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Abstract of “Multiscale Modeling of Blood Flow and Soft Matter,” by Dmitry A. Fedosov,
Ph.D., Brown University, May 2010

This work presents multiscale modeling of blood flow and polymer suspensions which re-

quires the use of heterogeneous modeling approaches. A hybrid method based on coupling

the Molecular Dynamics (MD) method, the Dissipative Particle Dynamics (DPD) method,

and the incompressible Navier-Stokes (NS) equations is developed and is called the Triple-

Decker algorithm. MD, DPD, and NS are formulated in separate subdomains and are

coupled via an overlapping region by communicating state information at the subdomain

boundaries. The triple-decker algorithm is verified for several prototype flows such as Cou-

ette, Poiseuille, and lid-driven cavity flow.

A three-dimensional multiscale red blood cell (RBC) model is developed and is able to

predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on

an analytic theory, the modeled membrane properties can be uniquely related to the exper-

imentally established RBC macroscopic properties without any adjustment of parameters.

The developed model is applied to modeling infected RBCs in malaria where RBC mem-

brane properties can dramatically change. Blood flow is simulated in microtubes for different

diameters and hematocrit values. The blood flow model captures the well-known Fahraeus

and Fahraeus-Lindquist effects and cell-free layers measured in experiments. Blood flow in

malaria is characterized by the adhesion of infected RBCs to the vascular endothelium. The

adhesive dynamics of infected RBCs in malaria is simulated based on the stochastic bond

formation/dissociation model and compares well with experimental observations.

Depletion layers in dilute polymer solutions in micro- and nano-channels are investi-

gated for various conditions and compare well with the asymptotic lattice theory solution

of depletion near a repulsive wall. In Poiseuille flow, polymer migration across the stream-

lines results in two symmetric off-center peaks in the center-of-mass distribution which

identify the preferred chain positions across the channel. Steady state rheological prop-

erties of semi-dilute polymer solutions and melts are obtained with the Reverse Poiseuille

flow (RPF) which is demonstrated to be an accurate and convenient virtual rheometer

for complex fluids. For isothermal solutions the material functions satisfy the principle of

time-concentration superposition, while for undiluted chains the temperature dependence

is reconciled by the principle of time-temperature superposition.
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Chapter 1

Introduction

Understanding natural phenomena as well as modern biomedical and engineering applica-

tions requires research across multiple disciplines with the simultaneous use of experiments,

theories, and numerical simulations. Multiscale modeling is an interdisciplinary rapidly

developing area with its applications in various fields such as engineering, physics, biology,

medicine, etc. Many realistic problems require accurate modeling across several orders of

magnitude in spatiotemporal scales. Examples include the Physiome Project [3], blood

circulation and hemorheology [160], cytoadhesion in malaria [36, 11] and in inflammation

processes [185, 125], and polymer melts and solutions [43]. Such multiscale applications of-

ten necessitate simultaneous modeling of a certain level of microscopic or mesoscopic details

with a surrounding macroscopic flow.

Classical numerical methods are limited in their applications to certain ranges of space

and time scales. Atomistic methods such as the Molecular Dynamics (MD) and the Monte

Carlo (MC) techniques provide a detailed system description on the level of a single atom;

however such simulated systems are restricted to very small sizes and times on the order

of nanometers and nanoseconds due to a demanding computational expense. Mesoscopic

approaches such as Dissipative Particle Dynamics (DPD) [105, 92], the Lattice Boltzmann

method (LBM) [187], Brownian dynamics (BD) [62, 171], and Smoothed Particle Hydro-

dynamics (SPH) [12, 195] provide a “coarse-grained” description of a simulated system

with respect to an atomistic representation by retaining some molecular details which are

required to capture the physics of that system. They allow for a significantly expanded

range of simulated space and time scales in comparison with atomistic methods, but their

1



2

upper limit in spatiotemporal scales remains and depends on the level of coarse-graining

used. Larger space and time scales are accessible by continuum approaches such as the

Navier-Stokes (NS) equations. These methods rely on the continuum assumption and are

likely to fail when molecular details of a simulated system are of physical importance.

Hybrid multiscale algorithms attempt to merge several existing methods that cover dif-

ferent ranges of space and time scales. They may offer a potential solution for bridging

between various spatiotemporal scales. Several recently developed hybrid methods include

MD-NS coupling [151, 148, 44, 93, 207], and MD-LBM [84, 55]. Such algorithms undergo

constant developments and improvements; however, up to date, they are substantially re-

stricted in their applications. Thus, current hybrid algorithms are able to adequately sim-

ulate some Newtonian fluid flows, while efficient multiscale approaches for flows of complex

and biological fluids which are of great interest are yet to be developed.

Our contribution to the development of hybrid multiscale approaches is the triple-decker

algorithm which bridges all three levels of descriptions, namely atomistic via MD, meso-

scopic via DPD, and continuum via NS. It is based on the domain decomposition framework

and allows for an efficient decoupling of space and time scales. Currently, the triple-decker

algorithm is proved to accurately simulate steady flows of Newtonian fluids.

Nevertheless, the major part of this work is devoted to a development of a multiscale

red blood cell (RBC) model which is then applied to blood flow modeling under healthy

conditions and in malaria disease. In addition, soft matter systems such as dilute and

semi-dilute polymer solutions and melts are investigated for various flow conditions. These

models may further be incorporated into the triple-decker algorithm framework to enable

hybrid simulations of complex and biological fluid flows.

1.1 Blood flow

Blood is a concentrated suspension containing RBCs or erythrocytes, white blood cells

(WBCs) or leukocytes, platelets, and blood plasma with a number of suspended macro-

molecules and chemical elements. The blood volume fraction of RBCs is approximately

45%, of WBCs below 1%, while the rest of the volume roughly consists of the Newtonian-

like plasma. Thus, RBCs yield the most contribution to the non-Newtonian characteristics

of blood such as shear-dependent viscosity and non-zero normal stress differences.
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Blood flow is the main mechanism for the transport of oxygen, nutrients, waste products,

molecules, and cells which are vital for the functioning of the whole organism. Changes in

normal blood flow circulation which occur in many blood related diseases and disorders such

as malaria, sickle cell anemia, and diabetes may lead to serious organism malfunctioning or

death. Blood flow features under healthy conditions and in various diseases and disorders

can provide indispensable information for understanding many biological processes and for

the development of new efficient drugs and treatments. This has motivated an enormous

scientific effort in blood flow modeling.

Blood flowing in large vessels with a characteristic diameter greater than approximately

1 mm is often modeled as a Newtonian fluid with a constant viscosity due to the high shear

rates in such vessels [31]. However, in vessels with a diameter smaller than 1 mm non-

Newtonian properties of blood are likely to be of importance in blood flow modeling [211].

In this regime, continuum modeling of blood flow may still provide a good approximation

for vessel diameters larger than about 100− 200 µm if an appropriate non-Newtonian fluid

model is used. Nonetheless, continuum modeling of blood flow in vessels of diameters smaller

than 100 µm is not adequate and requires explicit modeling of RBCs.

RBCs are highly deformable, non-nucleated biconcave discs with a diameter of approx-

imately 8 µm and a thickness of 2 µm. RBC deformability is the main factor which allows

them to pass through very narrow capillaries with a diameter as small as 3 µm. Therefore,

this property has to be incorporated in simulations in order to accurately reproduce blood

flow in microcirculation. Due to persistent computational challenges many of the developed

RBC models are two-dimensional [188, 162, 15]. These models can provide relevant qual-

itative information about the blood flow in microcirculation; however, their quantitative

predictions are likely to be unreliable since realistic RBCs are inherently three-dimensional.

Several three-dimensional models of RBCs were recently developed [150, 53, 159]. Nonethe-

less, their use in blood flow modeling is limited due to the computational expense such

that the maximum number of simulated RBCs is on the order of O(102). In addition, some

adjustable parameters have to be chosen for these models.

The multiscale RBC model developed in this work is constructed as a network of springs

and incorporates realistic mechanical and rheological properties measured in experiments

[190, 167]. The model parameters are computed based on a semi-analytic analysis of mem-

brane network deformations which completely eliminates the adjustment of model parame-
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ters. The RBC model is able to accurately describe the mechanics, rheology, and dynamics

of healthy RBCs and RBCs in malaria. Blood flow is simulated in microtubes and in mi-

crofluidic devices with characteristic sizes up to 100 µm. The developed parallel code allows

for efficient simulations of RBC suspensions with O(104) RBCs.

Blood flow in malaria is significantly affected by an increased membrane stiffness of

RBCs infected by Plasmodium (Pf) parasites and their cytoadherence to vascular endothe-

lium [23, 140, 190]. The developed blood flow model is used to quantify an increase in blood

flow resistance in malaria compared with that under healthy conditions. In addition, an

adhesive dynamics model is introduced to capture the adherence of Pf-parasitized RBCs to

ligand-coated walls found in experiments [11].

1.2 Soft matter

Soft matter includes a variety of materials whose physical characteristics are comparable

with thermal fluctuation forces such that they undergo active thermal motion. Complex and

non-Newtonian fluids are examples of soft matter which includes physical systems such as

polymers, colloids, foams, gels, some biomaterials, etc. A strong interest in such materials

is driven by the fact that they yield a wide range of physical properties depending on

various conditions such as local flow characteristics and temperature. Many soft matter

materials show intermediate behavior between solids and simple Newtonian liquids, while

their behavior can drastically change even at a modest deformation.

Behavior of soft matter materials is not always dictated by their atomic or molecular

structure, because some physical arrangements may be formed on a mesoscopic level which

may influence macroscopic properties of such materials. Therefore, simulations of soft

matter materials often require multiscale resolution of physical processes which occur at

the mesoscale. Detailed atomistic modeling is computationally too expensive to be able to

resolve physics at the mesoscale, while continuum methods do not consider any structures

at the mesoscale due to the continuum assumption. This has motivated the development

of efficient mesoscopic methods such as DPD, LBM, BD, and SPH.

We employ the DPD method for modeling dilute and semi-dilute polymer solutions,

melts, as well as RBCs and blood flow discussed above. DPD is a particle mesoscopic method

where each particle corresponds to a cluster of molecules moving together in a Lagrangian
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fashion subject to soft potentials. In contrast to the MD method, DPD employs much larger

time steps and particle sizes because of the soft particle interactions. In particular, the DPD

method appears to be successful in simulations of complex fluids, such as suspensions of

polymers, DNA, colloids, and cells [91, 193, 73].

Dilute polymer solutions are modeled in micro- and nano-channels. Polymer deple-

tion layers and polymer migration in Poiseuille flow are investigated using the bead-spring

model in the DPD method. A new efficient method which can be used to obtain steady

state rheological properties of a simulated material is developed and applied to semi-dilute

polymer solutions and melts. Rheometry of materials often utilizes a variety of experimen-

tal techniques in order to obtain reliable rheological measurements over a wide range of

flow characteristics, concentrations, and temperatures. In contrast, only a few methods in

numerical rheometry are available and hence, further development is needed. The proposed

method for steady-state, rheological measurements is an alternative method in numerical

rheometry. It allows one to expand the range of measured rheological properties in simula-

tions and provides additional confirmation for the accuracy of existing methods in numerical

rheometry.

