
Simulations of Blood Flow on the Cell Scale

Dmitry A. Fedosov

Theoretical and Soft Matter Biophysics, Institute of Complex Systems andInstitute for Advanced
Simulation,
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Red blood cells (RBCs) in various flows exhibit a rich dynamicsdue their deformability and
govern rheological properties and flow characteristics of human blood. Using a mesoscopic
RBC model which incorporates membrane shear elasticity, bending rigidity, and viscosity, we
quantitatively predict the behavior of a single RBC in shearflow and the dependence of blood
viscosity on shear rate and hematocrit. In shear flow, single RBCs respond by tumbling at
low shear rates and tank-treading at high shear rates. In transitioning between these regimes,
the membrane exhibits substantial deformation controlled largely by flexural stiffness. In RBC
suspension (blood) under shear, not only the tumbling/tank-treading cell dynamics affects blood
flow characteristics, but also RBC collective behavior and cell-cell aggregation interactions.
RBC aggregation leads to reversible rouleaux structures and a tremendous increase of blood
viscosity at low shear rates, and results in the presence of ayield stress. The non-Newtonian
behavior of blood is analyzed and related to the suspension’s microstructure, deformation and
dynamics of single RBCs. The generality of these cell models suggests that they can easily be
adapted to tune the properties of a much wider class of complex fluids including capsule and
vesicle suspensions.

1 Introduction

Blood is circulated around the entire body performing a number of physiological functions.
Its main functions are the transport of oxygen and nutrientsto cells of the body, removal
of waste products such as carbon dioxide and urea, and circulation of molecules and cells
which mediate the organism’s defense and immune response and play a fundamental role
in the tissue repair process. Abnormal blood flow is often correlated with a broad range
of disorders and diseases which include hypertension, anemia, atherosclerosis, malaria,
and thrombosis. Understanding the rheological propertiesand dynamics of blood cells
and blood flow is crucial for many biomedical and bioengineering applications. Examples
include the development of blood substitutes, the design ofblood flow assisting devices,
and drug delivery. In addition, understanding of vital blood related processes in health and
disease may aid in the development of new effective treatments.

Blood is a physiological fluid that consists of erythrocytesor red blood cells (RBCs),
leukocytes or white blood cells (WBCs), thrombocytes or platelets, and plasma contain-
ing various molecules and ions. RBCs constitute approximately 45% of the total blood
volume, WBCs around0.7%, and the rest is taken up by blood plasma and its substances.
One microliter of blood contains about5 million RBCs, roughly5 thousand WBCs, and
approximately a quarter million platelets. Due to a high volume fraction of RBCs, the
rheological properties of blood are mainly determined by their properties and interactions.

Modern rheometry techniques are able to reliably measure macroscopic properties of
cell suspensions, for instance the bulk viscosity of blood1–3. At low shear rates the RBCs
in whole blood have been observed to aggregate into structures called “rouleaux”, which
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resemble stacks of coins1,4,5. The aggregation process appears to be strongly correlatedto
the presence of the plasma proteins4,5. Experiments with washed RBCs re-suspended in
pure saline to which fibrinogen was added progressively4 showed a tremendous viscosity
increase at low deformation rates with respect to fibrinogenconcentration. In addition,
such suspensions exhibit a yield stress1,6,7, i.e., a threshold stress for flow to begin.

These experimental advances have not been accompanied by theoretical developments
which can yield quantitative predictions of rheological and flow properties of blood. A
number of theoretical and numerical analyses have sought todescribe cell behavior and
deformation in a variety of flows. Examples include models ofellipsoidal cells enclosed
by viscoelastic membranes8,9, numerical models based on shell theory10–12, and discrete
descriptions at a mesoscopic level13–16. Mesoscopic modeling of viscoelastic membranes
is developing rapidly with a RBC membrane modeled as a network of viscoelastic springs
in combination with a membrane flexural stiffness, and constraints on the surface area
and volume13–16. However, recent theoretical and numerical studies focused mostly on the
behavior of a single RBC in various flows13,8,16. Several studies have also been performed
to simulate a suspension of multiple cells17–19 in tube flow.

In this chapter, a theoretical analysis will be presented for a membrane network
model exhibiting specified macroscopic membrane properties without parameter adjust-
ment. RBC dynamics in shear flow showing tumbling and tank-treading will be studied in
detail with a view to delineating the effect of the membrane shear moduli, bending rigid-
ity, external, internal, and membrane viscosities. Comparison with available experiments
will demonstrate that the computational model is able to accurately describe realistic RBC
dynamics in shear flow. Comparison of the numerical simulations with theoretical predic-
tions8,9 will reveal discrepancies suggesting that the current theoretical models are only
qualitatively accurate due to strong simplifications.

Moreover, we will examine blood rheological properties of modeled RBC suspension.
In particular, we will investigate the effect of RBC aggregation on blood viscosity, re-
versible rouleaux formation, and yield stress in a RBC suspension20. In addition, we will
establish the connection between the rheology of a cell suspension and its microscopic
properties on a single-cell level, such as structure or arrangement, cell viscoelastic prop-
erties, and local dynamics. In conclusion, we will focus on thequantitativeprediction of
rheological properties and dynamics of single RBCs and blood flow.

