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Red blood cells (RBCs) in various flows exhibit a rich dynandoe their deformability and
govern rheological properties and flow characteristics whan blood. Using a mesoscopic
RBC model which incorporates membrane shear elasticity, bgnifjidity, and viscosity, we
quantitatively predict the behavior of a single RBC in shitaw and the dependence of blood
viscosity on shear rate and hematocrit. In shear flow, sin@€®&respond by tumbling at
low shear rates and tank-treading at high shear rates. nsitianing between these regimes,
the membrane exhibits substantial deformation controllegelsrby flexural stiffness. In RBC
suspension (blood) under shear, not only the tumbling/teedding cell dynamics affects blood
flow characteristics, but also RBC collective behavior aetl-cell aggregation interactions.
RBC aggregation leads to reversible rouleaux structuresaattemendous increase of blood
viscosity at low shear rates, and results in the presencey@fl@ stress. The non-Newtonian
behavior of blood is analyzed and related to the susperssioitrostructure, deformation and
dynamics of single RBCs. The generality of these cell modejgasts that they can easily be
adapted to tune the properties of a much wider class of complasfincluding capsule and
vesicle suspensions.

1 Introduction

Blood is circulated around the entire body performing a nand physiological functions.
Its main functions are the transport of oxygen and nutriémtsells of the body, removal
of waste products such as carbon dioxide and urea, and &fi@ulof molecules and cells
which mediate the organism’s defense and immune resporsplay a fundamental role
in the tissue repair process. Abnormal blood flow is ofterradated with a broad range
of disorders and diseases which include hypertension, @netherosclerosis, malaria,
and thrombosis. Understanding the rheological propesdies dynamics of blood cells
and blood flow is crucial for many biomedical and bioengiirggeapplications. Examples
include the development of blood substitutes, the desidgraxfd flow assisting devices,
and drug delivery. In addition, understanding of vital ldaelated processes in health and
disease may aid in the development of new effective treaknen

Blood is a physiological fluid that consists of erythrocytesed blood cells (RBCs),
leukocytes or white blood cells (WBCs), thrombocytes orgikdts, and plasma contain-
ing various molecules and ions. RBCs constitute approxipat;% of the total blood
volume, WBCs around.7%, and the rest is taken up by blood plasma and its substances.
One microliter of blood contains abo&tmillion RBCs, roughly5 thousand WBCs, and
approximately a quarter million platelets. Due to a highwoé fraction of RBCs, the
rheological properties of blood are mainly determined kgjrtproperties and interactions.

Modern rheometry techniques are able to reliably measuraseopic properties of
cell suspensions, for instance the bulk viscosity of bloddAt low shear rates the RBCs
in whole blood have been observed to aggregate into stesalled “rouleaux”, which



resemble stacks of coihé®. The aggregation process appears to be strongly corretated
the presence of the plasma protéifs Experiments with washed RBCs re-suspended in
pure saline to which fibrinogen was added progressivehowed a tremendous viscosity
increase at low deformation rates with respect to fibrinogencentration. In addition,
such suspensions exhibit a yield stfe3$ i.e., a threshold stress for flow to begin.

These experimental advances have not been accompanieddrgtibal developments
which can yield quantitative predictions of rheologicalldiow properties of blood. A
number of theoretical and numerical analyses have sougti¢doribe cell behavior and
deformation in a variety of flows. Examples include modelgkipsoidal cells enclosed
by viscoelastic membran®4 numerical models based on shell thé8ry? and discrete
descriptions at a mesoscopic le\el®. Mesoscopic modeling of viscoelastic membranes
is developing rapidly with a RBC membrane modeled as a nétabviscoelastic springs
in combination with a membrane flexural stiffness, and aansts on the surface area
and volumé3-16 However, recent theoretical and numerical studies fatnsestly on the
behavior of a single RBC in various flows® 16 Several studies have also been performed
to simulate a suspension of multiple céft3°in tube flow.

In this chapter, a theoretical analysis will be presentedaamembrane network
model exhibiting specified macroscopic membrane propertighout parameter adjust-
ment. RBC dynamics in shear flow showing tumbling and taekdimg will be studied in
detail with a view to delineating the effect of the membraheas moduli, bending rigid-
ity, external, internal, and membrane viscosities. Congparwith available experiments
will demonstrate that the computational model is able taeately describe realistic RBC
dynamics in shear flow. Comparison of the numerical simaitetiwith theoretical predic-
tions®® will reveal discrepancies suggesting that the currentrétezal models are only
gualitatively accurate due to strong simplifications.

Moreover, we will examine blood rheological properties afaeled RBC suspension.
In particular, we will investigate the effect of RBC aggréga on blood viscosity, re-
versible rouleaux formation, and yield stress in a RBC sasjoer’. In addition, we will
establish the connection between the rheology of a cellensipn and its microscopic
properties on a single-cell level, such as structure omgeaent, cell viscoelastic prop-
erties, and local dynamics. In conclusion, we will focus baduantitativeprediction of
rheological properties and dynamics of single RBCs anddftmw.