1.3 Dissertation outline

In this section an outline of the thesis is provided along with a short description of the

research work performed in each chapter.

Chapter 2: The triple-decker algorithm for coupling atomistic, mesoscopic, and con-

tinuum flow regimes. It includes

• the MD-DPD-NS coupling algorithm and descriptions of these methods,

• modeling of non-periodic boundary conditions such as inflow and outflow for MD and

DPD methods,

• Couette and Poiseuille flow simulations with MD-DPD-NS coupling across them,

• the lid-driven square cavity flow using all three levels of descriptions,

• the treatment of the cavity corner singularity in the NS method by simulating the

cavity corner with DPD,
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• an algorithm modification which allows zero overlapping thickness among coupled

subdomains in special cases,

• Couette flow for immiscible fluid layers with different viscosities.

Chapter 3: A three-dimensional multiscale RBC model which captures realistic me-

chanical and rheological properties, and dynamics. The developed model is used to simulate

RBCs under healthy conditions and in malaria disease. This chapter contains

• four RBC models with different spring definitions,

• a theoretical analysis of the membrane properties which eliminates the adjustment of

model parameters,

• a method for modeling membrane viscosity to render RBC membrane viscoelastic

properties,

• membrane-solvent no-slip boundary conditions which allow for separate internal/external

solvents through dynamic bounce-back reflections of fluid particles on the RBC mem-

brane,

• RBC modeling on a spectrin level (Nv ∼ 27000) and highly coarse-grained RBCs

represented with several hundred vertices,

• RBC stretching simulations in comparison with optical tweezers experiments [190],

• a stress-free RBC model which eliminates artifacts due to surface triangulation,

• a comparison of a single spring extension of the spectrin-level RBC model with the

spectrin extension obtained in coarse-grained MD simulations [142],

• mechanical properties of infected RBCs in malaria,

• rheological properties of healthy and Pf-parasitized RBCs obtained with twisting

torque cytometry in comparison with optical magnetic twisting cytometry in experi-

ments [167, 133],

• the rheology of healthy and Pf-parasitized RBCs through measurements of membrane

thermal fluctuations in comparison with experiments [10, 158],
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• simulations of the RBC creep test and recovery,

• the dynamics of RBCs in shear flow, tumbling and tank-treading behavior,

• the dynamics of RBCs in Poiseuille flow in a tube of 9 µm diameter and transition to

parachute shape.

Chapter 4: Blood flow modeling under healthy conditions and in malaria, and adhesive

dynamics of leukocytes and Pf-parasitized RBCs. The chapter includes

• blood flow in microtubes of various tube diameters for different hematocrit values,

• blood flow velocity profiles and RBC density distributions,

• the Fahraeus effect,

• the Fahraeus-Lindquist effect,

• cell-free layers in blood flow,

• increased resistance of blood flow in malaria,

• blood flow in a microchannel with a constriction for different constriction lengths

and widths, viscosities of the suspending medium, RBC membrane rigidities, and

hematocrit values,

• an adhesive dynamics model based on the stochastic bond formation/dissociation,

• various states of adhesive dynamics of leukocytes in shear flow,

• the adhesive dynamics of Pf-parasitized RBCs in comparison with that on ICAM-1

and on mammalian CHO cells found in experiments [11],

• the effect of membrane properties on RBC adhesive dynamics,

• the influence of a rigid parasite inside RBCs on their adhesive dynamics in shear flow,

• the adhesion of Pf-parasitized RBCs in a rectangular microflow chamber.

Chapter 5: Modeling of depletion layer and polymer migration in micro- and nano-

channels for dilute polymer solutions. It contains

• polymer models and DPD boundary conditions,
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• depletion layers depending on the polymer model, quality of the solvent, wall-polymer

interactions, channel width, and the number of monomers representing the polymer,

• a comparison of simulated depletion layers with the analytic solution for an ideal chain

[58],

• shape characteristics of polymers across the channel,

• polymer migration in Poiseuille flow for different Pe and Re numbers,

• polymer shapes in Poiseuille flow,

• polymer migration in solvents of different quality.

Chapter 6: Reverse Poiseuille flow (RPF) - a steady state numerical rheometer for

complex and non-Newtonian fluids. This chapter includes

• a RPF method description,

• steady state rheological measurements such as the shear dependent viscosity and the

first and second normal stress coefficients,

• rheological properties of mono-disperse polymer melts,

• rheological properties of semi-dilute polymer solutions,

• the time-concentration superposition for polymer solutions,

• the time-temperature superposition principle for polymer melts and a consistent DPD

model to satisfy this principle.

We conclude in chapter 7 with brief remarks. In addition, the thesis contains several

appendices. Appendix A presents the derivation of RBC nodal forces from the energies

defined in chapter 3. Appendix B includes mathematical details of the analysis of the

macroscopic properties of a hexagonal network, while appendix C describes reflections of

solvent particles at moving triangular faces on the RBC surface required for membrane-

solvent boundary conditions. Appendices D and E contain brief manuals that instruct how

to construct initial conditions for simulations and how to run the developed code.



Chapter 2

Triple-Decker: Interfacing

Atomistic-Mesoscopic-Continuum

Flow Regimes

2.1 Introduction

As mentioned in the thesis introduction 1 fluid flow modeling on an atomistic level via

Molecular Dynamics (MD) or Monte Carlo (MC) methods is extremely limited due to

large computational cost. At much larger scales than those at the atomistic or molecular

level a continuum assumption is valid, and continuum approaches (e.g., Navier-Stokes (NS)

equations) for fluid flows are used. However, between atomistic and continuum scales lies

an intermediate range called mesoscopic, which exhibits features of both, the atomistic

and the continuum regimes. It covers a range, where the continuum description is not yet

appropriate, and the atomistic representation is not feasible due to a system size. Figure

2.1 shows a schematic plot of length and time scales corresponding to different regimes.

The overlaps between the rectangles indicate that there are no definite borders between

the neighboring descriptions. However, gaps between some of the regimes are apparent; for

example between the atomistic and the continuum.

To bridge the existing gaps, multiscale hybrid approaches have to be developed to pro-

vide a unified description from nanoscales to larger scales. The majority of existing mul-

tiscale methods [151, 81, 148, 44, 93, 207, 204] attempt to “glue” together atomistic and

9
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Figure 2.1: A schematic plot of various spatiotemporal scales covered by different descrip-
tions (quantum, microscopic, mesoscopic, and continuum) with several examples of typical
methods used.

continuum approaches corresponding to MD and NS, respectively. Remarkably, the meso-

scopic level is simply omitted in the atomistic/continuum paradigm. Over the last decade,

there has been great progress in developing efficient numerical methods for the mesoscopic

regime; the examples are the Lattice Boltzmann method (LBM) [187], the Dissipative Parti-

cle Dynamics (DPD) [105, 92], and the Smoothed Particle Hydrodynamics (SPH) [12, 195].

A few attempts have been made recently to couple atomistic and mesoscopic descriptions di-

rectly, specifically MD and LBM [84, 55]. However, to the best of our knowledge, there is no

published hybrid atomistic-mesoscopic-continuum method for multiscale flow phenomena,

which would combine the advantages of all three levels of description.

There are two main coupling approaches:

1. The flux-exchange method [151, 81, 148, 44] is based on the flux exchange between

continuum and particle domains.

2. The state-exchange method [93, 207, 204, 84, 55] is based on the alternating Schwarz

method [182].

More specifically, the flux-exchange method is based on the direct exchange of flux informa-

tion in the overlap domain between the particle region and the continuum region, and relies
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on the matching of fluxes of mass, momentum and energy. In the state-exchange method

the state information between the particle simulation and the NS equations is transferred

through an overlap region where the particles’ dynamics is constrained; the constrained dy-

namics is often imposed via a dynamic relaxation technique [204]. The alternating Schwarz

method is used to solve sequentially the problems in the continuum and atomistic domains,

and state exchange is performed until convergence is achieved. The main difficulty here is

the extraction and imposition of the required state information in particle-based methods.

The extraction of the mean flowfield properties requires sampling of flow characteristics

over some region and often over a time interval. This fact makes the application of the flux-

exchange model difficult and favors the alternating Schwarz method. However, the Schwarz

method appears to be more restrictive in the case of dynamic simulations of unsteady flows.

The choice of a particular multiscale algorithm depends strongly on the flow prob-

lem. Several algorithm characteristics (e.g., performance, applicability, robustness) may be

considered. The main requirement for all available algorithms is conservation of mass, mo-

mentum and energy. For instance, conservation of momentum and energy in particle-based

methods is often imposed on average and is not satisfied at every fixed point of time. The

applicability of a particular algorithm may be restricted, for example, to steady flows as well

as to a certain range of flow regimes. The algorithm robustness includes the ability of the

hybrid method to efficiently decouple length and time scales. Both of the aforementioned

coupling approaches lead to a reasonably good decoupling of spatial scales. However, the

state-exchange method enables less restrictive temporal coupling than the flux-exchange

method. Here, we employ the state-exchange method for coupling atomistic, mesoscopic,

and continuum formulations.

In this chapter we describe the triple-decker algorithm, which couples atomistic, meso-

scopic, and continuum formulations. Details of atomistic modeling via MD, mesoscopic via

DPD, and continuum via NS are given. Simulation results of the triple-decker algorithm

for Couette, Poiseuille and lid-driven cavity flows are presented. Finally, we conclude with

a brief discussion.
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2.2 Triple-Decker algorithm

In this section we describe the coupling mechanism. The hybrid coupling technique used

here is based on a domain decomposition similar to the Schwarz alternating method [182].

The flow domain is decomposed into three (or potentially more) overlapping regions: an

atomistic region described by MD, a mesoscopic region described by DPD, and a continuum

region represented by spectral element discretization of the incompressible NS equations.

A schematic of the domain decomposition (left) and the time progression (right) is shown

in figure 2.2. Each subdomain is subject to Dirichlet velocity boundary conditions (BCs).

MD

DPD

NS

NS - DPD overlap

DPD - MD overlap

BC
communication

BC
communication

Domain decomposition

communication
step k+1

communication
step k

τ

Time progression

NS DPD MD

δtDPD δtMDδtNS> > >

Figure 2.2: A schematic of the MD-DPD-NS domain decomposition (left) and the time
progression (right).