2 Red blood cells

A healthy human RBC has a biconcave shape with an average diameter of approximately
7.82 µm. Figure 1 shows a schematic of a RBC membrane which consists of a lipid
bilayer with an attached cytoskeleton formed by a network ofthe spectrin proteins linked
by short filaments of actin. The lipid bilayer is considered to be a nearly viscous and
area preserving membrane10, while RBC elasticity is attributed to the attached spectrin
network, as is the integrity of the entire RBC when subjectedto severe deformations in
the capillaries as small as3 µm. The RBC membrane encloses a viscous cytosol whose
viscosity is several times larger than that of blood plasma under physiological conditions.
Mechanical and rheological characteristics of RBCs and their dynamics are governed by:
membrane elastic and viscous properties, bending resistance, and the viscosities of the
external/internal fluids.
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Figure 1. A schematic of the RBC membrane structure.

3 Methods and models

In the model, the RBC membrane is represented by a viscoelastic network. The motion
of the membrane and of the internal and external fluids is described by the method of
dissipative particle dynamics (DPD)21, a mesoscopic particle-based simulation technique,
see appendix A for details.

3.1 Red blood cell membrane

The RBC membrane is represented byNv DPD particles with coordinates{xi=1...Nv
}

which are vertices of a two-dimensional triangulated network on the RBC surface22,16,23,
as shown in figure 2. The network has a fixed connectivity with the energy as follows

U({xi}) = Us + Ub + Ua+v, (1)

whereUs is the spring’s potential energy,Ub is the bending energy, andUa+v corresponds
to the area and volume conservation constraints. TheUs contribution provides membrane
elasticity similar to that of a spectrin network of RBC membrane. A “dashpot” is attached
to each spring, and therefore, the spring forces are a combination of conservative elas-
tic forces and dissipative forces, which provide network viscous response similar to RBC
membrane viscosity. The bending energy mimics bending resistance of the RBC mem-
brane, while the area and volume conservation constraints mimic area-incompressibility of
the lipid bilayer and incompressibility of a cytosol, respectively. Below, these energies are
described in detail.
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Figure 2. A sketch of a RBC membrane network.

The network nodes are connected byNs springs with the potential energy as follows

Us =
∑

j∈1...Ns

[

kBT lm(3x2
j − 2x3

j )

4p(1− xj)
+

kp

(n− 1)ln−1
j

]

, (2)

wherelj is the length of the springj, lm is the maximum spring extension,xj = lj/lm,
p is the persistence length,kBT is the energy unit,kp is the spring constant, andn is a
power. The above equation includes the attractive wormlikechain potential and a repulsive
potential forn > 0 such that a non-zero equilibrium spring length can be imposed. The
performance of different spring models for the RBC membranewas studied in Ref.23 in
detail.

To incorporate the membrane viscosity into the RBC model a dissipative force is intro-
duced for each spring. Following the general framework of the fluid particle model24 we
can define dissipativeFD

ij and randomFR
ij forces for each spring, wherei, j ∈ 1...Nv are

a pair of two network vertices connected by a spring. Such forces satisfy the fluctuation-
dissipation balance providing consistent temperature of the RBC membrane in equilibrium
and are given by

F
D
ij = −γT

vij − γC(vij · eij)eij , (3)

F
R
ijdt =

√

2kBT

(

√

2γT dWS
ij +

√

3γC − γT
tr[dWij ]

3
1

)

· eij , (4)

whereγT and γC are dissipative parameters and the superscriptsT andC denote the
“translational” and “central” components,vij is the relative velocity of spring ends,
tr[dWij ] is the trace of a random matrix of independent Wiener increments dWij , and
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dWS
ij = dWS

ij − tr[dWS
ij ]1/3 is the traceless symmetric part. Note that the condition

3γC − γT ≥ 0 has to be satisfied.
The bending energy of the RBC membrane is given as follows

Ub =
∑

j∈1...Ns

kb [1− cos(θj − θ0)] , (5)

wherekb is the bending constant,θj is the instantaneous angle between two adjacent trian-
gles having the common edgej, andθ0 is the spontaneous angle.

In addition, the RBC model includes the area and volume conservation constraints with
the corresponding energy given by

Ua+v =
∑

j∈1...Nt

kd(Aj −A0)
2

2A0
+

ka(A−Atot
0 )2

2Atot
0

+
kv(V − V tot

0 )2

2V tot
0

, (6)

whereNt is the number of triangles in the membrane network,A0 is the triangle area, and
kd, ka andkv are the local area, global area and volume constraint coefficients, respec-
tively. The termsA andV are the total RBC area and volume, whileAtot

0 andV tot
0 are the

specified total area and volume, respectively. More detailson the RBC model can be found
in Refs.16,23.

3.2 Membrane macroscopic properties

Several parameters must be chosen in the membrane network model to ensure a desired
mechanical response. Figure 3 depicts a network model and its continuum counterpart. To

Network Continuum

shear, area-compression,
Young’s moduli
bending rigidity

spring, bending
parameters

area, volume constraints ?

