD with angular momentum conservation

In SDPD, dissipative and random forces possess not only a part along the inter-particle

axis as in DPD, but also a component perpendicular to the inter-particle axis. This perpen-

dicular part of dissipative and random forces destroys local and global angular momentum

conservation. There exist a version of the SDPD method with angular momentum conser-

vation25, where the perpendicular component of dissipative and random forces has been

neglected resulting in a method formulation very similar to DPD. In this method the input

viscosity has to be scaled by a theoretically defined coefficient which depends on space

dimension. However, it is advantageous to keep a perpendicular component of the dissipa-

tive force, since it provides much more efficient control over fluid transport properties than

the component along inter-particle axis alone26.

To extend the original SDPD formulation9, we introduce a spin variable for every par-

ticle ωi. In addition, each particle will also possess a moment of inertia Ii analogously to

the already defined particle mass. In order to obtain discretized equations for the SDPD

formulation with spin, we consider the NS equation with spin27,

ρ
dv

dt
= −∇p+ (η + ηr)∇

2
v +

(η

3
+ ξ − ηr

)

∇∇ · v + 2ηr∇× ω, (14)

where ηr is the rotational viscosity and ω is the spin angular velocity. The introduced spin

variable can be interpreted in two different ways. On the one hand, it is an approach used

to recover angular momentum conservation in the SDPD formulation. On the other hand,

the spin can be thought of as an effective angular velocity of a fluid volume represented by

a particle. However, it should not be confused with a molecular spin. The discretization of

the NS equation with spin provides a consistent model, where translational and rotational

friction interactions are properly balanced unlike the FPM model which does not have a

direct connection to the NS equation.

Following the rules for derivatives in Appendix A we obtain the three forces: conser-
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vative (C), dissipative (D), and rotational (R) given by

F
C
ij =

(

pi
ρ2i

+
pj
ρ2j

)

Fijrij ,

F
D
ij = −

(

5η

3
+ 3ηr − ξ

)

Fij

ρiρj
vij − 5

(η

3
+ ξ − ηr

) Fij

ρiρj
êij(êij · vij), (15)

F
R
ij = −2ηr

Fij

ρiρj
rij × (ωi + ωj) .

The conservative and dissipative forces are very similar to the expressions in Eq. (7). In

addition, now we have a rotational force which is also dissipative, but acts on particles’

angular velocities such that a spin of one particle leads to a change in translational and

angular velocity of another particle.

The defined set of deterministic forces in Eq. (15) can be referred to as a SPH dis-

cretization with angular momentum conservation. However, the SDPD method also incor-

porates consistently thermal fluctuations by appending a random force to the set of forces

in Eq. (15). Here, the combination of dissipative, rotational, and random forces has to

satisfy the fluctuation-dissipation balance. Similarly to the dissipative force, we re-write

the rotational force in a tensorial form as FR
ij = −T ij · (rij × (ωi + ωj))/2. Note that

the same tensor T ij is used for both dissipative and rotational forces in order to satisfy

the fluctuation-dissipation theorem when a random force is added18. This implies that

ηr = 5η/3− ξ and

A(rij) = 4

(

5η

3
− ξ

)

Fij

ρiρj
, and B(rij) = 10

(

ξ −
2η

3

)

Fij

ρiρj
. (16)

Then, the corresponding functions for the random force in Eq. (12) are given by

Ã(rij) =

(

2

(

20η

3
− 4ξ

)

Fij

rirj

)1/2

and B̃(rij) =

(

2

(

17ξ −
40η

3

)

Fij

rirj

)1/2

.