2 Red blood cells

A healthy human RBC has a biconcave shape with an averagetiaof approximately
7.82 um. Figure 1 shows a schematic of a RBC membrane which condisslipid
bilayer with an attached cytoskeleton formed by a networthefspectrin proteins linked
by short filaments of actin. The lipid bilayer is consideredbe a nearly viscous and
area preserving membralfe while RBC elasticity is attributed to the attached spectri
network, as is the integrity of the entire RBC when subjedtedevere deformations in
the capillaries as small &um. The RBC membrane encloses a viscous cytosol whose
viscosity is several times larger than that of blood plasimden physiological conditions.
Mechanical and rheological characteristics of RBCs anit thaamics are governed by:
membrane elastic and viscous properties, bending resistamd the viscosities of the
external/internal fluids.
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Figure 1. A schematic of the RBC membrane structure.

3 Methods and models

In the model, the RBC membrane is represented by a viscaeladivork. The motion

of the membrane and of the internal and external fluids isrdest by the method of
dissipative particle dynamics (DP#) a mesoscopic particle-based simulation technique,
see appendix A for details.

3.1 Red blood cell membrane

The RBC membrane is represented Ny DPD particles with coordinate$x;—; v, }
which are vertices of a two-dimensional triangulated nekwan the RBC surfacg 1623
as shown in figure 2. The network has a fixed connectivity wWithénergy as follows

U({xi}) = Us + Up + Uqro, (1)

whereUs; is the spring’s potential energly is the bending energy, arid, ., corresponds
to the area and volume conservation constraints. Theontribution provides membrane
elasticity similar to that of a spectrin network of RBC meiauie. A “dashpot” is attached
to each spring, and therefore, the spring forces are a catibmof conservative elas-
tic forces and dissipative forces, which provide networceius response similar to RBC
membrane viscosity. The bending energy mimics bendingtasie of the RBC mem-
brane, while the area and volume conservation constraiimsaarea-incompressibility of
the lipid bilayer and incompressibility of a cytosol, respreely. Below, these energies are
described in detail.



Figure 2. A sketch of a RBC membrane network.

The network nodes are connected®y springs with the potential energy as follows

U= Y
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wherel; is the length of the spring, {,,, is the maximum spring extension,; = I, /,,,

p is the persistence lengtkg1 is the energy unitk, is the spring constant, andis a
power. The above equation includes the attractive worndii@n potential and a repulsive
potential forn > 0 such that a non-zero equilibrium spring length can be imgodée
performance of different spring models for the RBC membrams studied in Re®® in
detail.

To incorporate the membrane viscosity into the RBC modessipative force is intro-
duced for each spring. Following the general framework effibid particle modéf we
can define dissipativa; and randoan forces for each spring, wheiej € 1...N,, are
a pair of two network vertices connected by a spring. Sucbe®isatisfy the fluctuation-
dissipation balance providing consistent temperature@RBC membrane in equilibrium
and are given by

Fj = —"vi; —7%(vi; - eij)ess;, 3)

tr sz i
ngt =/ QkBT (\/ 2’7wa§- + \/3’70 — ’)’T[3J]1> . eij, (4)
where~y” and~“ are dissipative parameters and the supersciiptand C' denote the
“translational” and “central” components;;; is the relative velocity of spring ends,
tr[dW ;] is the trace of a random matrix of independent Wiener incraséW,;, and



dW? = dW3; — tr[dW3]1/3 is the traceless symmetric part. Note that the condition
37¢ —~T > 0 has to be satisfied.
The bending energy of the RBC membrane is given as follows

U, = Z ky [1 — cos(0; — 6o)], (5)
jEL1...Ng
wherek; is the bending constarg; is the instantaneous angle between two adjacent trian-
gles having the common edggandd, is the spontaneous angle.
In addition, the RBC model includes the area and volume awaten constraints with
the corresponding energy given by

_ ka(Aj — Ao)® | ka(A—AF)? | ky(V — V5™)?
Ua+v - Z 2A0 2A60t + 2‘/0250)5 y

(6)
JEL..N,
wherel, is the number of triangles in the membrane netwaot s the triangle area, and
kaq, k, andk, are the local area, global area and volume constraint cieafti; respec-
tively. The termsA andV are the total RBC area and volume, whil§* andV{°* are the

specified total area and volume, respectively. More detailthe RBC model can be found
in Refs!6:23

3.2 Membrane macroscopic properties

Several parameters must be chosen in the membrane netwaldl maoensure a desired
mechanical response. Figure 3 depicts a network model aiedittinuum counterpart. To

spring, bending shear, area-compression,
parameters Young’s moduli
area, volume constraints o) bending rigidity