Figure 3. Illustration of a membrane network and corresponding continuum model.

circumvent ad-hoc parameter adjustment, we derive relationships between local model pa-
rameters and network macroscopic properties for an elastichexagonal network. A similar
analysis for a two-dimensional particulate sheet of equilateral triangles was presented in
Refs.25,23.

Figure 4 illustrates an element in a hexagonal network with vertex v placed at the
origin of a local Cartesian system. Using the virial theorem26, we find that the Cauchy
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Figure 4. Illustration of an element in a hexagonal triangulation.

stress tensor atv is

ταβ = − 1

S

[

f(r1)

r1
rα1 r

β
1 +

f(r2)

r2
rα2 r

β
2 +

f(|r2 − r1|)
|r2 − r1|

(rα2 − rα1 )(r
β
2 − rβ1 )

]

−
(

ka(A
tot
0 −NtA)

Atot
0

+
kd(A0 −A)

A0

)

δαβ , (7)

whereα andβ stand forx or y, f(r) is the spring force,Atot
0 = NtA0, S = 2A0, δαβ is

the Kronecker delta, andS is the area of the hexagonal element centered atv.

3.2.1 Shear modulus

The shear modulus is derived from the network deformation byapplying a small engineer-
ing shear strainγ to the network element shown in figure 4. For instance, the deformation
of a material vectorr1 is then described as

r
′
1 = r1 · J =

[

rx1 + 1
2 r

y
1

1
2 r

x
1γ + ry1

]

, (8)

where

J =

[

1 γ/2
γ/2 1

]

+O(γ2) (9)

is the linear strain tensor andr1 = (rx1 ; r
y
1), as shown in figure 4. Because the shear defor-

mation is area preserving, only spring forces in equation (7) contribute to the membrane
shear modulus.

Expandingτxy in a Taylor series, we find that

τ ′xy = τxy +
∂τ ′xy
∂γ

∣

∣

∣

∣

γ=0

γ +O(γ2). (10)
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The linear shear modulus of the network is

µ0 =
∂τ ′xy
∂γ

∣

∣

∣

∣

γ=0

. (11)

For example, differentiating the first term ofτxy in equation (7) yields

∂

∂γ

(

f(r′1)

r′1
rx

′

1 ry
′

1

)

γ=0

=

(

∂ f(r1)
r1

∂r1

(rx1r
y
1)

2

r1
+

f(r1)r1
2

)

r1=l0

, (12)

wherel0 is the equilibrium spring length. Using the vector-productdefinition of the area
of a triangle, we obtain

(rx1r
y
1)

2 + (rx2r
y
2)

2 + (rx2 − rx1 )
2(ry2 − ry1)

2 = 2A2
0. (13)

The linear shear modulus of the network model is

µ0 =

√
3kBT

4plmx0

(

x0

2(1− x0)3
− 1

4(1− x0)2
+

1

4

)

+

√
3kp(n+ 1)

4ln+1
0

, (14)

wherex0 = l0/lm.

3.2.2 Area compression and Young’s moduli

The linear elastic area compression modulusK is found from the in-plane pressure follow-
ing a small area expansion as

p = −1

2
(τxx + τyy) =

3 l

4A
f(l) +

(ka + kd)(A0 −A)

A0
. (15)

Defining the compression modulus as

K = − ∂p

∂ logA

∣

∣

∣

A=A0

= −1

2

∂p

∂ log l

∣

∣

∣

l=l0
= −1

2

∂p

∂ log x

∣

∣

∣

x=x0

, (16)

and using equations (15) and (16), we obtain

K = 2µ0 + ka + kd. (17)

For the nearly constant-area membrane enclosing a red bloodcell, the compression modu-
lus is much larger than the shear elastic modulusµ0.

The Young’s modulus of the two-dimensional sheet is given by

Y =
4Kµ0

K + µ0
. (18)

AsK → ∞, we obtainY → 4µ0. To ensure a nearly constant area, we setka + kd ≫ µ0.
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3.2.3 Bending rigidity

Helfrich27 proposed an expression for the bending energy of a lipid membrane,

Ec =
kc
2

∫∫

(C1 + C2 − 2C0)
2 dA+ kg

∫∫

C1C2 dA, (19)

whereC1 andC2 are the principal curvatures,C0 is the spontaneous curvature, andkc, kg
are bending rigidities. The second term on the right-hand side of equation (19) is constant
for any closed surface.

A relationship between the bending constant,kb, and the macroscopic membrane bend-
ing rigidity, kc, can be derived for a spherical shell. Figure 5 shows two equilateral triangles
with edge lengthl0 whose vertices lie on a sphere of radiusR. The angle between the tri-

R

R

l
θ

n

n

1

2

aa

o

d

0

Figure 5. Illustration of two equilateral triangles on the surface of a sphere of radiusR.

angle normalsn1 andn2 is denoted byθ. In the case of a spherical shell, the total energy
in equation (19) is found to be

Ec = 8πkc

(

1− C0

C1

)2

+ 4πkg = 8πkc

(

1− R

R0

)2

+ 4πkg, (20)

whereC1 = C2 = 1/R andC0 = 1/R0. In the network model, the bending energy of the
triangulated sphere is

Ub = Ns kb [1− cos(θ − θ0)]. (21)

Expandingcos(θ − θ0) in a Taylor series aroundθ − θ0 provides us with the leading term

Ub =
1

2
Nskb(θ − θ0)

2 +O
(

(θ − θ0)
4
)

. (22)

With reference to figure 5, we find that2a ≈ θR or θ = l0/(
√
3R), andθ0 = l0/(

√
3R0).