(17)

The full set of forces for the SDPD method with angular momentum conservation is

finally given by

F
C
ij =

(

pi
ρ2i

+
pj
ρ2j

)

Fijrij ,

F
D
ij = −

(

γa
ij

(

vij +
êij (êij · vij)

3

))

−
2γb

ij

3
êij (êij · vij) , (18)

F
R
ij = −γa

ij

rij

2
× (ωi + ωj) ,

F̃ij =

(

σa
ijdW ij + σb

ij

1

3
tr[dW ij ]1

)

·
êij

dt
,

where

γa
ij =

(

20η

3
− 4ξ

)

Fij

ρiρj
, γb

ij =

(

17ξ −
40η

3

)

Fij

ρiρj
, (19)
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and σa,b
ij = 2

√

kBTγ
a,b
ij . It is important to note that these equations are only valid for

2η/3 ≤ ξ ≤ 5η/3, such that the friction coefficients (γa
ij + 2γb

ij)/3 and γa
ij are positive.

Another simplification which can be made is the reduction to a single dissipative parameter

γij such that ξ = 20η/21 and

γa
ij = γb

ij = γij =
20η

7

Fij

ρiρj
, σa

ij = σb
ij = σij = 2

√

kBTγij . (20)

The derived SDPD method with angular momentum conservation will be referred to as

SDPD+a further in text. To describe time evolution of the position and of the translational

and angular velocity of a particle i, Eq. (8) with an addition of angular velocity integration

(ω̇i =
∑

j Nij/Ij) is employed, where Nij is the torque exerted by particle j on particle

i and is given by Nij = rij × Fij/2. This leads to local and global angular momentum

conservation. More details on the SDPD method with angular momentum conservation

can be found in Ref.17.

5 Application of the SDPD method

The SDPD method has been used in simulations of colloidal particles11 and polymers12,

single red blood cells in tube flow13, margination of leukocytes14, and margination of

micro- and nano-particles15 in blood flow.

5.1 Margination of micro- and nano-particles in blood flow

The first step in the delivery of small drug carriers is their transport along blood vessels

which determines their initial distribution. Further, the distribution of micro- and nano-

particles is affected by their binding to specific targeted sites. However, efficient binding

of carriers can be achieved only if they are present near vessel walls at sufficiently high

concentrations, and thus, the distribution of micro- and nano-carriers within vessel cross-

sections plays an essential role in their efficient delivery. The cross-sectional distribution

of micro- and nano-particles depends on local blood flow properties such as hematocrit

(volume fraction of red blood cells) and flow rate as well as on the particle characteristics

such as their size, shape, and deformability. The migration of various suspended parti-

cles toward walls in blood flow, which is also often referred to as margination, has been

observed for white blood cells28, 29, 14, platelets30, 31, and rigid micro-particles32, 33. Parti-

cle margination in blood flow is mediated by red blood cells (RBCs), which migrate to

the vessel center34 due to hydrodynamic interactions with the walls (called lift force)35–37,

and lead to an increased concentration of different particles within the RBC-free layer

(RBCFL) near a wall (a layer void of RBCs). More precisely, the margination mechanism

is a consequence of the competition between lift forces on RBCs and suspended particles,

and their interactions in flow38. Similarly, micro- and nano-carriers have a potential to get

marginated15, and therefore to interact with vessel walls.

Numerical simulations of blood flow on a single-cell level allow us to explore the flow

behavior and interaction of blood cells and other suspended components39–41. Thus, the

role of particle size and shape on the margination efficiency can be investigated in sil-

ico15 providing information about particle adhesion potential, since particle margination
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(a) (b)

Figure 1. Particle distributions in blood flow. Illustrations of 3D simulations of blood flow for different hematocrit

values (a) Ht = 0.2 and (b) Ht = 0.4. RBCs are drawn in red, while spherical carriers with a size of Dp =

1.83 µm are colored according to their radial position r. For better contrast, carrier positions from several time

instances are superimposed in the plots.

is an essential pre-condition for particle adhesion. The findings in Ref.15 indicate that

spherical particles have slightly better margination properties than ellipsoids, however the

adhesion efficiency of ellipsoidal particles appears to be superior in comparison with that

of spheres due to a larger area for adhesive interactions42. The larger particles possess a

larger probability of being marginated. As the particle size becomes very small (less than

about 100− 200 nm), the particle distribution within vessel cross-section can be described

well by the volume of blood plasma, since small particles are uniformly distributed within

the suspending fluid.