Network - Continuum

Figure 3. lllustration of a membrane network and correspapdiomtinuum model.

circumvent ad-hoc parameter adjustment, we derive relsltips between local model pa-
rameters and network macroscopic properties for an elasttiagonal network. A similar
analysis for a two-dimensional particulate sheet of etgriéd triangles was presented in
Refs?523

Figure 4 illustrates an element in a hexagonal network wihex v placed at the
origin of a local Cartesian system. Using the virial theof&mve find that the Cauchy
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Figure 4. lllustration of an element in a hexagonal triantiaia

stress tensor atis
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wherea andj stand forz or y, f(r) is the spring forceA{”* = N; Ao, S = 2Ao, ap is
the Kronecker delta, anfl is the area of the hexagonal element centered at

3.2.1 Shear modulus
The shear modulus is derived from the network deformatioapplying a small engineer-

ing shear strairy to the network element shown in figure 4. For instance, therddtion
of a material vector is then described as

A i+ %r%
== | a0, ®
where
1 12
J = [ 712 ’Yl :| +O(72) )

is the linear strain tensor and = (r{;r}), as shown in figure 4. Because the shear defor-
mation is area preserving, only spring forces in equatigrcontribute to the membrane
shear modulus.

Expandingr,, in a Taylor series, we find that
Toy

Oy

I
Tey = Tay +

7+ 0(?). (10)

v=0




The linear shear modulus of the network is

0Ty, 1)
Ho = .
0 4=0
For example, differentiating the first term of, in equation (7) yields
f(rl) Y\ 2
9 (f(ry) y> 07 (rir)” | flryn
— T = ! + , 12
ay( I o) (12)

wherelj is the equilibrium spring length. Using the vector-proddefinition of the area
of a triangle, we obtain

(r{r))? + (r573)% + (r5 — r{)?(r§ — 1) = 243, (13)
The linear shear modulus of the network model is

_ V3kpT To 1 1 N \/§kp(n1+ 1)’ (14)

Ho 1-— 1'0)3 4(1 - 1‘0)2 4

wherezy = Iy /.

3.2.2 Area compression and Young's moduli

The linear elastic area compression modutlis found from the in-plane pressure follow-
ing a small area expansion as

p= —%(m + Tyy) = % )+ Uk + kdjliAO —4), (15)
Defining the compression modulus as
__ O _ Lo L o (16)
Olog Ala=4, 2 dlogl li=iy 2 dlog x la==z,
and using equations (15) and (16), we obtain
K =2pg + ko + kq. (17)

For the nearly constant-area membrane enclosing a red bllhdhe compression modu-
lus is much larger than the shear elastic modudgis
The Young's modulus of the two-dimensional sheet is given by

_ AKpuo

= 18
K+ o (18)

As K — oo, we obtainY” — 4. To ensure a nearly constant area, wekget kq > .



3.2.3 Bending rigidity

Helfrich?” proposed an expression for the bending energy of a lipid mane

ke
E. = > //(Ol + Cy —2Cy)* dA + kg // C1Cy dA, (19)

whereC; andC, are the principal curvature§;, is the spontaneous curvature, dngdk,
are bending rigidities. The second term on the right-hadd ef equation (19) is constant
for any closed surface.

A relationship between the bending constépt,and the macroscopic membrane bend-
ing rigidity, k., can be derived for a spherical shell. Figure 5 shows twolatpual triangles
with edge lengthi, whose vertices lie on a sphere of radids The angle between the tri-

Figure 5. lllustration of two equilateral triangles on theface of a sphere of radius.

angle normals1; andn, is denoted by. In the case of a spherical shell, the total energy
in equation (19) is found to be

o\’ R\’
E.=8mke (1 — =2 +drk, =8k. (1 — = | + 4rk,, (20)
Cl RO

whereC, = Cy = 1/R andCy = 1/Ry. In the network model, the bending energy of the
triangulated sphere is

Ub = Ns kb [1 — COS(G — 90)] (21)
Expandingcos(6 — 6) in a Taylor series aroun@l— 6, provides us with the leading term

U, = %Nskb(g - 90)2 +0 ((9 — 90)4> . (22)

With reference to figure 5, we find that, ~ 0R or 0 = Iy /(v/3R), andfy = Iy /(v/3Ro).
For a sphereA = 47R? ~ N;Aq = V3N%/4 = V3N2/6, andi2/R? =
87v/3/N,. Finally, we obtain

2 9 2 2
Uy, = lekb < b I > = NSkbglo (1 - R) = L <1 — R) .
2 V3R V3R 6R Ry V3 Ry 23)




Equating the macroscopic bending enefgyto U, for k, = —4k./3 andC, = 0, we
obtaink;, = 2k./+/3 in agreement with the limit of a continuum approximafiéin