For a sphere,A = 4πR2 ≈ NtA0 =
√
3Ntl

2
0/4 =

√
3Nsl

2
0/6, and l20/R

2 =
8π

√
3/Ns. Finally, we obtain

Ub =
1

2
Nskb

(

l0√
3R

− l0√
3R0

)2

=
Nskbl

2
0

6R2

(

1− R

R0

)2

=
4πkb√

3

(

1− R

R0

)2

.

(23)
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Equating the macroscopic bending energyEc to Ub for kg = −4kc/3 andC0 = 0, we
obtainkb = 2kc/

√
3 in agreement with the limit of a continuum approximation28.

The spontaneous angleθ0 is set according to the total number of vertices on the sphere,
Nv. It can be shown thatcos θ = 1 − 1/[6(R2/l20 − 1/4)] and the number of sides is
Ns = 2Nv − 4. The bending coefficient,kb, and spontaneous angle,θ0, are given by

kb =
2√
3
kc, θ0 = arccos

(√
3(Nv − 2)− 5π√
3(Nv − 2)− 3π

)

. (24)

3.2.4 Membrane viscosity

Since interparticle dissipative interaction is an intrinsic part of the DPD formulation, in-
corporating dissipative and random forces into springs fitsnaturally into the DPD scheme.
The general framework of the fluid-particle model24 provides us with equations (3) and
(4). These dissipative and random forces in combination with an elastic spring consti-
tute a mesoscopic viscoelastic spring. To relate the membrane shear viscosity,ηm, to the
model dissipative parametersγT andγC , an element of the hexagonal network shown in
figure 4 is subjected to a constant shear rate,γ̇. The shear stressτxy at short times can be
approximated from the contribution of the dissipative force in equation (3),

τxy = − 1

2A0

[

γT γ̇
(

(r1y)
2 + (r2y)

2 + (r2y − r1y)
2
)

+
γC γ̇

l20

(

(r1xr
1
y)

2 + (r2xr
2
y)

2

+(r2x − r1x)
2(r2y − r1y)

2
)]

= γ̇
√
3 (γT +

1

4
γC ). (25)

The membrane viscosity is given by

ηm =
τxy
γ̇

=
√
3

(

γT +
1

4
γC

)

. (26)

This equation indicates thatγT accounts for the largest portion of the membrane dissipa-
tion. Therefore,γC is set to its minimum value,13 γ

T , in the simulations.

3.3 Membrane-solvent interfacial conditions

The cell membrane encloses a viscous fluid and is surrounded by a liquid solvent. Figure 6
shows a snapshot of a simulation in equilibrium, where red particles are membrane ver-
tices, blue particles represent the external fluid, and green particles represent the internal
fluid. To prevent mixing of the internal and external fluids, we require impenetrability.
We also enforce no-slip boundary conditions at the membraneimplemented by pairwise
interactions between fluid particles and membrane nodes. Bounce-back reflection of fluid
particles at the triangular plaquettes satisfies membrane impenetrability and better enforces
no-slip compared to specular reflection. However, bounce-back reflection alone does not
guarantee no-slip. In practice, it is necessary to properlyset the DPD dissipative interac-
tions between fluid particles and membrane vertices.

The continuum linear shear flow over a flat plate is used to determine the dissipative
force coefficientγ for the fluid-membrane coupling. For the continuum, the total shear
force on areaA of the plate isAη0γ̇, whereη0 is the fluid viscosity anḋγ is the local
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Figure 6. A slice through a sample equilibrium simulation. Redparticles are membrane vertices, blue particles
represent the external fluid, and green particles representthe internal fluid.

shear-rate. To mimic the membrane surface, wall particles are distributed over the plate to
match the configuration of the cell network model. The force on a single wall particle in
this system exerted by the surrounding fluid under shear can be expressed as

Fv =

∫∫∫

Vh

n g(r)FD dV, (27)

whereFD is the DPD dissipative force between fluid and wall particles, n is the fluid
number density,g(r) is the radial distribution function of fluid particles relative to the
wall particles, andVh is the half-sphere volume of fluid above the plate. Thus, the total
shear force on the areaA is equal toNAFv, whereNA is the number of plate particles
residing in the areaA. When conservative interactions between fluid particles andthe
membrane vertices are neglected, the radial distribution function simplifies tog(r) = 1.
SettingNAFv = Aη0γ̇ yields an expression for the dissipative force coefficientγ in terms
of the fluid density and viscosity and the wall density,NA/A. Near a wall where the
half-sphere lies within the range of the linear wall shear flow, the shear rate cancels out.
This formulation has been verified to enforce satisfactory no-slip boundary conditions for
shear flow over a flat plate, and is an excellent approximationfor no-slip at the membrane
surface.