The integration in each region is performed independently, and coupling among different

subdomains is done through BC communications. As an example, in figure 2.2 BCs for

the DPD region will be provided from both MD and NS regions, and in turn, BCs for the

MD and NS subdomains will be extracted from the DPD region. The communication with

necessary BCs information among subdomains is done every τ in time progression as shown

in figure 2.2 (right). Note that the time τ between two successive communications may

correspond to a different number of time steps for the three descriptions. For instance,

figure 2.2 (right) shows the smallest time step δtMD chosen for the MD simulation, a larger

δtDPD for DPD, and the largest time step δtNS for the Navier-Stokes formulation, which

illustrates an effective temporal decoupling. In addition, the time interval τ can be manually

set and potentially changed during simulation depending on the flow development, i.e.,
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prescribe small τ for transient flow and larger τ for steady state. There are many possible

communication patterns which can be used for the simulation progressing in time. Figure

2.3 presents the sequential communication pattern among the subdomains. Hence, the time

1) Integrate MD domain
during time

2) Obtain BCs for
DPD domain

Step 2Step 1 Step 3

MD

DPD

NS

send BC between
step 1 and 2

send BC after
step 3

send BC between
step 2 and 3 send BC between

step 2 and 3

1) Integrate DPD domain
during time

2) Obtain BCs for
MD and NS domains

τ

1) Integrate NS domain
during time

2) Extract BCs for
DPD domain

τ

τ

Figure 2.3: A sample communication pattern for the MD-DPD-NS coupling. Sequential
integration of the subdomains.

integration can be performed in the chosen order such that one subdomain is advanced

during τ , BCs are passed to the second subdomain, and in turn the second subregion is

integrated during τ , and so forth. As an alternative, one could run all the subdomains

simultaneously and carry out BCs communications every τ . The algorithm allows one to

freely select subdomain dimensions (e.g., length, width), timestep for integration and, if

needed, fluid properties (e.g., viscosity for multi-layer fluid), because the subdomains are

integrated separately and are coupled only through BCs.

An extraction of BCs from particle subdomains such as MD and DPD involves velocity

averaging. A number of cells is present along the line of interest, where the local velocity

field is sampled, and the averaging is carried out during a number of timesteps. However,

one has to be aware of the associated statistical error Ev, which depends on the number of

samples Mv, the corresponding cell average v̄ and standard deviation σ(v) of desired flow

properties. Hadjiconstantinou et al. [94] obtained an a priori estimate for the number of

samples Mv required to measure the average of velocities in a cell of volume V for fixed

error Ev, as follows

Mv =
kBT

v̄2

1

ρ̄V E2
v

, (2.1)



14

where ρ̄, T and kB are the average density, temperature and Boltzmann constant, respec-

tively. Note that one sample (Mv = 1) corresponds to the averaging over n̄V = ρ̄
mV particle

velocities or over all particles in volume V during a single time step, where n̄ is the average

number density and m is the particle mass. This formula provides the correct estimate

assuming that the samples are statistically independent, which is generally not valid for

MD and DPD fluids if sampling is performed every timestep. If the samples are correlated,

the number of samples required to estimate the average of velocity is equal to

M c
v = 2

τv
δt
Mv, (2.2)

where τv is the autocorrelation time [109]. The autocorrelation time is proportional to the

fluid self-diffusion coefficient D because of the Green-Kubo relation: D = 1
3

∫∞
0 Av(t)dt,

where Av(t) is the velocity autocorrelation function defined as Av(t) = Ce−t/τv , where C is

a constant. We have used the above equations in order to determine the number of samples

required to keep the error Ev below 5%.

2.2.1 Atomistic region via Molecular Dynamics

The atomistic region is necessary in flow parts where the continuum formalism breaks down

or where atomistic level physics needs to be captured. We model the atomistic subdomain

using MD, but in combination with the DPD thermostat [105, 92]. Next, we describe the

MD method and the imposition of BCs.

2.2.1.1 MD governing equations with DPD thermostat

The molecular dynamics system consists of N point particles of mass mi, position ri and

velocity vi. The particles evolve according to Newton’s second law of motion

dri = vidt, dvi =
1

mi

∑

j 6=i

(FLJ
ij dt+ FD

ijdt+ FR
ij

√
dt), (2.3)

where FLJ
ij = ∇U(rij) are Lennard-Jones interparticle forces and rij = ri−rj , rij = |rij |. FD

ij

and FR
ij are dissipative and random forces, which define the DPD thermostat described in

the DPD method, see section 2.2.2. Soddemann et al. [184] showed that it is advantageous

to use the DPD thermostat in MD as it is completely local and allows longer timesteps



15

compared to conventional thermostats without sacrificing accuracy. The Lennard-Jones

potential is given by

U(rij) = 4ε

[

(

σMD

rij

)12

−
(

σMD

rij

)6
]

, (2.4)

where ε and σMD are energy and length characteristic parameters, respectively. All inter-

actions vanish beyond a cutoff radius rc. The equations of motion were integrated using

the modified velocity-Verlet algorithm [92].

2.2.1.2 MD for non-periodic systems

Here we describe a model which imposes non-periodic BCs in MD. Two main issues are

considered: (i) correct imposition of local velocity at the boundary, and (ii) control of local

disturbance effect on density, pressure and temperature.

Figure 2.4 shows a schematic boundary conditions with the involved forces used for

particle methods. An enforcement of local velocity at the boundary is subdivided into

solid wall or interface

v = un+1

rF

F (h,u )n+1

h

F (h)p

t
F (h,u )n

F (h)p

t

h

BC: BCv = unBC

h rF0

F (h,u )n

F (h)p

t

pressure force
and

adaptive tangential force

Figure 2.4: A schematic of boundary conditions used in particle methods such as MD and
DPD (left). The sample profiles of the pressure and adaptive tangential forces (right).

imposition of the normal vn and the tangential vt components of velocity. The tangential

component of velocity at the boundary is enforced through an adaptive shear force (see

figure 2.4): each particle with distance h < rc from the boundary is subject to a tangential

force F k
t (h) depending on the distance h. The force is defined as

F k
t (h) = Ck(∆vt)w(h), (2.5)
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where k is the iteration number, Ck(∆vt) is an adaptive force strength and w(h) is a weight

function defined as w(h) = (1 − h
rc

)4. The adaptive force strength is calculated iteratively

as Ck+1 = Ck + α∆vt, where α is a relaxation parameter which can be set to a constant

value similar to [151] or calculated adaptively as proposed in [204]. In this work we set

the relaxation parameter to α = 1.0, but future work will incorporate a dynamic approach.

Here, we define ∆vt = vBC
t −vest

t with vBC
t the assigned velocity at the boundary and vest

t an

estimated flow velocity at the boundary. The near-boundary velocity profile is estimated by

local cell averaging of particle velocities during every m time steps. Next, vest
t is calculated

by extrapolation from the estimated near-boundary velocity profile, and recalculation of

the adaptive shear force is performed. Here, we employ a first-order extrapolation based

on two points in the near-boundary region. In general, higher order extrapolation can be

implemented, however it requires estimation of larger number of points in the near-boundary

velocity profile. After a number of iterations, we find that ∆vt ' 0, so that Ck and F k
t (h)

converge to a constant value, which leads to the proper tangential BC velocity vt = vBC
t .

Imposition of the normal velocity component vn is carried out by particle insertions

and reflections similarly to [207]. Particles that strike the boundary are specularly reflected

in a frame of reference attached to the moving boundary. The collision time is calculated

as t′ = (xk − xBC)/(vBC − vk), where xBC and vBC are the boundary position and the

boundary speed, and xk and vk are the position and the normal velocity of a particle. If a

particle crosses the boundary (0 ≤ t′ ≤ δtMD) during one time step, a new particle velocity

and position are computed according to the following equations

vk+1 = 2vBC − vk, xk+1 = xk + t′vk + (δtMD − t′)vk+1. (2.6)

Note that only the normal to the boundary component is updated, while the two tangential

to the boundary components (in 3D) remain unchanged. After particle reflection is com-

pleted, the average number of particles that have left the domain is equal to the particle

flux through the boundary nδtMDAvn, where n is the number density and A is the area.

Particles that have left the domain are deleted. At the inflow particles are inserted into near

boundary layer according to the particle flux through the boundary using the USHER algo-

rithm [45]. The USHER algorithm provides numerical stability of the insertion procedure

and minimizes local disturbances in fluid properties. Inserted particle velocities are drawn
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from a Maxwellian distribution according to the local boundary velocity. In addition, we

added an adaptive normal force of similar type as in equation (2.5). However, we found

that the insertion and reflection of particles appears to be sufficient to enforce a correct

normal velocity at the boundary, so the adaptive normal force was turned off in most of our

calculations. Note that insertion and reflection of particles does not conserve instantaneous

momentum, however the total system momentum is conserved on average.

We now address the second issue of minimizing local disturbances in fluid properties. As

we mentioned before, the USHER algorithm works well for the particle insertion. However,

another problem is erroneous density fluctuations near the boundary, which appear due to

an imbalance of forces from the surrounding fluid (a particle near the boundary interacts

with a not-fully spherical region of fluid particles). In order to compensate for the force

imbalance, we apply the following pressure force in the near-boundary region (see figure

2.4) similarly to [207, 74]:

Fp(h) = −n
∫

Vs\Vex(h)

∂U

∂r
g(r)dV, (2.7)

where Vs is the sphere volume, Vex(h) is a volume excluded from the sphere by the bound-

aries, and g(r) is the radial distribution function. The calculation of the above integral

requires computing the radial distribution function for the specific fluid used in the simula-

tions. Note that the pressure force Fp(h) can be also calculated directly from an equilibrium

simulation for a fictitious boundary.

2.2.2 Mesoscopic region via Dissipative Particle Dynamics

The mesoscopic region might cover the flow region where the continuum formalism is not

valid while a fully atomistic simulation is not feasible due to computational cost. The

mesoscopic subdomain is modeled through the DPD method described next.

2.2.2.1 DPD governing equations

DPD is a mesoscopic particle method and, unlike MD, each DPD particle represents a

molecular cluster rather than an individual atom, and can be thought of as a soft lump of

fluid. Similarly to MD, the DPD system consists of N point particles of mass mi, position ri

and velocity vi. DPD particles interact through three forces: conservative (FC
ij), dissipative
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(FD
ij ), and random (FR

ij) forces given by

FC
ij = FC

ij (rij)r̂ij ,

FD
ij = −γωD(rij)(vij · r̂ij)r̂ij ,

FR
ij = σωR(rij)

ξij√
dt

r̂ij ,

(2.8)

where r̂ij = rij/rij , and vij = vi − vj . The coefficients γ and σ define the strength of

dissipative and random forces, respectively. In addition, ωD and ωR are weight functions,

and ξij is a normally distributed random variable with zero mean, unit variance, and ξij =

ξji. All forces are truncated beyond the cutoff radius rc, which defines the length scale in

the DPD system. The conservative force is given by

FC
ij (rij) =



















aij(1 − rij/rc) for rij ≤ rc,

0 for rij > rc,

(2.9)

where aij is the conservative force coefficient between particles i and j.

The random and dissipative forces form a thermostat and must satisfy the fluctuation-

dissipation theorem in order for the DPD system to maintain equilibrium temperature T

[64]. This leads to:

ωD(rij) =
[

ωR(rij)
]2
, σ2 = 2γkBT, (2.10)

where kB is the Boltzmann constant. The choice for the weight functions is as follows

ωR(rij) =



















(1 − rij/rc)
k for rij ≤ rc,

0 for rij > rc,

(2.11)

where k = 1 for the original DPD method. However, other choices (e.g., k = 0.25) for these

envelopes have been used [74, 71, 193] in order to increase the viscosity of the DPD fluid.

The time evolution of velocities and positions of particles is determined by Newton’s

second law of motion similarly to MD method, which is integrated using the modified

velocity-Verlet algorithm [92].
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2.2.2.2 Boundary conditions in DPD

Non-periodic boundary conditions in the DPD region are imposed analogously to the MD

region. The tangential component of velocity is enforced through the adaptive shear force

F k
t (h). Imposition of normal velocity component is performed by insertion and reflection

of particles as described in section 2.2.1. However, here the USHER algorithm is omitted.