The spontaneous andlg is set according to the total number of vertices on the sphere
N,. It can be shown thatos® = 1 — 1/[6(R?/I3 — 1/4)] and the number of sides is
N = 2N, — 4. The bending coefficienk;,, and spontaneous angty, are given by

_ 2 - V3(N, —2) — 57
ky = 7 ke, 0y = arccos (\/g(Nv o) 37r) . (24)

3.2.4 Membrane viscosity

Since interparticle dissipative interaction is an intiingart of the DPD formulation, in-
corporating dissipative and random forces into springsisirally into the DPD scheme.
The general framework of the fluid-particle motfeprovides us with equations (3) and
(4). These dissipative and random forces in combinatiom it elastic spring consti-
tute a mesoscopic viscoelastic spring. To relate the memetshear viscosity,,,,, to the
model dissipative parameterd’ and~y, an element of the hexagonal network shown in
figure 4 is subjected to a constant shear rateThe shear stress,, at short times can be
approximated from the contribution of the dissipative #ng equation (3),

1 T 1\2 212 2 1\2 95 1,.1\2 2242
Ton = e 1 (7 + 03 + (0 =) + B (03 + ()
H02 =220 - )] =AVEOT +14€). (29)
The membrane viscosity is given by
= 22 =+/3 (yT + HC) . (26)
0 4

This equation indicates thaf” accounts for the largest portion of the membrane dissipa-
tion. Thereforen“ is set to its minimum value§— ~T, in the simulations.

3.3 Membrane-solvent interfacial conditions

The cell membrane encloses a viscous fluid and is surroungdadiduid solvent. Figure 6
shows a snapshot of a simulation in equilibrium, where retigias are membrane ver-
tices, blue particles represent the external fluid, andrgpesticles represent the internal
fluid. To prevent mixing of the internal and external fluidse wequire impenetrability.
We also enforce no-slip boundary conditions at the membiapéemented by pairwise
interactions between fluid particles and membrane nodesn@&sback reflection of fluid
particles at the triangular plaquettes satisfies membrapenetrability and better enforces
no-slip compared to specular reflection. However, bourakveflection alone does not
guarantee no-slip. In practice, it is necessary to propetthe DPD dissipative interac-
tions between fluid particles and membrane vertices.

The continuum linear shear flow over a flat plate is used tordete the dissipative
force coefficienty for the fluid-membrane coupling. For the continuum, thelteteear
force on areaA of the plate isAny~, whereny is the fluid viscosity andy is the local



Figure 6. A slice through a sample equilibrium simulation. Redicles are membrane vertices, blue particles
represent the external fluid, and green particles represennternal fluid.

shear-rate. To mimic the membrane surface, wall partiadlesistributed over the plate to
match the configuration of the cell network model. The forneacsingle wall particle in
this system exerted by the surrounding fluid under shear eaxpressed as

F, = / / /V ng(r) FP av, (27)

where FP is the DPD dissipative force between fluid and wall partickess the fluid
number densityg(r) is the radial distribution function of fluid particles rels to the
wall particles, and/, is the half-sphere volume of fluid above the plate. Thus, d¢it&l t
shear force on the ared is equal toN4 F,,, where N4 is the number of plate particles
residing in the aread. When conservative interactions between fluid particles thed
membrane vertices are neglected, the radial distributimctfon simplifies tag(r) = 1.
SettingN 4 F,, = Ang7 yields an expression for the dissipative force coefficiemt terms
of the fluid density and viscosity and the wall densily,/A. Near a wall where the
half-sphere lies within the range of the linear wall sheawflthe shear rate cancels out.
This formulation has been verified to enforce satisfactanslip boundary conditions for
shear flow over a flat plate, and is an excellent approximdtiono-slip at the membrane
surface.

3.4 RBC aggregation interactions

For blood, the attractive cell-cell interactions are caliéor simulation of RBC aggregation
into rouleaux. These forces are approximated phenomeiralbgwith a Morse potential,

Ut (’/‘) =D, e2B(ro—r) _ 265(7‘0—7"):| , (28)

wherer is the separation distance, is the zero force distancd). is the well depth of
the potential, an@ characterizes the interaction range. The Morse potemtiatactions
are implemented between every two vertices of separate RBI@sy are within a defined
potential cutoff radiug;. Eventhough the Morse potential in equation (28) contains a
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Figure 7. Simulation of whole blood under shear flow. RBCs ko in red and in orange, where orange color
depicts the rouleaux structures formed due to aggregatienaictions between RBCs. The image also displays
several cut RBCs with the inside drawn in cyan to illustraBRshape and deformability.

short-range repulsive force when< rg, such repulsive interactions cannot prevent two
RBCs from an overlap. To guarantee no overlap among RBCs vpéogm short range
Lennard-Jones potential and specular reflections of RBGcesron membranes of other
RBCs. The specular reflections of RBC vertices on surfaceshafr RBCs are necessary
due to coarseness of the triangular network which repregeetRBC membrane.