The simulations are based on the SDPD-a method. Blood is modeled as a suspension

of RBCs and micro- or nano-particles. RBCs and suspended micro- and nano-particles are

modeled by a collection of particles on their surface connected by viscoelastic springs. The

membrane model also incorporates bending resistance and the area and volume conserva-

tion constraints. For full details about the membrane model and simulation conditions and

setup we refer the reader to Ref.15.

Margination of micro- and nano-particles in blood flow depends on hematocrit Ht,

vessel diameter, and flow rate15. Figure 1 illustrates the distribution of carriers with a

diameter Dp = 1.83 µm for two Ht values. For better visibility, the carrier positions from

a few snapshots are superimposed in the plot. The carrier surfaces are colored according to

their radial position in the channel, with yellow color indicating a position near the channel

center, while blue color corresponds to a position near the wall. Clearly, the carriers are

marginating better for the case of larger Ht.

Carrier positions in blood flow sampled over time lead to particle distributions, which

reflect the probability of a particle to be at a certain distance from the wall. Figure 2 shows

several center-of-mass distributions of circular particles in 2D with Dp = 1.83 µm for

several Ht values. The RBC-free layer (RBCFL) thickness, which is computed from sim-

ulation snapshots through the analysis of the RBC core boundary43 similar to experimental

measurements44, is depicted by small arrows. The distributions have been averaged over

the halves of the channel due to symmetry. Figure 2 shows that the carriers migrate into

the RBCFL and remain quasi-trapped there. With increasing Ht, the carriers marginate
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Figure 2. Center-of-mass distributions of carriers for various Ht values. 2D simulation results for circular par-

ticles with Dp = 1.83 µm. The wall is at y/W = 0, where W is the channel width. The arrows indicate the

boundary of the RBCFL for the different hematocrits, marked by corresponding colors.

better, as indicated by the development of a strong peak in the distribution near the wall

at y/W = 0 (W is the channel width), and the motion of the peak position towards the

wall. This is due to a decrease in the RBCFL thickness leading to a smaller available space

for the particles. This trend is in agreement with experimental observations32 and simula-

tions45–47 of margination of blood platelets, which have a comparable size. Further details

on micro- and nano-particle margination in blood flow depending on various conditions

can be found in Ref.15.

5.2 Taylor-Couette flow of two immiscible fluids

Figure 3. A sketch of two cylinders with radii Ro and Ri where the subscripts ’o’ and ’i’ denote the outer and

inner cylinders, respectively. The gap between cylinders is filled with a fluid colored in blue. Taylor-Couette

flow can be generated by rotation of the outer cylinder with a rotational frequency Ωo. In simulations with two

immiscible fluids, the inner cylinder (shaded area) is replaced by another fluid which cannot mix with the fluid

inside the gap between two cylindrical surfaces.

To illustrate the importance of angular momentum conservation, we test the SDPD
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method on Taylor-Couette flow, which usually refers to a fluid flow in the gap between

two rotating cylinders as shown in Fig. 3. However, we consider a setup, where the inner

cylinder is replaced by another immiscible fluid such that no mixing between the two fluids

at Ri can occur. A solution of the incompressible NS equation for this problem yields a

linear angular velocity profile vφ(r) = Ω0r across both immiscible fluids, where r is

the radial position. Note that this solution is independent of the viscosity values of the

immiscible fluids.