We found that the system remains stable with random insertions. Moreover, a disturbance

to the local properties appears to be on the order of several percent which is similar to

deviations introduced by the thermostat. No special algorithm is required for insertions

because of soft particle interactions in DPD compared to hard MD particle interactions. In

order to minimize near-boundary density fluctuations we use a similar pressure force Fp(h)

as for the MD subdomain.

2.2.3 Continuum model

The continuum part of the hybrid system is governed by the incompressible NS equations

in the form
∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, ∇ · u = 0, (2.12)

where u is the fluid velocity, ρ is the density, p is the pressure and ν is the kinematic viscosity.

At the boundary we specify Dirichlet velocity boundary conditions. The NS equations

are solved using the spectral/hp element discretization implemented in the parallel solver

NEKTAR [110].

2.3 Simulation results

We test the triple-decker algorithm for three flows: Couette, Poiseuille and lid-driven cavity

flow. We compare the hybrid simulation results with an exact solution for the Couette

and Poiseuille flows, and with numerical solution for the cavity flow obtained by a highly

resolved spectral element discretization of the NS equations.

2.3.1 Couette and Poiseuille flows

We apply the MD-DPD-NS algorithm to the cases of Couette and Poiseuille flows. Figure

2.5 shows a sketch of the domain used in both simulations. The fluid is confined between
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Figure 2.5: Sketch for the Couette and Poiseuille flow domain.

two parallel walls placed at y = 0 and y = H = 20 with velocities v0 and v1, respectively.

For the case of Couette flow we set v0 = 0, v1 = 5, and for Poiseuille flow v0 = v1 = 0. Table

2.1 presents the parameters used in the MD and DPD regions. The domain is assumed to

region ε σMD a n rc γ σ kBT k (eq. 2.11)

MD 0.3 0.6 N/A 3 1 4.5 3 1 1.0

DPD N/A N/A 25 3 1 4.5 3 1 0.221

Table 2.1: MD and DPD simulation parameters. MD-DPD-NS coupling for Couette and
Poiseuille flows.

be periodic in x direction, and for MD and DPD also in z direction. The width of MD,

DPD and NS layers was set to 13.3 × σMD, 8 × rc and 0.4 ×H, respectively. The timestep

in all regions was chosen to be 0.005 and the kinematic viscosity ν was equal to 0.576 in

common (for all three descriptions) non-dimensional units. The viscosity in case of MD

and DPD was calculated using the periodic Poiseuille flow method of [14]. In the case

of Poiseuille flow the fluid is driven by a constant pressure gradient equal to 0.03 (non-

dimensional units). The overlapping regions have thickness δ = 2. The thickness of overlap

is a free parameter, however it may have a strong effect on the flow convergence. While it

is desirable to have a minimal overlap due to the computational expense, δ must be greater
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than zero because the overlapping region is responsible for the propagation of information

among regions with different formulations. For instance, in case of the Couette flow (figure

2.5) the flow development is initiated at the upper wall and propagates downwards through

the NS region. Having δ = 0 would not allow propagation of flow development in the DPD

region. In addition, δ ∼ 0 might provide an extremely slow flow development. Several tests

we performed suggest that the overlapping region should approximately have a thickness

on the order of 10% of the flow characteristic length.

The coupling process was performed every time τ = 0.5 which corresponds to 100

timesteps. The coupling time τ was chosen according to equations (2.1) and (2.2) as fol-

lows: Here kBT = 1, v̄ = 2.5, ρ̄ = 3.0, V = 10 × 10 × 0.5 = 50 and Ev = 0.05 lead to

Mv = 0.427, which corresponds to averaging over approximately 64 particle velocities. The

autocorrelation time τv = 0.45 yields M c
v = 77. Taking into account that some estimated

velocities are below 2.5 we set the number of samples to 100 timesteps. One iteration of

the algorithm corresponds to the flow integration during time τ and is performed as fol-

lows: The NS solver is advanced during the time τ and BCs are extracted and passed to

the DPD subdomain. Then, DPD is advanced during τ and BCs are passed to the MD

and NS regions (see figure 2.5). Next, the MD subdomain is integrated during time τ

and BCs for the DPD region are extracted. Thus, a single iteration of the triple-decker

algorithm corresponds to the sequence of region integrations NS → DPD → MD. The

choice of the sequence is solely based on the type of flow, such that the flow development

propagates from the moving wall downwards through the NS → DPD → MD regions to

the stationary lower wall. Note that for the case of Poiseuille flow an analogous sequence

MD → DPD → NS can be selected due to symmetry. This type of iteration is performed

until the system relaxes to a steady state solution. The number of iterations required to

reach steady state depend on many factors, such as flow and fluid properties (e.g., viscosity,

Reynolds number, geometry), the relative geometric complexity of different domains, the

overlapping regions (e.g., thickness, complexity), the BC relaxation technique, etc. Here

the number of iterations to reach steady state was on the order of O(102). After the steady

state was reached, we carried out averaging of the flow field over 105 time steps.

Figure 2.6 presents hybrid simulation results of Couette and Poiseuille flows. We find

an excellent agreement of the triple-decker method results with the exact solution. In

addition, we have observed no density fluctuations across the channel. However, this system
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Figure 2.6: Couette (left) and Poiseuille (right) flow velocity profiles.

corresponds to a relatively simple coupling among regions. It only requires to impose a

tangential velocity at the boundary while the normal velocity component remains zero.

Note that no particle insertions are performed in the above simulations. Nevertheless, these

results verify the correctness of the adaptive shear forcing for imposing the proper tangential

velocity at the boundary.

2.3.2 Lid-driven square cavity flow

We selected the well-known lid-driven square cavity flow to test the more general hybrid

model system. The Reynolds number of this flow is defined as Re = V L
ν , where V is the

velocity of the moving lid and L is the height of the cavity. Figure 2.7 shows a sketch

of the simulation domain. The MD and DPD parameters are the same as in table 2.1.

The MD computational subdomain was set to 83.3σMD × 25.0σMD × 16.7σMD, the DPD

subdomain to 50rc × 25rc × 10rc, and the NS subdomain to L× 0.6L, where L = 50 is the

characteristic length. In terms of common non-dimensional units the MD subdomain covers

the region [0, 50]
⋂

[35, 50], the DPD subdomain is [0, 50]
⋂

[20, 45] and the NS subdomain

is [0, 50]
⋂

[0, 30], respectively (see figure 2.7). The overlapping regions were set with a

thickness of 20% of the characteristic length L. The MD and DPD regions were assumed

to be periodic in the z direction. The parameters described next are in common non-

dimensional units: The kinematic viscosity was 0.576, and the velocity of the moving lid

was set to V = 0.576, which corresponds to Re = 50. The timestep in the MD and DPD



23

V

MD

DPD

NS

DPD-NS overlapping

MD-DPD overlapping

DD’VV’y

x

L

L

Figure 2.7: Lid-driven square cavity flow domain sketch. Comparison of results is performed
along the cuts VV’ and DD’.

regions was set to 0.005, and in the NS region to 0.015.

Here, the sequence of one iteration was MD → DPD → NS due to the flow propagation

from the moving lid to the bottom of the cavity. The inter-region communication was

done every time τ = 2.25, which corresponds to 450 timesteps in case of the MD and

DPD regions, but to 150 timesteps for the NS subdomain. Similarly to the Couette and

Poiseuille flow system, we estimate here Mv = 48.225 (eq. 2.1) with v̄ = 0.576, Ev = 0.05

and V = 1.66×0.5×10 = 8.33, and therefore M c
v = 8680 (eq. 2.2) with the autocorrelation

time τv = 0.45. Our choice of τ = 2.25 or 450 timesteps corresponds to the error of

approximately 22%, which was done for the purpose of a faster flow convergence to a

steady state. However, after steady state was reached, we performed several iterations of

the algorithm with each iteration of 9000 timesteps and set the error level below 5% in

order to refine the steady state solution. The number of iterations to reach steady state was

considerably increased compared to the case of Couette and Poiseuille flows due to the flow

complexity and was approximately 500. Also, having the overlapping region thickness less

than 10% of the characteristic length yielded a slightly under-developed flow comparable

with the flow at a lower Reynolds number (e.g., Re = 45). We attribute this to the flow

complexity at the interfaces which can be affected by an artificially reduced propagation of

the information through a thin overlapping region. In addition, we applied a correction to
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the boundary velocities extracted from the MD and DPD regions in order to set the total

mass flux through the interface to zero (total domain mass conservation). The correction

is found to be on the order of several percent of the velocity magnitudes.

Figure 2.8 shows hybrid simulation results of the Re = 50 square cavity flow extracted

along the VV’ (at the half of the domain) and DD’ lines (see figure 2.7). Results obtained by
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Figure 2.8: Velocity profiles extracted along VV’ (left) and DD’ (right) lines. The coordi-
nates and velocities are normalized by the characteristic length and velocity, respectively.
Re = 50.

employing only the full NS equations are plotted with the solid lines, MD results by square

symbols, DPD by circles and NS by triangles. The hybrid model solution agrees very

well with the highly accurate spectral element solution. Here, velocities at the boundaries

contain non-zero tangential as well as normal components. This simulation serves as a

rigorous verification of the proposed triple-decker algorithm. In addition, figure 2.9 presents

the number density profiles extracted along the VV’ and DD’ lines. The number density in

the MD and DPD regions is normalized by the bulk density. In the NS region we assume it

to be constant and equal to one as we solve the incompressible NS equations. Note that the

number density is uniform along the VV’ cut, however we observe a slight density increase

in the upper right corner in case of the DD’ cut, where there is particle accumulation in

the corner due to the MD fluid being slightly compressible at sufficiently high flow velocity

[189]. The influence of the particle accumulation in a wall-bounded geometry on the flow

solution was thoroughly studied in the case of the DPD method in [74], where an empirical

criterion was established that identifies the maximum allowed flow velocity below which

an accurate DPD solution can be obtained. Here, an analogous criterion suggests that the
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maximum density in the corner normalized by the bulk density should be bounded by 2.0,

which corresponds to the maximum lid velocity of approximately 5.0. The values in our

simulation are far below the above limits, which justifies why the particle accumulation in

the corner has a negligible effect on the flow solution.

Next, we present simulation results of the square cavity flow where the MD, DPD and NS

subdomains utilize different non-dimensional characteristic lengths and contain immiscible

fluids with different viscosity. However, the Reynolds number of 50 was matched in all

regions by scaling the boundary velocities during inter-region communications. For example

to scale the velocities for DPD extracted from the MD region, we use the following formula:

vBC
DPD = vBC

MD

LMD

LDPD

νDPD

νMD
, (2.13)

where LMD and LMD are the characteristic lengths of the MD and DPD regions, and

νMD, νDPD are the fluid viscosities. Table 2.2 summarizes the simulation parameters used

in the MD and DPD regions. The MD computational subdomain was set to 100σMD ×

region ε σMD a n rc γ σ kBT k (eq. 2.11)

MD 1.0 1.0 N/A 0.6 2.94 2.5 3 1.8 1.0

DPD N/A N/A 25 3 1 4.5 3 1 0.25

Table 2.2: MD and DPD simulation parameters for the cavity flow. Immiscible fluids.