4 Simulation results and discussion

We present simulation results for the behavior of a singleCRBshear flow and discuss
the effect of various membrane properties on RBC dynamics.aldb study dense RBC
suspension (blood) under shear and examine the blood itiseuith and without RBC
aggregation, rouleaux formation, and yield stress. Hmalle establish a link between
bulk blood properties, microstructure, and the flow behasfsingle RBCs.

4.1 Simulation setup and parameters

A single RBC or the RBC suspension were subjected to linegarsfiow with periodic
Lees-Edwards boundary conditidisis shown in figure 7. The computational domain had
the size 06.6 D x 4.0D¢ x 3.4Dy, whereD,, is the RBC diameter which is equal to about
7.82 um for a healthy RBC. In case of the RBC suspensi@’,RBCs andl 17599 solvent
particles were placed in the computational domain. The RBGbrane Young’s modulus
was settd; = 269924 kT /D2, which corresponds ti, = 18.9 uN/m at physiological
temperature of’ = 37° C'. The RBC bending rigidity was assumed tokhe= 3x 10719,
which is equal to approximately0kgT atT = 37° C. The corresponding dppl-von
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Karman numbei0.25Y, D3 /k. is therefore equal to approximated$3. The membrane
viscosity was set to b&2n,, wherery is the suspending fluid viscosity. The coefficients
for the area and volume constraints were set large enougtder to closely approximate
membrane and cytosol incompressibility. Coupling betwidensolvent and RBCs was
performed through a dissipative force between fluid pagtieind membrane vertices.
Interactions between different RBCs included the shoryearepulsive Lennard-Jones
potential with parameters = 10.0 kg7 andor; = 0.037 Dy. These repulsive interac-
tions result in a thin layer next to a RBC membrane which caimoaccessed by other
cells. This layer can be interpreted as a slight increasbeoRBC volume. Therefore, the
RBC volume was assumed to be abd0¥ larger than that of the triangulated network.
The concentration of RBCs is called hematocrit and denatéfi aRBC aggregation inter-
actions were mediated by the Morse potential with pararedder= 3.0 kT, rqg = o1,
B =0.45 JZ}, andry = 3.7 o1, ;. For more details see Réf.

4.2 Single RBC in shear flow

Experimental observations have shown that RBCs tumblevasteear rates and exhibit
a tank-treading motion at high shear réfe¥28 Fischef! attributed this behavior to a
minimum elastic energy state of the cell membrane. Celldeamade to tank-tread in the
laboratory for several hours. When the flow is stopped, this oellax to the original bicon-
cave shape where attached microbeads recover their drigilaéive position. It appears
that tank-treading is possible only when a certain elast@@y barrier has been surpassed.
Theoretical analyses have considered ellipsoidal celletsadnk-treading along a fixed el-
lipsoidal patf§-°. Our simulations show that the dynamics depends on the naratshear
modulus, shear rate, and viscosity ratic= (n; + 1..)/n., wheren;, n,,, andn, are the
interior, membrane, and outer fluid viscosities.

For viscosity ratio\ < 3, the theory predicts tumbling at low shear rates and tank-
treading motion at high shear rafesThe cells exhibit an unstable behavior in a narrow
intermittent region around the tumbling-to-tank-treagiransition where tumbling can be
followed by tank-treading andice versa For A > 3, stable tank-treading does not nec-
essarily arise. RBCs with viscosity ratio > 3 have been observed to tank-tread while
exhibiting a swinging motion with a certain frequency andpditade about an average
tank-treading axis. The reliability of the theoretical gitions will be judged by compar-
ison with the results of our simulations.

A RBC is suspended in a linear shear flow. The viscosities@gttiernal solvent and
internal cytosol fluid are set tg, = 7; = 0.005 Pa- s, while the membrane viscosity is set
ton,, = 0.022 Pa-s. Figure 8 presents information on the cell tumbling and taekding
frequencies under different conditions. Experimentakotations by Tran-Son-Tay et #.
and Fische¥ are included for comparison. In the case of a purely elaséimbrane with
or without inner solvent (circles and squares), the nunaériesults significantly overpre-
dict the tank-treading frequency compared with experimlemieasurements. The internal
solvent viscosity could be further increased to improvesagrent with experimental data.
However, since the cytosol is a hemoglobin solution with #-defined viscosity of about
0.005 Pa - 533, excess viscous dissipation must occur inside the membidreedata plot-
ted with triangles in figure 8 show good agreement with experital data for increased
membrane viscosity.
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Figure 8. Tumbling and tank-treading frequency of a RBC ireslilew forn, = 0.005 Pa - s,1; = nm = 0
(circles);no, = n; = 0.005 Pa- s, nm = 0 (squares)p, = n; = 0.005 Pa- s, nm = 0.022 Pa - s (triangles).