3.4 RBC aggregation interactions

For blood, the attractive cell-cell interactions are crucial for simulation of RBC aggregation
into rouleaux. These forces are approximated phenomenologically with a Morse potential,

UM (r) = De

[

e2β(r0−r) − 2eβ(r0−r)
]

, (28)

wherer is the separation distance,r0 is the zero force distance,De is the well depth of
the potential, andβ characterizes the interaction range. The Morse potential interactions
are implemented between every two vertices of separate RBCsif they are within a defined
potential cutoff radiusrd. Eventhough the Morse potential in equation (28) contains a
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Figure 7. Simulation of whole blood under shear flow. RBCs are shown in red and in orange, where orange color
depicts the rouleaux structures formed due to aggregation interactions between RBCs. The image also displays
several cut RBCs with the inside drawn in cyan to illustrate RBC shape and deformability.

short-range repulsive force whenr < r0, such repulsive interactions cannot prevent two
RBCs from an overlap. To guarantee no overlap among RBCs we employ a short range
Lennard-Jones potential and specular reflections of RBC vertices on membranes of other
RBCs. The specular reflections of RBC vertices on surfaces ofother RBCs are necessary
due to coarseness of the triangular network which represents the RBC membrane.

4 Simulation results and discussion

We present simulation results for the behavior of a single RBC in shear flow and discuss
the effect of various membrane properties on RBC dynamics. We also study dense RBC
suspension (blood) under shear and examine the blood viscosity with and without RBC
aggregation, rouleaux formation, and yield stress. Finally, we establish a link between
bulk blood properties, microstructure, and the flow behavior of single RBCs.

4.1 Simulation setup and parameters

A single RBC or the RBC suspension were subjected to linear shear flow with periodic
Lees-Edwards boundary conditions29 as shown in figure 7. The computational domain had
the size of5.6D0×4.0D0×3.4D0, whereD0 is the RBC diameter which is equal to about
7.82 µm for a healthy RBC. In case of the RBC suspension,168 RBCs and117599 solvent
particles were placed in the computational domain. The RBC membrane Young’s modulus
was set toY0 = 269924 kBT/D

2
0, which corresponds toY0 = 18.9 µN/m at physiological

temperature ofT = 37o C. The RBC bending rigidity was assumed to bekc = 3×10−19J ,
which is equal to approximately70kBT at T = 37o C. The corresponding F̈oppl-von
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Kármán number0.25Y0D
2
0/kc is therefore equal to approximately963. The membrane

viscosity was set to be12η0, whereη0 is the suspending fluid viscosity. The coefficients
for the area and volume constraints were set large enough in order to closely approximate
membrane and cytosol incompressibility. Coupling betweenthe solvent and RBCs was
performed through a dissipative force between fluid particles and membrane vertices.

Interactions between different RBCs included the short range repulsive Lennard-Jones
potential with parametersǫ = 10.0 kBT andσLJ = 0.037 D0. These repulsive interac-
tions result in a thin layer next to a RBC membrane which cannot be accessed by other
cells. This layer can be interpreted as a slight increase of the RBC volume. Therefore, the
RBC volume was assumed to be about10% larger than that of the triangulated network.
The concentration of RBCs is called hematocrit and denoted asHt. RBC aggregation inter-
actions were mediated by the Morse potential with parametersDe = 3.0 kBT , r0 = σLJ ,
β = 0.45 σ−1

LJ , andrd = 3.7 σLJ . For more details see Ref.20.

4.2 Single RBC in shear flow

Experimental observations have shown that RBCs tumble at low shear rates and exhibit
a tank-treading motion at high shear rates30–32,8. Fischer31 attributed this behavior to a
minimum elastic energy state of the cell membrane. Cells canbe made to tank-tread in the
laboratory for several hours. When the flow is stopped, the cells relax to the original bicon-
cave shape where attached microbeads recover their original relative position. It appears
that tank-treading is possible only when a certain elastic energy barrier has been surpassed.
Theoretical analyses have considered ellipsoidal cell models tank-treading along a fixed el-
lipsoidal path8,9. Our simulations show that the dynamics depends on the membrane shear
modulus, shear rate, and viscosity ratioλ = (ηi + ηm)/ηo, whereηi, ηm, andηo are the
interior, membrane, and outer fluid viscosities.

For viscosity ratioλ < 3, the theory predicts tumbling at low shear rates and tank-
treading motion at high shear rates9. The cells exhibit an unstable behavior in a narrow
intermittent region around the tumbling-to-tank-treading transition where tumbling can be
followed by tank-treading andvice versa. Forλ > 3, stable tank-treading does not nec-
essarily arise. RBCs with viscosity ratioλ > 3 have been observed to tank-tread while
exhibiting a swinging motion with a certain frequency and amplitude about an average
tank-treading axis. The reliability of the theoretical predictions will be judged by compar-
ison with the results of our simulations.