26

30σMD × 10σMD, the DPD subdomain to 40rc × 20rc × 10rc and the NS to L × 0.6L

with the characteristic lengths LMD = 100σMD, LDPD = 40rc and LNS = L = 10. In non-

dimensional units the aforementioned regions correspond to 100×30×10 (MD), 40×20×10

(DPD) and 10 × 6 (NS), respectively. The simulation domain was similar to that in the

figure 2.7 with the overlapping regions having thickness of 20% of the characteristic length,

and the MD and DPD regions were set to be periodic in the z direction. The fluid viscosities

were νMD = 2.44, νDPD = 0.54 and νNS = 0.2, and the velocity of the moving lid in the

MD subdomain was set to V = 1.22, which corresponds to Re = 50. The timestep in the

MD and DPD regions was set to 0.00375, and in the NS region to 0.015.

The sequence of one iteration was MD → DPD → NS similar to the previous cavity

flow simulation. The inter-region communication was done after the state of the system

advances past time τ = 0.75, which corresponds to 200 timesteps in case of the MD and

DPD regions, but to 50 timesteps for the NS subdomain. Here, Mv = 24.28 (eq. 2.1)

with v̄ = 1.22, Ev = 0.05 and V = 3.32 × 1.0 × 10 = 33.2, and therefore M c
v = 3237 (eq.

2.2) with the autocorrelation time τv = 0.25. After steady state was reached with initial

inter-communication time τ = 0.75, similarly to the previous cavity flow case, in order to

refine the steady state solution we performed several iterations with inter-communication

time τ = 15 and set the error below 5% .

Figure 2.10 shows hybrid simulation results of the Re = 50 square cavity flow with

immiscible fluids extracted along the VV’ and DD’ lines. The hybrid model solution agrees
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very well with the highly accurate spectral element solution. In addition, figure 2.11 presents

the number density profiles extracted along the VV’ and DD’ lines. The number density
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number density is normalized by the bulk density in case of the MD and DPD regions, and
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is nearly constant along the VV’ cut, however we observe a density increase in the corner

in case of the DD’ cut. The MD fluid is slightly compressible which permits the particle

accumulation in the corner. Here, the normalized density in the corner is higher compared

to the cavity flow described above due to a higher velocity of the moving lid. To illustrate

the density increase in the corner we provide a normalized density contour plot in figure

2.12. Using our empirical criterion [74] we estimate that the maximum allowed flow velocity
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Figure 2.12: Contour plot of normalized density in the corner. Immiscible fluids.
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below which an accurate solution can be obtained is 6 or the maximum density in the corner

is 2.5. Our values are within the stated limits, and therefore particle accumulation in the

corner has a negligible effect on the flow solution.

Next, we present an additional cavity test that employs only DPD and NS regions;

figure 2.13 shows the domain sketch. We place the DPD subdomain in the right upper
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Figure 2.13: Lid-driven square cavity flow domain sketch. NS-DPD coupling. Comparison
of results is performed along the cuts VV’ and DD’.

corner where we have discontinuous velocity at the boundary. The cavity corner singularity

was studied systematically in [118, 146, 147] for the case of MD and NS methods. In general,

the NS numerical solution in the small neighborhood of such singularity is erroneous and

it often gives rise to numerical instability [172]. However, the DPD method does not have

such a problem. Note that the left upper corner could be done analogously.

Here the DPD region covers the area of {35 ≤ x ≤ 50}⋂{35 ≤ y ≤ 50} in the right

upper corner of the cavity. The NS region is 50 × 50 excluding the {40 ≤ x ≤ 50}⋂{40 ≤
y ≤ 50} subregion. The overlapping region thickness is equal to 5, which corresponds to

the aforementioned 10% of the characteristic length L = 50. The DPD parameters used

in this simulation were the same as outlined in table 2.2. The kinematic viscosity for both

descriptions was ν = 0.54 and the timestep was set to 0.01 in non-dimensional units. The

inter-region communication was carried out every τ = 1.0. Figure 2.14 shows velocity

profiles extracted along the VV’ (x = 42.5) and DD’ lines for the flow at Re = 100. Results
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Figure 2.14: Velocity profiles extracted along VV’ (left) and DD’ (right) lines. The coordi-
nates and velocities are normalized by the characteristic length and velocity, respectively.
Re = 100.

obtained by the full NS description are plotted with solid lines, DPD results with circles

and NS with triangles. We find an excellent agreement of the hybrid model results with

the highly accurate full NS simulation results. Figure 2.15 presents the number density

profiles extracted along the VV’ and DD’ lines. The number density in the DPD region is
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number density is normalized by the bulk density in case of the DPD region, and is assumed
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normalized by the bulk density, and in the NS region is assumed to be one. The number

density in the domain is nearly uniform, and has only a small deviation in the corner

due to the reasons mentioned before. Finally, to illustrate that in the case of the full NS
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simulation the incompressibility constraint is not satisfied in the small neighborhood of

velocity discontinuity point (in the corner) we calculate the divergence of the velocity field.

Figure 2.16 presents the divergence of velocity extracted along the DD’ line. Nevertheless,
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Figure 2.16: ∇ · v extracted along DD’ line for the cases of full NS and DPD. Re = 100.

we find that for the DPD case the mass in the corner is nearly conserved. The slightly

non-zero value of the divergence of velocity is probably due to the particle accumulation

effect in the corner described in detail in [74].

2.3.3 Zero overlapping thickness

The triple-decker algorithm presented above requires a non-zero overlapping thickness of

the subdomains with different formulations. However, a slight modification of the algorithm

enables us to employ zero overlapping thickness, which can be thought of as an interface.

Figure 2.17 shows the Couette flow domain (left) and the time progression (right) sketch

with zero overlapping thickness. The two walls are placed at y = 0 and y = H = 20 with

velocities v0 = 0 and v1 = 5, respectively. The lower half of the domain contains MD fluid

and the upper half DPD fluid, and corresponding parameters are described in table 2.1. The

domain is assumed to be periodic in the x and z directions. The boundary conditions at the

walls are enforced similarly through the aforementioned adaptive shear force, the pressure

force and the specular reflection. However, at the interface we employ the adaptive shear
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forcing, the definition of which is modified in order to enforce continuous velocity across

the interface. Hence, ∆vt in equation (2.5) is defined as ∆vt = vMD
t − vDPD

t , where vMD
t

and vDPD
t are the estimated flow velocities at the interface from the MD and DPD regions,

respectively. The same iterative procedure (eq. (2.5)) is performed until ∆vt converges

to zero, which leads to the continuous velocity across the interface. The adaptive shear

force F k
t (h) is applied in both regions near the interface in counter directions (for instance,

positive x direction in the MD near-interface layer and negative x direction in the DPD

region).

Figure 2.18 presents simulation results of Couette flow for the case of zero overlapping

thickness. We find an excellent agreement of the results (MD is represented by squares and

DPD by circles) with the exact solution (solid line). In this case, the MD and DPD fluids

have the same viscosity, and therefore yield the expected linear velocity profile across the

channel. In figure 2.18 we also plot Couette flow results with the MD fluid (triangles) having

a lower viscosity compared to that of the DPD fluid (stars), which approximates Couette

flow for immiscible fluid layers. This test verifies that the adaptive shear force leads to the

continuous velocity and shear stress across the interface. In addition, we have observed a

uniform density across the channel.

Having zero overlapping thickness among the subdomains is computationally more ad-

vantageous compared to the system having non-zero overlaps. However, the example shown

above corresponds to zero velocity flux through the MD-DPD interface, and it is not yet
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clear how to properly impose non-zero normal velocity at the interface in case of arbitrary

flow. To this end, the algorithm with zero overlapping thickness is limited at present to

simple flows having an interface along the streamlines.

2.4 Summary

In this chapter we have presented a hybrid multiscale method, which is able to cover a broad

range of spatiotemporal scales starting from molecular to mesoscopic and to continuum. The

molecular region employs the MD method, the mesoscopic utilizes the DPD method, and

the continuum is described by the incompressible NS equations.

The scheme is based on the domain decomposition used in the Schwarz alternating

method. The corresponding subdomains communicate by passing velocity boundary condi-

tions, which are extracted from one region and subsequently imposed in a receiving region.

The choice of a communication pattern among regions with different formulations can be

set by a user depending on geometry and flow type. In order to extract flowfield infor-

mation from particle-based formulations we need to perform averaging during a number

of timesteps, which can be varied depending on the characteristic flow velocity and tem-

perature. Imposition of non-periodic boundary conditions involves particle insertion and

deletion, specular wall reflection and body force terms. Particles are inserted according



33

to the USHER algorithm in MD region and randomly in near-boundary layer in DPD re-

gion. The number of inserted particles corresponds to the particle flux at the boundary.

The velocities are drawn from an equilibrium Maxwellian distribution. Body forcing in-

cludes a boundary pressure force in order to minimize near-boundary density fluctuations,

and an adaptive shear force which enforces the tangential velocity component of boundary

conditions.

The algorithm is verified for the Couette, Poiseuille and lid-driven cavity flow simu-

lations. The results show very good agreement with analytic and reference solutions. In

addition, we showed that the hybrid algorithm can be applied in singularity regions for the

NS formulation such as corners in the lid-driven square cavity. Moreover, we presented a

spatiotemporal decoupling by utilizing different region dimensions and timesteps in simu-

lations. Finally, we discussed a minimal modification of the algorithm which allowed us to

have zero overlapping thickness among the regions with different formulations.

Even though the simulation results presented in this chapter were done for two-dimensional

flows, we do not see any restrictions to extend the hybrid algorithm to three-dimensional

flow cases. Furthermore, future work should consider an extension of algorithm to more

complex fluids such as polymeric and biological fluids and suspensions. This type of prob-

lems might require more sophisticated particle insertion and body forcing algorithms and

potentially the inclusion of additional intra- and inter-molecular, electrostatic and excluded

volume interactions. In addition, such systems might need an inter-exchange with more

detailed information, for instance polymeric stresses. In turn, in the continuum region the

incompressible NS equations might need to be substituted by more appropriate visco-elastic

continuum non-Newtonian fluid models.



Chapter 3

Modeling red blood cells: single

cell mechanics, rheology, and

dynamics in health and malaria

disease

3.1 Introduction

The healthy human red blood cell has a biconcave shape with an average diameter of 7.8

µm. Its membrane consists of a lipid bilayer with an attached cytoskeleton formed by

a network of the protein spectrin linked by short filaments of actin. The lipid bilayer is

considered to be nearly viscous and area preserving [83], while the membrane’s elasticity

is attributed to the attached spectrin network, as is the integrity of the entire RBC when

subjected to severe deformations in capillaries as small as 3 µm.