Recent numerical simulations with a similar setup16 have shown that the conservation

of angular momentum is necessary to obtain correct velocity and torque profiles across

immiscible fluids with different viscosities. In simulations, the ratio of fluid viscosities

was set to ηi/ηo = 3. The computational domain was assumed to be periodic in the

cylinder-axis direction, while the cylinder wall was modeled by a layer of frozen particles

with a thickness h whose structure (e.g., radial distribution function) was the same as

that of the fluids. To prevent mixing of the fluids and particle penetration into the wall,

specular reflection of particles has been imposed at cylindrical surfaces with r = Ri and

r = Ro. The wall particles were rotated with a constant angular frequency Ωo in order to

generate flow. Figure 4 shows angular velocity profiles for the Taylor-Couette flow using

both SDPD+a and SDPD-a methods. The SDPD+a simulation properly captures a linear

profile of angular velocity, while the SDPD-a method leads to distinct slopes within the

regions of different viscosities.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

v φ
/(

Ω
o 

R
o)

r/Ro

SDPD+a, ρ0          
SDPD-a, ρ0           
SDPD-a, 10ρ0       
SDPD-a, ρ0 scaled

Figure 4. Angular velocity vφ profiles for the Taylor-Couette flow with two immiscible fluids using both SDPD+a

and SDPD-a methods. Radial position r is normalized by the cylinder radius Ro, while angular velocity is scaled

with the cylinder angular velocity ΩoRo. The SDPD+a method leads to a correct linear profile, while the SDPD-

a method fails to do so due to violation of angular momentum conservation. The SDPD-a results for different

resolution with ρ = 10ρ0 and for a twice larger system size (marked as ”scaled”) show hardly any dependence

on fluid resolution.

6 Tank-treading of a vesicle in shear flow

Flow dynamics of soft deformable objects such as liquid droplets, lipid vesicles, red blood

cells, and elastic capsules has attracted a lot of scientific interest recently due to a wide
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range of possible applications. For instance, a number of experiments36, 48, theoretical

approaches21, 49, 50, and simulations50–52, 39 have shown that fluid vesicles exhibit a rich dy-

namical behavior in shear flow including tank-treading (TT) and tumbling (TB) motion.

The tumbling motion corresponds to vesicle rotation around its center-of-mass nearly as

a rigid body. A tank-treading vesicle in shear flow shows a stationary shape with a finite

inclination angle θ > 0 with respect to the flow direction, while the membrane is rotating

around the center-of-mass of the vesicle, see Fig. 5. The occurrence of different vesicle

motion is governed by the viscosity contrast λ = ηi/ηo between fluids inside and outside

the vesicle with viscosities ηi and ηo, respectively. A physical explanation for the TT-to-

TB transition can be derived from the two components of shear flow: an elongational part

which tends to stretch and align a vesicle along the x = y axis with an inclination angle of

θ = π/4 and a rotational part of the flow which exerts a torque on the vesicle membrane.

Increasing of viscosity contrast leads to higher shear stresses inside the vesicle opposing

its TT motion, which results in an effective torque and decrease of the vesicle inclination

angle. Thus, for high enough λ a transition from TT to TB motion occurs. Keller and

Skalak (KS)21 derived a theory which predicts the TT-to-TB transition. Moreover, the KS

theory is able to predict the inclination angle θ in the vesicle TT regime. Details of the KS

theory are given in Appendix B.

Figure 5. Simulation snapshots of a tank-treading vesicle in shear flow for λ = 2. A xy-plane view, where the

flow is in x direction. The red sphere is attached to a fixed position on a vesicle in order to illustrate the TT

motion of the membrane; however, it is just a marker used for visualization and introduced at post-processing

stage. Note that small shape fluctuations are clearly visible.

The vesicle membrane is modeled by a collection of particles on an ellipsoidal surface.

An illustration of a vesicle structure is shown in Fig. 5. The model incorporates membrane

bending rigidity, the constraints for vesicle area and volume, and the viscosity contrast

between inner and outer fluids; more details on vesicle modeling can be found in Ref.17.

The simulated ellipsoidal vesicle has a prolate shape with a1 > a2 = a3 and an aspect

ratio of a1/a2 ≈ 1.7. The vesicle is placed in a box, where periodic boundary conditions

11



are applied in x and z direction, while shear flow is generated in the x direction, as shown

in Fig. 5.