The tumbling frequency is nearly independent of the mediuscosities. Increas-
ing the viscosity of the internal fluid or raising the memlwariscosity slightly shifts
the tumbling-to-treading threshold into higher shearsgdbteough an intermittent regime.
We estimate that the tank-treading energy barrier of a eedipproximatelyt. = 3 to
3.5 x 10717 J. In the theoretical modg&| the energy barrier was set fg. = 10~!7 .J to
ensure agreement with experimental data. Membrane defimm@uring tank treading is
indicated by an increase in the elastic energy differentie wcreasing shear rate to within
about20% of E..

An intermittent regime is observed with respect to the shetarin all cases. Consistent
with the experiments, the width of the transition zone beyadas the membrane viscosity
increases. Similar results regarding intermittency wexgorted by Kessler et at. for
viscoelastic vesicles. We conclude that theoretical jptais of cell dynamics in shear
flow are qualitatively correct at best due to the assumptiogllipsoidal shape and fixed
ellipsoidal tank-treading path. Experiméhtsave shown and the present simulations have
confirmed that the cell deforms along the tank-treadingaiis strains of ordef.1—0.15.

We have seen that a cell oscillates or swings around taiakhirg axes with a certain
frequency and amplitude. Figure 9 presents graphs of thegedank-treading angle and
swinging amplitude. The numerical results are consistétit @perimental data in Réf.
The average swinging angle is larger for a purely elastic brame without inner cytosol.
The inclination angle is independent of the internal fluid amembrane viscosities and
the swinging amplitude is insensitive to the fluid and membraroperties. The swinging
frequency is exactly twice the tank-treading frequency.
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Figure 9. Graphs of the swinging average angle in degreésd(flymbols) and amplitude (open symbols) for
(@ no = 0.005 Pa - s andn; = n,, = 0 (circles); @) no = n; = 0.005 Pa - s andn,,, = 0 (squares); )
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4.3 Blood viscosity

Blood viscosity was computed, with and without aggregatema function of the shear
rate v over the rangd.005s~! to 1000.0s~! in plane Couette flow. The shear rate and
the cell density in our simulations were verified to be spigtianiform. Figure 10 shows
the relative viscosity (RBC suspension viscosity nornglibyn,) against shear rate at
hematocritH; = 0.45. The blood model predictions are in excellent agreemerit thi¢
blood viscosities measured in three different laboragrie The blood model, consisting
only of RBCs in suspension, clearly captures the effect gfeggation on the viscosity at
low shear rates, and suggests that cells and moleculestbdreiRBCs have little effect
on the viscosity, at least under healthy conditions. Atrimediate shear rates, where
aggregation is no longer relevant, shear thinning is due tfarssition from tumbling to
tank-treading motion, accompanied by strong cell defoionat®.

4.4 Reversible rouleaux formation

The formation of rouleaux in blood occurs in equilibrium aadsufficiently small shear
rates, while large shear rates result in immediate dispersi gentle RBC structures. Ex-
perimentally, aggregation is observeih be a two-step process: the formation of short
linear stacks with few RBCs, followed by their coalescente long linear and branched
rouleaux. As the shear rate increases the large rouleaak e into smaller ones, and
at higher values the suspension ultimately becomes one nb+dispersed RBC& This
process then reverses as the shear rate is decreased. pib#d tgrmation-destruction be-
havior of rouleaux is consistent with the results of our detions as shown in figure 11.
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Figure 10. Validation of simulation results for whole bloaadanon-aggregating RBC suspension. Plot of non-
Newtonian relative viscosity (the cell suspension visgosormalized byng) as a function of shear rate &t =
0.45 and37°C: simulatedcurves are in black, aneixperimentapoints: Whole blood: green crosses - Merril et
all; black circles - Chien et &, black squares - Skalak et%lNon-aggregating RBC suspension: red circles -
Chien et af; red squares - Skalak et&l.

Figure 11. Visualization of aggregation. Simulated re\#esiouleaux are formed by RBCs & = 0.1. The
left plot corresponds to low shear rates, middle plot to mageshare rates, and right plot to high shear rates as
indicated with the shear rate values.

At low shear rates (left plot), the initially dispersed RB&ggregate into large rouleaux
of up to abou20 RBCs; as the shear rate is increased to moderate valuesl|énplid),
these structures are reduced in size until at high ratelst(pigt) they are dispersed almost
completely into individual RBCs. Reversibility is demoraded by reduction of the shear
rate to the formation value at which point individual RBCgjineto re-aggregate.
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Figure 12. Correlation of aggregation with yield stress.s&m plots with a polynomial fit showing the ex-
trapolated intercept, for simulated suspensions with, dashed lines, and withogteggtion, solid lines, at
H; = 0.45.