Advances in experimental techniques have allowed accurate measurements of red blood

cell (RBC) properties down to the nanometer scale. They include micropipette aspiration

[205, 50], RBC deformation by optical tweezers [101, 190], RBC edge flicker microscopy

[186], tracking of fluorescent nanometer beads attached to the RBC [123], optical magnetic

twisting cytometry (OMTC)[167], three-dimensional measurement of membrane thermal

fluctuations [161, 158], and observations of RBCs immersed in both shear and in pressure-

driven flows [79, 4, 191, 196]. Micropipette aspiration and optical tweezers techniques tend

34
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to deform the whole RBC membrane directly, while RBC edge flicker microscopy and track-

ing of fluorescent nanobeads attempt to extract the mechanical properties from passive ob-

servations of thermal fluctuations. The first two techniques yield the macroscopic interfacial

shear modulus of healthy cells in the range of 2− 12 µN/m, while the thermal fluctuations

techniques predict the shear modulus to be one to two orders of magnitude smaller than

those from the RBC deformation experiments. Recent theoretical developments offer expla-

nations for the discrepancies in experimental results. Li et al. [127] suggest that metabolic

activity or large strains may induce a continuous rearrangement of the erythrocyte cy-

toskeleton. Consequently, in their model the RBC membrane exhibits strain hardening or

softening depending on certain conditions. Moreover, the cytoskeleton attachments diffuse

within the lipid bilayer, but the diffusion is negligible at short time scales. Gov [87] pro-

posed an active elastic network model in which the metabolic activity affects the stiffness of

the cell through the consumption of adenosine triphosphate (ATP). The activity induced by

ATP would appear to greatly affect membrane undulations [88] with resultant fluctuations

equivalent to a three-fold increase of the temperature. This argument is in contrast with re-

cent experiments [66] which found no ATP dependence of RBC properties or its membrane

fluctuations.

Optical magnetic twisting cytometry and three-dimensional measurement of membrane

thermal fluctuations furnish measurements of membrane rheological properties (e.g., the

complex modulus). The evidence provided by these experiments is sufficient to characterize

the complex mechanical response of the membrane to be viscoelastic. In addition, the

experimental findings show that RBCs subjected to large deformations are characterized by

a nonlinear mechanical response. Thus, the objective of this chapter is to demonstrate a

consistent multiscale RBC model which is able to successfully capture the known mechanics,

rheology, and dynamics of RBCs. While membrane strain hardening or softening and the

metabolic activity can be incorporated into this model their effects are beyond the scope of

this work.

Our RBC model is constructed by a network of springs combined with bending energy

and constraints for surface-area and volume conservation. Figure 3.1 illustrates the differ-

ence between network and continuum based models, which are characterized by different

parameters. Atomic force microscopy experiments [194, 192] have shown that the spectrin

network of RBCs is highly irregular compared to the regular hexagonal network and has
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Figure 3.1: A sketch of network and continuum models.

varying lengths of interconnections. The multiscale RBC model at the spectrin level, where

each spring in the network corresponds to a single spectrin tetramer with the equilibrium

distance between two neighboring actin connections of about 75 nm, corresponds to an

effective spectrin network since it is regular, i.e. nearly hexagonal. On the other hand,

the RBC network can also be highly coarse-grained with equilibrium spring lengths of up

to approximately 500 − 600 nm. Theoretical analysis of the hexagonal network yields its

elastic and dynamic properties, and completely eliminates adjustment of multiscale model

parameters. The current theoretical results for the spectrin-level model [42] underestimate

the effective membrane Young’s modulus by about 50%.

Recently several RBC models have been developed: at the continuum scale [83, 65,

162, 57], at the discrete spectrin level [48, 126], and on the mesoscopic scale [150, 53,

56, 159]. Fully continuum (both fluid and solid) models suffer from non-trivial coupling

between nonlinear solid deformations and fluid flow with their consequent computational

expense. This has motivated the rapid development of “semi-continuum” models [162, 57]

of deformable particles which use immersed boundary or front-tracking techniques. In these

a membrane is represented by a set of points which are tracked in Lagrangian fashion, and

are coupled to an Eulerian discretization of the fluid domain resulting in the same viscosity

of both inside and outside the cell. These models often employ simplified treatments of

the elastic membrane, and therefore fail to capture the known viscoelastic properties of

real RBCs. In addition, continuum models omit some phenomena at the mesoscopic and

microscopic scales such as membrane thermal fluctuations which are known to affect RBC
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rheology and dynamics [149]. On the molecular level, detailed spectrin models of RBCs are

much limited by the demanding computational expense. This motivates us to focus on an

accurate mesoscopic model of RBCs.

Several mesoscopic methods have been developed [150, 53, 56, 159] for modeling de-

formable particles such as RBCs. Dzwinel et al. [56] modeled an RBC as a volume of elastic

material with an inner skeleton. This does not account for the main structural element of

the RBC, namely a membrane filled with fluid, and therefore it fails to properly capture

the dynamics of RBCs, such as tumbling and tank-treading behavior observed in shear flow

[4, 181]. The three other aforementioned methods [150, 53, 159] employ an approach very

similar to ours in which the RBC is represented by a network of springs in combination with

bending rigidity and constraints for surface-area and volume conservation. Dupin et al. [53]

couple the discrete RBC to a fluid described by the Lattice Boltzmann method [187]. In

spite of very promising results, their model employs the same external and internal fluids

and does not account for membrane viscosity and thermal fluctuations. Noguchi and Gomp-

per [150] reported very interesting results on the dynamics of vesicles and RBCs obtained

with Multiparticle Collision Dynamics [132] but not entirely in the physiologically correct

regime. Pivkin and Karniadakis [159] used Dissipative Particle Dynamics (DPD) [105] to

simulate a coarse-grained RBC model which is the starting point of this work. Below, we

will present a general multiscale RBC model which incorporates major improvements in its

mechanical and rheological properties and in its dynamics.

The proposed framework will be also used in the modeling of RBCs in malaria. Malaria

is an infectious disease caused by a Plasmodium parasite. It is common for tropical and

subtropical regions resulting in several million deaths per year. One of the most serious

forms of malaria is caused by the Plasmodium falciparum (Pf) that infects RBCs. Intra-

erythrocytic development of the parasite includes three stages from the earliest to the

latest: ring → trophozoite → schizont. Infected RBCs show progressing changes in their

mechanical and rheological properties, and morphology [38, 180] as the parasite develops.

Progression through the stages leads to considerable stiffening of the RBC membrane as

found in optical tweezers stretching experiments [190] and in diffraction phase microscopy by

monitoring thermal fluctuations [158]. Moreover, Pf development results in vacuoles formed

inside of RBCs reducing the cell volume. Thus, at the final stage (schizont) infected RBCs

are often observed to have a “near spherical” shape, while the preceding stages maintain
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their biconcavity. These changes greatly affect rheological properties and dynamics of Pf-

parasitized RBCs, and lead to obstructions of small capillaries [180] impairing the ability

of RBCs to circulate. In addition, recent experiments [133] showed that the temperature

elevation from the physiological value (37o C) to the febrile (41o C) leads to an additional

significant stiffening of parasitized RBCs.

Section 3.2 presents a complete theoretical analysis of a membrane network model im-

plementing specified macroscopic membrane properties without any parameter adjustment

for different spring models and arbitrary levels of coarse-graining. Section 3.3 provides re-

sults on the cell mechanics for healthy and Pf-parasitized RBCs. In addition, we propose a

stress-free model, which eliminates non-vanishing local artifacts, such as the dependence of

mechanical properties on triangulation quality and equilibrium shape stability for realistic

membrane bending rigidity; the latter is often compensated with artificially high bending

stiffness. Rheological properties of the modeled RBCs (healthy and infected) are tested in

section 3.4 using twisting torque cytometry, membrane thermal fluctuations, a whole RBC

creep test followed by the cell recovery. RBC dynamics in shear and Poiseuille flows is stud-

ied in section 3.5, and is compared with the theoretical predictions of RBC motion [4, 181].

We discuss quantitative accuracy of those theories since they utilize strong simplifications.

The results are summarized in section 3.6.

3.2 Red blood cell modeling framework

The cell membrane is represented by a viscoelastic network which is filled and surrounded by

separate fluids. For the simulations we employ the Dissipative Particle Dynamics (DPD)

method [105], see section 2.2.2 for details. The membrane model is general enough to

be used with other simulation techniques such as Brownian dynamics, lattice Boltzmann,

multiparticle collision dynamics, and the immerse-boundary method.

3.2.1 Viscoelastic membrane model

The cell model structure is defined by a two-dimensional triangulated network on a mem-

brane surface that is characterized by a set of points with Cartesian coordinates {xi},
i ∈ 1...Nv which are vertices of the two-dimensional triangulated network. The vertices are

connected by Ns springs (edges) forming Nt triangles. Potential energy of the system is
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given by

V ({xi}) = Vin−plane + Vbending + Varea + Vvolume. (3.1)

The in-plane energy term includes the elastic energy stored in the membrane as follows,

Vin−plane =
∑

j∈1...Ns

Us(lj) +
∑

k∈1...Nt

Cq

Aq
k

, (3.2)

where lj is the length of the spring j, Ak is the area of the k-th triangle, and the constant Cq

and exponent q will be defined further. Note that spring forces in membrane (the first sum

in equation (3.2)) are a combination of conservative elastic forces, that may be expressed

in terms of an energy potential Us(lj), and dissipative forces that are defined in section

3.2.4. Thus, the first sum defines the contribution of viscoelastic springs, while the second

sum contains a hydrostatic elastic energy of the triangular membrane patches. Different

spring models can be used here, and their performance will be discussed in section 3.3.

However, we highlight two nonlinear spring models: the wormlike chain (WLC) and the

finitely extensible nonlinear elastic (FENE) spring, the attractive potentials of which are

given, respectively, by

UWLC =
kBT lm

4p

3x2 − 2x3

1 − x
, UFENE = −ks

2
l2m log

[

1 − x2
]

, (3.3)

where x = l/lm ∈ (0, 1), lm is the maximum spring extension, p is the persistence length,

kBT is the energy per unit mass, and ks is the FENE spring constant. Note that when the

distance between two connected points approaches lm, the corresponding spring force goes

to infinity, and therefore it limits the maximum extension to lm. It is important to point

out that both WLC and FENE springs exert purely attractive forces, thus they produce a

triangular area compression, while the second term in equation (3.2) provides triangular area

expansion. The minimum energy state of a single triangle corresponds to an equilibrium

spring length l0, which depends on the spring parameters and Cq. The relationship between

these parameters and the equilibrium length can be derived by energy minimization [48] or

by setting the Cauchy stress obtained from the virial theorem [7] to zero [42]. We obtained

the following expressions for WLC and FENE springs, respectively,

CWLC
q =

√
3Aq+1

0 kBT (4x2
0 − 9x0 + 6)

4pqlm(1 − x0)2
, CFENE

q =

√
3Aq+1

0 ks

q(1 − x2
0)
, (3.4)
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where x0 = l0/lm and A0 =
√

3l20/4. These formulas allow us to calculate the strength of

the second term in equation (3.2) for the given equilibrium length and spring parameters.