The inclination angle of a TT vesicle in shear flow is calculated by

θ = arctan(uy/ux), (21)

where u = (ux, uy, uz) is the eigenvector of the moments of inertia tensor with the

smallest eigenvalue. Figure 6 compares inclination angles obtained from simulations with

SDPD+a and SDPD-a fluids and from the KS theory for different viscosity ratios λ. The

simulation results obtained with a SDPD+a fluid agree very well with the KS theory pre-

dictions, while the results using a SDPD-a fluid show a significant overestimation of the

inclination angle at large λ. The results for λ = 1 from both SDPD+a and SDPD-a cases

coincide indicating that angular momentum conservation does not affect simulation results

if inner and outer fluids have the same viscosity. The deviations of the SDPD+a results

from the KS theory predictions might be due to small shape fluctuations of the vesicle

and/or numerical errors indicated by error bars in Fig. 6.

 5

 10

 15

 20

 25

 30

 35

 40

 1  1.5  2  2.5  3  3.5  4  4.5  5

θ 
[°

]

λ

SDPD-a
SDPD+a

KS theory

Figure 6. Comparison of inclination angles θ of a TT vesicle in shear flow obtained from SDPD+a (blue) and

SDPD-a (red) simulations and from the KS theory (black) for different viscosity ratios λ.

7 Summary

We presented an overview of the SDPD-a method9 and its extension17, which satisfies local

and global angular momentum conservation. In the SDPD+a, each particle possesses an

angular velocity, and its rotational contribution has been derived from the NS equation

with spin following the SPH formalism. This leads to a spin variable similar to the FPM

model18. Thermal fluctuations in SDPD+a have been also included similar to those in FPM
18. Several applications of the SDPD method have been considered. The first example

concerned the margination of micro- and nano-particles in blood flow, which is important

in drug delivery. Simulations of Taylor-Couette flow with two immiscible fluids show that

SDPD+a leads to correct predictions of flow profiles in agreement with analytical results,

12



while SDPD-a fails to capture properly flow characteristics due to violation of angular

momentum conservation. Finally, simulations of vesicle dynamics in shear flow reveal that

angular momentum conservation is essential to obtain correct results for the inclination

angle of a tank-treading vesicle if there exists a viscosity contrast λ between inner and

outer fluids. For λ 6= 1 the SDPD+a method predicts vesicle characteristics in agreement

with the KS theory for a vesicle in shear flow, while SDPD-a overestimates the inclination

angle. In conclusion, the family of SDPD methods including the version with angular

momentum conservation provides valuable tools for modeling flows of complex fluids.
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Appendix

A Calculation of derivatives

We summarize the calculation of derivatives of field variables similar to those in SPH22.

Using Eq. (4), the first derivative of a field g can be approximated as

∂g̃

∂x
=

N
∑

j=1

mj

ρj
g
∂Wij

∂xi
, (22)

where the notations are identical to those in the main text. A disadvantage of this approx-

imation is that the derivative does not vanish for g being a constant function. Therefore, a

better approximation is given by

∂g̃

∂x
=

1

φ

(

∂(g̃φ)

∂x
− g̃

∂φ

∂x

)

, (23)

where φ must be a differentiable function. Following Eq. (22), we then obtain

∂g̃

∂x
=

1

φi

N
∑

j=1

mj

ρj
φj (gj − gi)

∂Wij

∂xi
. (24)

When φ = 1, Eq. (24) reduces to

∂g̃

∂x
≈
∑

j

mj

ρj
gji

∂Wij

∂xi
, (25)

where gji = gj − gi. In Eq. (24), φ = ρ can be also selected, yielding an approximation

for the first derivative as

∂g̃

∂x
≈

1

ρi

∑

j

mjgji
∂Wij

∂xi
. (26)
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The choice for different discretizations (φ = 1 or φ = ρ) may depend on a problem

of interest. For instance, when different interacting fluids with large density ratios are

considered, it has been shown that the approximation in Eq. (24) with φ = 1 is more

accurate than that with φ = ρ, because ρ in Eq. (25) is included directly inside the sum53, 22.