A RBC is suspended in a linear shear flow. The viscosities of the external solvent and
internal cytosol fluid are set toηo = ηi = 0.005 Pa ·s, while the membrane viscosity is set
to ηm = 0.022 Pa ·s. Figure 8 presents information on the cell tumbling and tank-treading
frequencies under different conditions. Experimental observations by Tran-Son-Tay et al.30

and Fischer32 are included for comparison. In the case of a purely elastic membrane with
or without inner solvent (circles and squares), the numerical results significantly overpre-
dict the tank-treading frequency compared with experimental measurements. The internal
solvent viscosity could be further increased to improve agreement with experimental data.
However, since the cytosol is a hemoglobin solution with a well-defined viscosity of about
0.005 Pa · s33, excess viscous dissipation must occur inside the membrane. The data plot-
ted with triangles in figure 8 show good agreement with experimental data for increased
membrane viscosity.
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Figure 8. Tumbling and tank-treading frequency of a RBC in shear flow for ηo = 0.005 Pa · s, ηi = ηm = 0
(circles);ηo = ηi = 0.005 Pa · s, ηm = 0 (squares);ηo = ηi = 0.005 Pa · s, ηm = 0.022 Pa · s (triangles).

The tumbling frequency is nearly independent of the medium viscosities. Increas-
ing the viscosity of the internal fluid or raising the membrane viscosity slightly shifts
the tumbling-to-treading threshold into higher shear rates through an intermittent regime.
We estimate that the tank-treading energy barrier of a cell is approximatelyEc = 3 to
3.5 × 10−17 J . In the theoretical model9, the energy barrier was set toEc = 10−17 J to
ensure agreement with experimental data. Membrane deformation during tank treading is
indicated by an increase in the elastic energy difference with increasing shear rate to within
about20% of Ec.

An intermittent regime is observed with respect to the shearrate in all cases. Consistent
with the experiments, the width of the transition zone broadens as the membrane viscosity
increases. Similar results regarding intermittency were reported by Kessler et al.34 for
viscoelastic vesicles. We conclude that theoretical predictions of cell dynamics in shear
flow are qualitatively correct at best due to the assumption of ellipsoidal shape and fixed
ellipsoidal tank-treading path. Experiments8 have shown and the present simulations have
confirmed that the cell deforms along the tank-treading axiswith strains of order0.1−0.15.

We have seen that a cell oscillates or swings around tank-treading axes with a certain
frequency and amplitude. Figure 9 presents graphs of the average tank-treading angle and
swinging amplitude. The numerical results are consistent with experimental data in Ref.8.
The average swinging angle is larger for a purely elastic membrane without inner cytosol.
The inclination angle is independent of the internal fluid and membrane viscosities and
the swinging amplitude is insensitive to the fluid and membrane properties. The swinging
frequency is exactly twice the tank-treading frequency.
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(a) ηo = 0.005 Pa · s andηi = ηm = 0 (circles); (b) ηo = ηi = 0.005 Pa · s andηm = 0 (squares); (c)
ηo = ηi = 0.005 Pa · s andηm = 0.022 Pa · s (triangles).

4.3 Blood viscosity

Blood viscosity was computed, with and without aggregation, as a function of the shear
rate γ̇ over the range0.005s−1 to 1000.0s−1 in plane Couette flow. The shear rate and
the cell density in our simulations were verified to be spatially uniform. Figure 10 shows
the relative viscosity (RBC suspension viscosity normalized byη0) against shear ratėγ at
hematocritHt = 0.45. The blood model predictions are in excellent agreement with the
blood viscosities measured in three different laboratories1–3. The blood model, consisting
only of RBCs in suspension, clearly captures the effect of aggregation on the viscosity at
low shear rates, and suggests that cells and molecules otherthan RBCs have little effect
on the viscosity, at least under healthy conditions. At intermediate shear rates, where
aggregation is no longer relevant, shear thinning is due to atransition from tumbling to
tank-treading motion, accompanied by strong cell deformations20.

4.4 Reversible rouleaux formation

The formation of rouleaux in blood occurs in equilibrium andat sufficiently small shear
rates, while large shear rates result in immediate dispersion of gentle RBC structures. Ex-
perimentally, aggregation is observed1 to be a two-step process: the formation of short
linear stacks with few RBCs, followed by their coalescence into long linear and branched
rouleaux. As the shear rate increases the large rouleaux break up into smaller ones, and
at higher values the suspension ultimately becomes one of mono-dispersed RBCs35. This
process then reverses as the shear rate is decreased. This typical formation-destruction be-
havior of rouleaux is consistent with the results of our simulations as shown in figure 11.
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Figure 10. Validation of simulation results for whole blood and non-aggregating RBC suspension. Plot of non-
Newtonian relative viscosity (the cell suspension viscosity normalized byη0) as a function of shear rate atHt =
0.45 and37oC: simulatedcurves are in black, andexperimentalpoints: Whole blood: green crosses - Merril et
al.1; black circles - Chien et al.2, black squares - Skalak et al.3. Non-aggregating RBC suspension: red circles -
Chien et al.2; red squares - Skalak et al.3.

Figure 11. Visualization of aggregation. Simulated reversible rouleaux are formed by RBCs atHt = 0.1. The
left plot corresponds to low shear rates, middle plot to moderate share rates, and right plot to high shear rates as
indicated with the shear rate values.