Another choice is to select a spring with a specific equilibrium length (e.g., harmonic spring,

WLC or FENE in combination with a repulsive potential), and then set Cq to zero. We

now introduce an energy potential which defines a repulsive force in the form of a power

function (POW) of the separation distance l as follows

UPOW (l) =



















kp

(m−1)lm−1 m > 0, m 6= 1,

−kp log(l) m = 1,

(3.5)

where kp is the POW force coefficient and m is the exponent. The combination of WLC

or FENE with the POW force defines a spring with nonzero equilibrium length, and will

be called WLC-POW and FENE-POW, respectively. The strength kp can be expressed

in terms of the equilibrium length l0 and the WLC or FENE parameters by equating the

corresponding forces. The combination of WLC or FENE with the second term of the

in-plane energy in equation (3.2) will be denoted as WLC-C and FENE-C. The viscous

contribution of each spring will be defined below.

The bending energy is defined as,

Vbending =
∑

j∈1...Ns

kb [1 − cos(θj − θ0)] , (3.6)

where kb is the bending constant, θj is the instantaneous angle between two adjacent trian-

gles having the common edge j, and θ0 is the spontaneous angle.

The last two terms in equation (3.1) define the area and volume conservation constraints

given by

Varea =
ka(A−Atot

0 )2

2Atot
0

+
∑

j∈1...Nt

kd(Aj −A0)
2

2A0
,

Vvolume =
kv(V − V tot

0 )2

2V tot
0

,

(3.7)

where ka, kd and kv are the global area, local area and volume constraint constants, respec-

tively. The terms A and V are the total instant area and volume of the RBC, while Atot
0

and V tot
0 are the desired total area and volume, respectively. The second term of the Varea
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energy corresponds to local area dilatation.

The nodal forces corresponding to the above energies are derived from the following

formula

fi = −∂V ({xi})/∂xi, i ∈ 1...Nv. (3.8)

Exact force expressions are derived analytically in appendix A.

3.2.2 Macroscopic elastic properties

Several parameters must be chosen in the membrane network model. To eliminate ad-

justment of the model parameters a relationship between them and corresponding network

macroscopic properties (see fig. 3.1) has to be derived. Theoretical analysis of the hexago-

nal network is presented further to obtain its linear macroscopic properties with respect to

the selected network parameters. We extend the linear analysis of a two-dimensional sheet

of springs built with equilateral triangles [42]. Figure 3.2 shows an element of the hexagonal

network with the central vertex v placed at the origin. From the virial theorem (see chapter

(b - a ,b - a )x y

(b ,b )x y

x

y

A

x y

b

a

c = |b - a|

v

S (a ,a )x y

Figure 3.2: An element of the hexagonal network with the central vertex v placed at the
origin.

2 of [7]), the Cauchy stress at the vertex v surrounded by the area element S = 2A is given

by

ταβ = − 1

2A

[

f(a)

a
aαaβ +

f(b)

b
bαbβ +

f(c)

c
cαcβ

]

−

−
(

q
Cq

Aq+1
+
ka(A

tot
0 −NtA)

Atot
0

+
kd(A0 −A)

A0

)

δαβ ,

(3.9)
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where f(·) is the spring force, α, β can be x or y, ~c = ~b − ~a, Nt is the total number

of triangles, and Atot
0 = NtA0. In general, Nt cancels out and the global and local area

contributions to the stress can be combined as −(ka + kd)(A0 − A)/A0δαβ . Note that the

linear analysis in [42] did not take into account the global and local area contributions to the

stress which significantly affect the final results. The linear shear modulus can be derived

by applying a small engineering shear strain γ to the configuration in figure 3.2, followed by

the first derivative of shear stress µ0 =
∂τxy

∂γ |γ=0. The shear deformation is area-preserving,

and therefore only spring forces contribute to the membrane shear modulus. For different

spring models, we obtained the following expressions for µ0 (see appendix B for details):

µWLC−C
0 =

√
3kBT

4plmx0

(

3

4(1 − x0)2
− 3

4
+ 4x0 +

x0

2(1 − x0)3

)

,

µFENE−C
0 =

√
3ks

2

(

x2
0

(1 − x2
0)

2
+

2

1 − x2
0

)

,

µWLC−POW
0 =

√
3kBT

4plmx0

(

x0

2(1 − x0)3
− 1

4(1 − x0)2
+

1

4

)

+

√
3kp(m+ 1)

4lm+1
0

,

µFENE−POW
0 =

√
3

4

(

2ksx
2
0

(1 − x2
0)

2
+
kp(m+ 1)

lm+1
0

)

.

(3.10)

The linear-elastic area-compression modulus K can be calculated from the area expan-

sion with the resulting in-plane pressure given by

P = −1

2
(τxx + τyy) =

3lf(l)

4A
+ q

Cq

Aq+1
+

(ka + kd)(A0 −A)

A0
. (3.11)

Then, the compression modulus K is defined as

K = − ∂P

∂ log (A)

∣

∣

∣

∣

A=A0

= − 1

2

∂P

∂ log (l)

∣

∣

∣

∣

l=l0

= − 1

2

∂P

∂ log (x)

∣

∣

∣

∣

x=x0

. (3.12)

Using equations (3.11) and (3.12) we derive the linear area-compression modulus for different
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spring models (see appendix B for details) as follows

KWLC−C =

√
3kBT

4plm(1 − x0)2

[(

q +
1

2

)

(4x2
0 − 9x0 + 6) +

1 + 2(1 − x0)
3

1 − x0

]

+ka+kd,

KFENE−C =

√
3ks

1 − x2
0

[

q + 1 +
x2

0

1 − x2
0

]

+ ka + kd,

KWLC−POW = 2µWLC−POW
0 + ka + kd,

KFENE−POW = 2µFENE−POW
0 + ka + kd.

(3.13)

Note that if q = 1 we obtain the expressions KWLC−C = 2µWLC−C
0 + ka + kd and

KFENE−C = 2µFENE−C
0 + ka + kd. Generally, for a nearly incompressible sheet of springs

the area constraint coefficients have to be large such that ka +kd À µ0, and hence K À µ0.

The Young’s modulus Y for the two-dimensional sheet can be expressed through the

shear and area-compression moduli as follows

Y =
4Kµ0

K + µ0
, Y → 4µ0, if K → ∞, (3.14)

with the Poisson’s ratio ν given by

ν =
K − µ0

K + µ0
, ν → 1, if K → ∞. (3.15)

The above expressions are consistent with the incompressibility assumption enforced through

the condition ka+kd À µ0. In practice, we use the values µ0 = 100 and ka+kd = 5000 which

provide a nearly incompressible membrane with Young’s modulus about 2% smaller than

its asymptotic value of 4µ0. All analytical expressions for µ0, K and Y were numerically

verified by shearing, area expanding and stretching tests of the regular two-dimensional

sheet of springs. In addition, it is important to note that the modeled sheet appears to

be isotropic for small shear and stretch deformations; however, it is anisotropic at large

deformations.
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3.2.3 Membrane bending rigidity

The bending resistance of an elastic sheet is often described by the macroscopic model of

Helfrich [100], the energy of which is given by

Ec =
kc

2

∫

A
(C1 + C2 − 2C0)

2dA+ kg

∫

A
C1C2dA, (3.16)

where C1 and C2 are the local principal curvatures, C0 is the spontaneous curvature, and kc

and kg are the bending rigidities. Note that the second term in equation (3.16) is constant

for closed surfaces.

The relationship between the model bending coefficient kb and the macroscopic bending

rigidity kc is derived for the case of a spherical shell. Figure 3.3 shows two equilateral

triangles with the edge length a and vertices resting on the surface of a sphere of radius R.

The angle between the triangle normals n1 and n2 is equal to θ. In case of the spherical

R

R

a
θ

n

n

1

2

rr

0

s

Figure 3.3: Two equilateral triangles placed on the surface of a sphere of radius R.

shell the total energy in equation (3.16) is given by

Ec = 8πkc(1 − C0/C1)
2 + 4πkg = 8πkc(1 −R/R0)

2 + 4πkg, (3.17)

where C1 = C2 = 1/R and C0 = 1/R0. For the network model the energy of a triangulated

sphere is equal to

Vbending = Nskb[1 − cos(θ − θ0)] (3.18)

in the notations defined above. Expansion of cos(θ − θ0) in Taylor series around (θ − θ0)

provides us with the leading term as follows

Vbending = Nskb(θ − θ0)
2/2 +O((θ − θ0)

4). (3.19)
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From the sketch in figure 3.3 we find that 2r ≈ θR or θ = a/(
√

3R), and analogously

θ0 = a/(
√

3R0). Furthermore, Asphere = 4πR2 ≈ NtA0 =
√

3Nta
2/4 =

√
3Nsa

2/6, and thus

a2/R2 = 8π
√

3/Ns. Finally, we obtain

Vbending =
Nskb

2

(

a√
3R

− a√
3R0

)2

=
Nskba

2

6R2

(

1 − R

R0

)2

=
4πkb√

3

(

1 − R

R0

)2

. (3.20)

Equating the macroscopic bending energy Ec for kg = −4kc/3, C0 = 0 [128] and Vbending

yields the relation kb = 2kc/
√

3 in agreement with the continuum limit. The spontaneous

angle θ0 is set according to the total number of vertices Nv on the sphere. It can be shown

that cos (θ) = 1 − 1/[6(R2/a2 − 1/4)], Ns = 2Nv − 4, and thus the corresponding bending

stiffness kb and the spontaneous angle θ0 are given by

kb =
2√
3
kc, θ0 = cos−1

(√
3(Nv − 2) − 5π√
3(Nv − 2) − 3π

)

. (3.21)

3.2.4 Membrane viscosity

So far a purely elastic membrane was defined; however, the RBC membrane is known to

be viscoelastic. Next, we describe the viscous component of viscoelastic springs in equation

(3.2). The addition of dissipative and random forces into springs fits naturally in the DPD

method since inter-particle dissipative interactions are an intrinsic part of the method. The

implementation of the dissipative and random interactions as in equation (2.8) appears to

be insufficient. The contribution from inter-particle relative velocity vij projected on their

connecting vector is negligible for small dissipative coefficients γ, while large values of γ

affect the numerical stability of the method. Better performance is achieved with a viscous

spring dissipation term −γvij , for which the fluctuation-dissipation balance needs to be

invoked to maintain the equilibrium membrane temperature kBT .

Further, the general framework of the fluid particle model [63] is employed with the

following definitions

FD
ij = −Tij · vij , Tij = A(rij)1 +B(rij)eijeij ,

FR
ijdt =

√

2kBT

(

Ã(rij)dWS
ij + B̃(rij)

tr[dWij ]

3
1 + C̃(rij)dW

A
ij

)

· eij ,

(3.22)
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where tr[dWij ] is the trace of a random matrix of independent Wiener increments dWij , and

dWS
ij = dWS

ij−tr[dWS
ij ]1/3 is the traceless symmetric part, while dWS

ij = [dWij+dW
T
ij ]/2

is the symmetric part. A(r), B(r), Ã(r), B̃(r), and C̃(r) are scalar functions having the

following relation

A(r) =
1

2

[

Ã2(r) + C̃2(r)
]

,

B(r) =
1

2

[

Ã2(r) − C̃2(r)
]

+
1

3

[

B̃2(r) − Ã2(r)
]

.