4.5 Yield stress and aggregation

Whole blood is believed to exhibit a yield stress, i.e. a thoddstress for flow to begirf:7,
which is often estimated by the extrapolation of measuredisstress to the zero shear rate
on the basis of the Casson’s equatfon

F1/2 T;/z + 771/2"71/27 (29)

Ty

wherer, is a yield stress ang is the suspension viscosity at large The assumptions
of Casson’s relation are likely to hold at least at low shedes, which was successfully
demonstrated for pigment-oil suspensi¥h<hinese ovary hamster cell suspensins
and blood. Figure 12 is a polynomial fit in Casson coordinatéé/%,n}f) to the sim-
ulated data for &, = 0.45 suspension, which shows clearly thgtis non-zero for the
aggregating RBC suspension, whilgis absent without cell aggregation. The yield stress
for blood has previously been attributed to the presencewoleaux in experiments re-
ported in Refs:57. Merrill et al! found, of healthy human blood to lie betweérd015
and0.005 Pa at H; = 0.45. Our simulation results in figure 12 fall into this range oéth
yield stress of whole blood.

4.6 Micro-to-macro link.

The non-Newtonian nature of blood (e.g., shear thinningldystress) emerges from the
interactions between cells and from their properties amibadyics. Therefore, we exam-
ined the structure and dynamics of the modeled suspensiotizedevel of single cells.
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We found null pair-correlations of RB€enters of masfor each direction, y, z), which
indicates that the cell suspensions do not self-assemhieder themselves in any direc-
tion at H = 45%. To examine the cell suspension’s local microstructure celeulate
the radial distribution function (RDF) of RBC centers shownrfigure 13(a). For the no-
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Figure 13. Structural and dynamical properties of RBC susipes withH = 45%. Snapshots show sample
RBC conformations from simulations. (a) Radial distributfanction showing cell suspension’s structure. (b)
Average membrane bending energy with respect to shear ratérghoorrelation between single cell deformation
and dynamics. Dashed lines are the corresponding mean vdlsmimus one standard deviation. (c) RBC
asphericity distributions characterizing the deviatioon a spherical shape as a function of shear rate. The
asphericity is defined agA1 — A2)? + (A2 — A3)? + (A3 — A1)?]/(2R}), whered; < Az < A3 are the
eigenvalues of the gyration tensor aﬁg = A1 + A2 + A3. The asphericity for a single RBC in equilibrium is
equal t00.154. (d) Orientational angle distributions for various shestes which illustrate single cell dynamics.
The cell orientational angle is given by the angle betweerefgenvectol/; of the gyration tensor and the flow-
gradient direction). Theoretical prediction showing the orientational angjigribution of a single tumbling
RBC in shear flow is calculated from the theory in Ref.

aggregation case, we find that no significant structures édrover the entire range of
shear rates. At the lowest shear rate (red solid line) skgerall peaks in RDF indicate
the presence of infrequent intermediate structures, SRBEs may have enough time to
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relax locally at very low shear rates. A larger peak of the setid curve atr = 8um,
which is equal to the cell diameter, indicates that neigimgpRBCs are often aligned with
each other in the flow. As seen from the other solid curvese(bdmeen, and black), the
correlations completely disappear at higher shear rates tlzerefore the shear thinning
behavior of a non-aggregating suspension is clearly notaaechange in microstructure.
In contrast, several large peaks in the RDF function for tgregating case at the lowest
shear ratey = 0.045 s—! (red dashed line) indicate the formation of rouleaux2dab 4
RBCs. Increase of the shear rate leads to the dispersiorutdax shown by the blue
dashed curve in figure 13(a), where predominant RBC aggsgae formed by only two
RBCs. At shear rates above approximatgly- 10 s~ no difference in microstructure
is detected between aggregating and non-aggregatingusgleasions. As a conclusion,
the steep increase in viscosity of the aggregating blooovashear rates is mainly due to
the cell aggregation into rouleaux. In addition, rouleaosnfation also provides a plau-
sible explanation for the existence of yield stress, sinith decrease of shear rate larger
rouleaux structures are formed resulting in an eventudiddization” of the suspension.