At low shear rates (left plot), the initially dispersed RBCsaggregate into large rouleaux
of up to about20 RBCs; as the shear rate is increased to moderate values (middle plot),
these structures are reduced in size until at high rates (right plot) they are dispersed almost
completely into individual RBCs. Reversibility is demonstrated by reduction of the shear
rate to the formation value at which point individual RBCs begin to re-aggregate.
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4.5 Yield stress and aggregation

Whole blood is believed to exhibit a yield stress, i.e. a threshold stress for flow to begin1,6,7,
which is often estimated by the extrapolation of measured shear stress to the zero shear rate
on the basis of the Casson’s equation36,

τ1/2xy = τ1/2y + η1/2γ̇1/2, (29)

whereτy is a yield stress andη is the suspension viscosity at largeγ̇. The assumptions
of Casson’s relation are likely to hold at least at low shear rates, which was successfully
demonstrated for pigment-oil suspensions36, Chinese ovary hamster cell suspensions37,
and blood4. Figure 12 is a polynomial fit in Casson coordinates (γ̇1/2,τ1/2xy ) to the sim-
ulated data for aHt = 0.45 suspension, which shows clearly thatτy is non-zero for the
aggregating RBC suspension, whileτy is absent without cell aggregation. The yield stress
for blood has previously been attributed to the presence of rouleaux in experiments re-
ported in Refs.1,6,7. Merrill et al.1 foundτy of healthy human blood to lie between0.0015
and0.005 Pa atHt = 0.45. Our simulation results in figure 12 fall into this range of the
yield stress of whole blood.

4.6 Micro-to-macro link.

The non-Newtonian nature of blood (e.g., shear thinning, yield stress) emerges from the
interactions between cells and from their properties and dynamics. Therefore, we exam-
ined the structure and dynamics of the modeled suspensions on the level of single cells.
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We found null pair-correlations of RBCcenters of massfor each direction (x, y, z), which
indicates that the cell suspensions do not self-assemble ororder themselves in any direc-
tion atH = 45%. To examine the cell suspension’s local microstructure, wecalculate
the radial distribution function (RDF) of RBC centers shownin figure 13(a). For the no-
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Figure 13. Structural and dynamical properties of RBC suspensions withH = 45%. Snapshots show sample
RBC conformations from simulations. (a) Radial distributionfunction showing cell suspension’s structure. (b)
Average membrane bending energy with respect to shear rate showing correlation between single cell deformation
and dynamics. Dashed lines are the corresponding mean values plus/minus one standard deviation. (c) RBC
asphericity distributions characterizing the deviation from a spherical shape as a function of shear rate. The
asphericity is defined as[(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2]/(2R4

g), whereλ1 ≤ λ2 ≤ λ3 are the
eigenvalues of the gyration tensor andR2

g = λ1 + λ2 + λ3. The asphericity for a single RBC in equilibrium is
equal to0.154. (d) Orientational angle distributions for various shear rates which illustrate single cell dynamics.
The cell orientational angle is given by the angle between the eigenvectorV1 of the gyration tensor and the flow-
gradient direction (y). Theoretical prediction showing the orientational angledistribution of a single tumbling
RBC in shear flow is calculated from the theory in Ref.8.

aggregation case, we find that no significant structures formed over the entire range of
shear rates. At the lowest shear rate (red solid line) several small peaks in RDF indicate
the presence of infrequent intermediate structures, sinceRBCs may have enough time to
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relax locally at very low shear rates. A larger peak of the redsolid curve atr = 8µm,
which is equal to the cell diameter, indicates that neighboring RBCs are often aligned with
each other in the flow. As seen from the other solid curves (blue, green, and black), the
correlations completely disappear at higher shear rates, and therefore the shear thinning
behavior of a non-aggregating suspension is clearly not dueto a change in microstructure.
In contrast, several large peaks in the RDF function for the aggregating case at the lowest
shear ratėγ = 0.045 s−1 (red dashed line) indicate the formation of rouleaux of2 to 4
RBCs. Increase of the shear rate leads to the dispersion of rouleaux shown by the blue
dashed curve in figure 13(a), where predominant RBC aggregates are formed by only two
RBCs. At shear rates above approximately5 − 10 s−1 no difference in microstructure
is detected between aggregating and non-aggregating cell suspensions. As a conclusion,
the steep increase in viscosity of the aggregating blood at low shear rates is mainly due to
the cell aggregation into rouleaux. In addition, rouleaux formation also provides a plau-
sible explanation for the existence of yield stress, since with decrease of shear rate larger
rouleaux structures are formed resulting in an eventual “solidification” of the suspension.