Furthermore, if only a single fluid is employed, an approximation φi ≈ ρj can be used

making the above choices for φ equivalent.

There exists another definition for the first derivative,

∂g̃

∂x
= φ

(

∂

∂x

(

g̃

φ

)

+
g̃

φ2

∂φ

∂x

)

. (27)

Following the SPH formalism22 we obtain

∂g̃

∂x
≈ φi

N
∑

j=1

mj

ρj

(

gj
φj

+
gi
φ2

i

φj

)

∂Wij

∂xi
. (28)

As a result, a choice of φ = 1 here leads to

∂g̃

∂x
≈

N
∑

j=1

mj

ρj
(gj + gi)

∂Wij

∂xi
, (29)

while for φ ≈ ρ Eq. (28) becomes

∂g̃

∂x
≈ ρi

N
∑

j=1

mj

(

gj
ρ2j

+
gi
ρ2i

)

∂Wij

∂xi
. (30)

A set of equations above defines different approximations of first derivatives, which

can be used to derive discretizations of other differential operators in the NS equation. For

instance, using Eq. (26) the gradient of g(r) can be approximated as

∇g̃ ≈ −
1

ρi

∑

j

mjgij∇iWij , (31)

where gij = gi − gj . Similarly, the divergence and the curl of a vector field G̃(r) are

discretized as

∇i · G̃i ≈−
1

ρi

∑

j

mjGij · ∇iWij , (32)

∇i × G̃i ≈− ρi
∑

j

mj

ρiρj
(Gj +Gi)×∇iWij . (33)

The second derivatives are then given by

∇i

(

∇i · G̃i

)

≈ −
∑

j

mj
Fij

ρiρj
(5êij (êij ·Gij)−Gij) (34)

and

∇2

i g̃i ≈ −2
∑

j

mj
Fij

ρiρj
gij , (35)

where êij = rij/rij is the unity vector along the separation direction of particles i and j9.
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The curl of a vector field G can be approximated as

∇i × G̃i ≈ φi

∑

j

mj

ρj
∇iW (rij)×

(

Gj

φj
+

φjGi

φ2

i

)

, (36)

where a selection of φ = 1 leads to

∇i × G̃i ≈
∑

j

mj

ρj
∇iW (rij)× (Gj +Gi) , (37)

while φ = ρ results in

∇i × G̃i ≈ ρi
∑

j

mj∇iW (rij)×

(

Gj

ρ2j
+

Gi

ρ2i

)

. (38)

B Keller-Skalak theory

The Keller-Skalak (KS) theory21 assumes a fixed ellipsoidal shape (r1/a1)
2 + (r2/a2)

2 +
(r3/a3)

2 = 1, where ri, i ∈ {1, 2, 3} are the Cartesian coordinates and ai are the semiaxes

of the ellipsoid. The motion of a vesicle is derived by considering energy balance between

the energy supplied by the fluid and the energy which dissipates on the membrane and

inside the vesicle. This balance leads to a differential equation given by

dθ

dt
=

1

2
γ̇ (B cos(2θ)− 1) , (39)

where γ̇ is the shear rate. If B > 1, the vesicle is in the TT regime, and hence, a steady

inclination angle can be found as θ = 0.5 arccos(1/B), where B is a function of vesicle

shape and viscosity contrast given by

B = f0

(

f1 +
1

f1

(

1

1 + f2(λ− 1)

))

,

f0 =
2

a1/a2 + a2/a1
,

f1 = 0.5 (a1/a2 − a2/a1) , (40)

f2 = 0.5g(α2

1
+ α2

2
),

g =

∫

∞

0

(α2

1
+ s)−3/2(α2

2
+ s)−3/2(α2

3
+ s)−1/2 ds,

αi =
ai

a1a2a3
.

Note that the KS theory does not consider vesicle’s membrane viscosity.
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