The dynamics of a single RBC in shear flow is characterizechbytambling motion
at low shear rates and membrane tank-treading at high satef 1€ The tumbling-
to-tank-treading transition occurs within a certain ranfigtermediate shear rates, where
a RBC may experience high bending deformatiéng’he deformation, orientation, and
dynamics of cells within the suspension is illustrated imufeg 13(b), (c), and (d). These
plots show that cells in the suspension mostly tumble arairréheir biconcave shape at
low shear rates below s, which is confirmed by essentially no change in RBC bending
energy and in its standard deviation (figure 13(b)), by thieeexely narrow asphericity
distribution around the equilibrium value 6f154 (figure 13(c)), and by the wide orien-
tational angle ) distribution in figure 13(d). Cell tumbling at low sheareatis slightly
hindered in non-aggregating suspensions in comparisoanbltng of a single RBC in
shear flow due to cell crowding, which results in sliding ofi€®ver each other; this is
shown by a higher peak in the orientational angle distrdu{green curve) in figure 13(d)
with respect to the theoretical prediction (blue curve)cdmtrast, RBC tumbling in aggre-
gating suspensions appears to be nearly uniform, since RBfilsle within multiple-cell
rouleaux structures. At high shear rates, larger than ad@ut—!, individual RBCs are
subject to tank-treading motion illustrated by a narréwlistribution (black line) in fig-
ure 13(d). At yet higher shear rates RBCs become stronglygaked as indicated by the
RBC asphericity distribution in figure 13(c).

The most interesting and complex cell dynamics, howevecuigcin the broad in-
termediate regime of shear rates betwéesi ' and 200 s—!, where RBC aggregation
interactions can be neglected. This range also correspnttee main region of shear
thinning for the non-aggregating cell suspension. In thige of shear rates, RBCs within
the suspension experience severe deformations documieptegronounced increase in
the membrane bending energy and in its variation shown indig8(b). The asphericity
distribution fory = 45 s~! in figure 13(c) shows that RBCs attain on average a more
spherical shape indicating transient folded conformatiorhis may result in a reduction
of shear stresses due to collisional constraints of celbting, and therefore in shear thin-
ning. In addition, the transition of some cells to the tardatiing motion further reduces
the shear stresses contributing to the viscosity thinning.
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5 Summary

We have presented a mesoscopic model of RBCs implementdetliigsipative particle
dynamics method. The spectrin cytoskeleton is represdiytachetwork of interconnected
viscoelastic springs comprising a membrane with elastit\ascous properties. The sur-
face network accounts for bending resistance attributéuttipid bilayer and incorporates
local and global area constraints to ensure constant voamdesurface area. The macro-
scopic properties of the membrane were related to the nktpmrameters by theoretical
analysis. RBC dynamics was simulated in shear flow, wherdlaxaibits tumbling at
low shear rates and tank-treading at high shear rates. Awantermittent region appears
where these modes interchange. The model is able to quasiyecapture cell dynamics
in shear flow. Comparison of the numerical results with éxgstheoretical predictions
suggest that the latter suffers from oversimplification .

Results on the rheological properties of human blood sugpas the RBC suspen-
sion model is able to accurately predict shear-dependsnbsity of blood with and with-
out aggregation interactions between RBCs. The RBC agtioegmodel was able to
properly capture the assembly of RBCs into rouleaux strestuThese simulations also
confirmed that whole blood is a fluid with a non-zero yield ssteWe have shown how
single RBC characteristics and behavior contribute to taemscopic properties of blood,
which may not be possible to elucidate in experiments. Tleeliptive capability of the
current cell/capsule suspension model can readily be d&tkto a variety of engineering
and material science applications, which may aid in the ldgveent of new soft materials.
Finally, such simulations of soft capsule suspensions amgpatationally demanding and
are only feasible on massively parallel computers.
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Appendix
A Dissipative particle dynamics

Dissipative particle dynamics (DP#)% is a mesoscopic particle method, where each
particle represents molecular clusterather than an individual atom, and can be thought
of as a soft lump of fluid. The DPD system consistsNofpoint particles of massn;,
positionr; and velocityv,. DPD particles interact through three forces: consereativ
(F)), dissipative F'/), and randomK?) forces given by

(7i)Fij, Fi[; = —yw” (ri;) (vij - £i; )45, Ff‘} = UWR(HJ‘)TZCJ%I%J‘, (30)
wheref;; = r;;/r;;, andv;; = v, — v;. The coefficientsy ando define the strength of
dissipative and random forces, respectively. In additioh,andw? are weight functions,

C _ pC
F;; =F

ij
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and¢;; is a normally distributed random variable with zero mearit variance, and;; =
&;:. All forces are truncated beyond the cutoff radiys The conservative force is given
by

FC

i (rig) = aij(1 —rij/re) for ry; <, (31)
wherea,; is the conservative force coefficient between parti¢lasd;. The random and
dissipative forces form a thermostat and must satisfy thatufation-dissipation theorem in

order for the DPD system to maintain equilibrium tempermfli#¥°. This leads to

2
wD(rij) = [wR(mj)] , o2 = 2vkgT, (32)
wherek g is the Boltzmann constant. The choice for the weight fumdtiis as follows
wR(rij) = (1 — rij/rc)k for Tij <7 (33)

wherek is an exponent. The time evolution of velocities and posgiof particles is
determined by the Newton’s second law of motion

1
dri = vidt, dv; = — > (FG+FD +FE)dt. (34)

b
The above equations of motion are integrated using the neddifelocity-Verlet algo-
rithm38.
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