The dynamics of a single RBC in shear flow is characterized by the tumbling motion
at low shear rates and membrane tank-treading at high shear rates8,15,16. The tumbling-
to-tank-treading transition occurs within a certain rangeof intermediate shear rates, where
a RBC may experience high bending deformations16. The deformation, orientation, and
dynamics of cells within the suspension is illustrated in figures 13(b), (c), and (d). These
plots show that cells in the suspension mostly tumble and retain their biconcave shape at
low shear rates below5 s−1, which is confirmed by essentially no change in RBC bending
energy and in its standard deviation (figure 13(b)), by the extremely narrow asphericity
distribution around the equilibrium value of0.154 (figure 13(c)), and by the wide orien-
tational angle (θ) distribution in figure 13(d). Cell tumbling at low shear rates is slightly
hindered in non-aggregating suspensions in comparison to tumbling of a single RBC in
shear flow due to cell crowding, which results in sliding of cells over each other; this is
shown by a higher peak in the orientational angle distribution (green curve) in figure 13(d)
with respect to the theoretical prediction (blue curve). Incontrast, RBC tumbling in aggre-
gating suspensions appears to be nearly uniform, since RBCstumble within multiple-cell
rouleaux structures. At high shear rates, larger than about200 s−1, individual RBCs are
subject to tank-treading motion illustrated by a narrowθ distribution (black line) in fig-
ure 13(d). At yet higher shear rates RBCs become strongly elongated as indicated by the
RBC asphericity distribution in figure 13(c).

The most interesting and complex cell dynamics, however, occurs in the broad in-
termediate regime of shear rates between5 s−1 and 200 s−1, where RBC aggregation
interactions can be neglected. This range also correspondsto the main region of shear
thinning for the non-aggregating cell suspension. In this range of shear rates, RBCs within
the suspension experience severe deformations documentedby a pronounced increase in
the membrane bending energy and in its variation shown in figure 13(b). The asphericity
distribution for γ̇ = 45 s−1 in figure 13(c) shows that RBCs attain on average a more
spherical shape indicating transient folded conformations. This may result in a reduction
of shear stresses due to collisional constraints of cell tumbling, and therefore in shear thin-
ning. In addition, the transition of some cells to the tank-treading motion further reduces
the shear stresses contributing to the viscosity thinning.
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5 Summary

We have presented a mesoscopic model of RBCs implemented by the dissipative particle
dynamics method. The spectrin cytoskeleton is representedby a network of interconnected
viscoelastic springs comprising a membrane with elastic and viscous properties. The sur-
face network accounts for bending resistance attributed tothe lipid bilayer and incorporates
local and global area constraints to ensure constant volumeand surface area. The macro-
scopic properties of the membrane were related to the network parameters by theoretical
analysis. RBC dynamics was simulated in shear flow, where a cell exhibits tumbling at
low shear rates and tank-treading at high shear rates. A narrow intermittent region appears
where these modes interchange. The model is able to quantitatively capture cell dynamics
in shear flow. Comparison of the numerical results with existing theoretical predictions
suggest that the latter suffers from oversimplification .

Results on the rheological properties of human blood suggest that the RBC suspen-
sion model is able to accurately predict shear-dependent viscosity of blood with and with-
out aggregation interactions between RBCs. The RBC aggregation model was able to
properly capture the assembly of RBCs into rouleaux structures. These simulations also
confirmed that whole blood is a fluid with a non-zero yield stress. We have shown how
single RBC characteristics and behavior contribute to the macroscopic properties of blood,
which may not be possible to elucidate in experiments. The predictive capability of the
current cell/capsule suspension model can readily be extended to a variety of engineering
and material science applications, which may aid in the development of new soft materials.
Finally, such simulations of soft capsule suspensions are computationally demanding and
are only feasible on massively parallel computers.
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Appendix

A Dissipative particle dynamics

Dissipative particle dynamics (DPD)21,38 is a mesoscopic particle method, where each
particle represents amolecular clusterrather than an individual atom, and can be thought
of as a soft lump of fluid. The DPD system consists ofN point particles of massmi,
position ri and velocityvi. DPD particles interact through three forces: conservative
(FC

ij), dissipative (FD
ij ), and random (FR

ij) forces given by

F
C
ij = FC

ij (rij)r̂ij , F
D
ij = −γωD(rij)(vij · r̂ij)r̂ij , F

R
ij = σωR(rij)

ξij√
dt

r̂ij , (30)

wherer̂ij = rij/rij , andvij = vi − vj . The coefficientsγ andσ define the strength of
dissipative and random forces, respectively. In addition,ωD andωR are weight functions,
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andξij is a normally distributed random variable with zero mean, unit variance, andξij =
ξji. All forces are truncated beyond the cutoff radiusrc. The conservative force is given
by

FC
ij (rij) = aij(1− rij/rc) for rij ≤ rc, (31)

whereaij is the conservative force coefficient between particlesi andj. The random and
dissipative forces form a thermostat and must satisfy the fluctuation-dissipation theorem in
order for the DPD system to maintain equilibrium temperatureT 39. This leads to

ωD(rij) =
[

ωR(rij)
]2

, σ2 = 2γkBT, (32)

wherekB is the Boltzmann constant. The choice for the weight functions is as follows

ωR(rij) = (1− rij/rc)
k for rij ≤ rc, (33)

wherek is an exponent. The time evolution of velocities and positions of particles is
determined by the Newton’s second law of motion

dri = vidt, dvi =
1

mi

∑

j 6=i

(

F
C
ij + F

D
ij + F

R
ij

)

dt. (34)

The above equations of motion are integrated using the modified velocity-Verlet algo-
rithm38.
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