(3.23)

Note that if Ã(r) = C̃(r) = 0 and B(r) = γ the standard dissipative and random forces are

recovered (see section 2.2.2).

We define A(r) = γT and B(r) = γC resulting in Tij = γT1 + γCeijeij , where γT and

γC are the dissipative coefficients. Using this definition the dissipative interactions become

as follows

FD
ij = −

[

γT1 + γCeijeij

]

· vij = −γTvij − γC(vij · eij)eij , (3.24)

where the first term provides a desirable viscous contribution, while the second term is anal-

ogous to the dissipative force in DPD. From the definitions above the random interactions

are given by

FR
ijdt =

√

2kBT

(

√

2γTdWS
ij +

√

3γC − γT
tr[dWij ]

3
1

)

· eij . (3.25)

Note that this equation imposes the condition 3γC > γT . The defined dissipative and

random forces in combination with an elastic spring constitute a viscoelastic spring whose

equilibrium temperature kBT is constant.

To relate the membrane shear viscosity ηm and the dissipative parameters γT , γC we

subject the element of the hexagonal network (fig. 3.2) to a constant shear rate γ̇ considering

only viscous contribution of the dissipative force in equation (3.24). The shear stress τxy at

short times can be well approximated as follows

τxy = − 1

2A0

[

γT γ̇
(

a2
y + b2y + c2y

)

+
γC γ̇

l20

(

(axay)
2 + (bxby)

2 + (cxcy)
2
)

]

=

= γ̇
(√

3γT +
√

3γC/4
)

.

(3.26)
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The derivation of the equalities above is similar to that of the macroscopic shear modulus

described in appendix B in detail. Hence, the membrane viscosity is given by

ηm =
τxy

γ̇
=

√
3γT +

√
3γC

4
. (3.27)

The relation above indicates that γT accounts for a large portion of viscous contribution

than γC , and therefore γC is set to γT /3 in all simulations that follow.

3.2.5 Membrane-solvent boundary conditions

The described membrane model is filled and surrounded by different solvents that are rep-

resented by a collection of interacting particles. Figure 3.4 shows a snapshot of a RBC

simulation in equilibrium. In order to impose appropriate boundary conditions (BCs) for

Figure 3.4: A slice through a sample equilibrium simulation with RBC vertices drawn by
red particles, external fluid particles in blue, and the internal fluid in green.

the external/internal fluids on the membrane two matters need to be addressed:

i) membrane impenetrability to prevent mixing of the internal and the external fluids,

ii) no-slip BCs imposed by pairwise point interactions of the fluid and membrane parti-

cles.

Bounce-back reflections of fluid particles at the moving membrane triangular plaquettes

impose the membrane impenetrability (see appendix C for details). In addition, bounce-

back reflections of fluid particles result in a smaller slip at the membrane surface than,

for example, specular reflections; however, no-slip is not guaranteed. Thus, dissipative
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interactions between the fluid and the membrane are needed to be enhanced to achieve

no-slip at the membrane surface. For this purpose, the DPD dissipative force between fluid

particles and membrane vertices has to be properly set.

Calculation of the dissipative force coefficient γ is based on the idealized case of linear

shear flow over a flat plate. Under the continuum assumption the total shear force on the

area A of the plate is equal to Aηγ̇, where η is the fluid’s viscosity and γ̇ is the local constant

shear rate. To mimic the membrane surface a number of wall particles is distributed on the

plate with a hexagonal configuration. The force on a single wall particle of such a system

exerted by the surrounding fluid under shear can be expressed as

Fv =

∫

Vh

ng(r)FDdV, (3.28)

where FD is the DPD dissipative force between fluid and wall particles, n is the fluid number

density, g(r) is the radial distribution function of fluid particles with respect to the wall

particles, and Vh is the half sphere volume of fluid above the plate. Thus, the total shear

force on the area A in this case is equal to NAFv, where NA is the number of plate particles

enclosed by the area A. The equality of NAFv = Aηγ̇ results in the expression of the

dissipative force coefficient γ in terms of the fluid density and viscosity, as well as the wall

density NA/A, while under the assumption of linear shear flow the shear rate cancels out.

This formulation results in satisfaction of the no-slip BCs for the linear shear flow over a

flat plate. It also serves as an excellent approximation for no-slip at the membrane surface

in spite of the assumptions made. Note that in the absence of conservative interactions

between fluid particles and the membrane vertices, the radial distribution function takes a

simple form g(r) = 1 and the integral above can be taken analytically.

3.2.6 Membrane triangulation

The average unstressed shape of a single RBC measured in the experiments in [65] is bi-

concave and is described by

z = ±D0

√

1 − 4(x2 + y2)

D2
0

[

a0 + a1
x2 + y2

D2
0

+ a2
(x2 + y2)2

D4
0

]

, (3.29)
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where D0 = 7.82 µm is the cell diameter, a0 = 0.0518, a1 = 2.0026, and a2 = −4.491.

The area and volume of this RBC is equal to 135 µm2 and 94 µm3, respectively. We have

investigated three types of triangulation strategies:

• Point charges: Nv points are randomly distributed on a sphere surface, and the elec-

trostatic problem of point charges is solved while the point movements are constrained

on the sphere. After equilibrium is reached, the sphere surface is triangulated, and

conformed to the RBC shape according to equation (3.29).

• Advancing front: The RBC shape is imported into commercially available grid gener-

ation software Gridgen [1] which performs the advancing front method for the RBC

surface triangulation.

• Energy relaxation: First, the RBC shape is triangulated following the point charges

or advancing front methods. Subsequently, relaxation of the free energy of the RBC

model is performed while the vertices are restricted to move on the biconcave shape

in equation (3.29). The relaxation procedure includes only in-plane and bending

energy components and is done by flipping between the two diagonals of two adjacent

triangles.

The triangulation quality can be characterized by two distributions: i) distribution of the

link (edge) lengths, ii) distribution of the vertex degrees (number of links in the vertex junc-

tion). The former is characterized by the value d(l) = σ(l)/l̄, where l̄ is the average length

of all edges, and σ(l) is the standard deviation. The latter defines the regularity of trian-

gulation by providing the relative percentage of degree-n vertices n = 1...nmax. Note that

the regular network, from which the mechanical properties were derived, has only degree-6

vertices. Table 3.1 presents the average mesh quality data for different triangulation meth-

ods. Better mesh quality corresponds to a combination of smaller d(l), higher percentage of

degree-6, and smaller percentage of any other degree vertices, and is achieved for a larger

number of points Nv. It seems that the best quality is reached with the energy relaxation

method whereas the advancing front triangulation yields the lowest quality, which will be

discussed further below.



50

Method d(l) degree-6 degree-5 and degree-7 other degrees

point charges [0.15, 0.18] 90% − 95% 5% − 10% 0%

advancing front [0.13, 0.16] 45% − 60% 37% − 47% 3% − 8%

energy relaxation [0.05, 0.08] 75% − 90% 10% − 25% 0%

Table 3.1: Mesh quality for different triangulation methods.

3.2.7 Coarse-graining

For systematic coarse-graining the parameters of the fine or spectrin-level model have to be

defined. Atomic force microscopy results [194, 192] show that each actin junction complex

exists every 3000 − 5000 nm2. Taking into account that the average RBC area is equal

to A = 135 µm2 [65] we obtain that the RBC spectrin network has about 27000 − 45000

junction complexes which represent the total number of vertices Nv in the spectin-level

model. The spectrin-level model in this chapter is built by Nv = 27344 junction complexes.

The effective equilibrium spectrin length l0 is estimated as follows

A = Nt ·A0 = (2Nv − 4) ·A0 = (2Nv − 4) ·
√

3l20
4

, (3.30)

and is equal to 75.5 nm. Note that l0 lies in the range 59 − 76 nm based on the number

of junction complexes 27000 − 45000. In order to define the maximum spectrin extension

it is more convenient to set the value of the ratio x0 = l0/lm, which is equal to 2.2 for

the WLC models and 2.05 for FENE, and it governs the nonlinear spectrin response. This

yields lm = 166.1 nm for WLC and 154.8 nm for FENE models. Using the defined lengths

and equation (3.10) with µ0 = 6.3 µN/m we obtain the persistence length p = 18.7 nm

for the WLC-C model at room temperature T = 23oC and the spring constant ks = 2.4

µN/m in case of the FENE-C model. The persistence length estimated here is about 2.5

times longer than p = 7.5 nm chosen in [42, 159]; however, both values are within the range

obtained from experiments [20]. In part this difference can be reconciled by a choice of the

effective spectrin-level model. From equation (3.10) for the WLC-C model we find that in

order to have the same macroscopic shear modulus for a fixed x0 but for a different number

of the actin junction complexes Nv in the spectrin-level representation, the product pl0 has

to be kept constant. This implies that for a smaller number of vertices (Nv = 27344 in this
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case) the equilibrium spectrin length would increase while the persistence length becomes

smaller. In addition, the estimated parameters depend on the spring model, such that for

the cases of the WLC-POW and the FENE-POW models we obtain p = 14.68 nm and

ks = 3.06 µN/m, respectively, while the power force parameter kp found by equating the

corresponding spring forces for l0 = 75.5 nm is equal to 1.66× 10−27 Nm2 and 1.73× 10−27

Nm2 for the POW exponent m = 2.

Systematic RBC coarse-graining yields a model represented by a smaller number of

vertices compared to the spectrin-level model, which is called the “fine” model further in

the text. Equating the areas of the coarse-grained and fine models, we obtain the equilibrium

and the maximum extension lengths (l0 and lm) for the coarse-grained RBC as follows

lc0 = lf0

√

Nf
v − 2

N c
v − 2

, lcm = lfm

√

Nf
v − 2

N c
v − 2

, (3.31)

where the superscripts c and f correspond to coarse-grained and fine models, respectively.

For a fixed x0 the shear and area-compression moduli remain unchanged for the coarse-

grained model if the parameters are adjusted as follows

pc = pf l
f
0

lc0
(WLC), kc

s = kf
s (FENE), kc

p = kf
p

(

lc0

lf0

)m+1

(POW ). (3.32)

The equations (3.31, 3.32) define a complete set of parameters required for the model at an

arbitrary coarse-graining level derived from the fine model.

3.2.8 Scaling of model and physical units

We now outline the scaling procedure, which relates the model’s non-dimensional units

to physical units. First, the equilibrium spring length l0 = lM0 is chosen in our model

units, where the superscript M denotes “model” and [lM0 ] = rM defines model length scale.

Another parameter we are free to select is the imposed shear modulus µ0 = µM
0 with

[µM
0 ] = NM/rM = (kBT )M/(rM )2, which will provide a scaling base. Use of WLC and

FENE springs requires the maximum extension length lMm to be set; however, it is more

convenient to set the ratio x0 = lM0 /lMm . Further we will show that the choice of x0 does

not affect the linear elastic deformation, but it governs the RBC nonlinear response at large

deformations. For given lM0 , µM
0 and x0 we can calculate the required spring parameters
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for a chosen model using equation (3.10). Then, the area-compression modulus KM and

the Young’s modulus Y M are found for the calculated spring parameters and given area

constraint parameters (ka and kd) using equations (3.13, 3.14).

Once the model parameters are set, we can define the length scale based on the cell

diameter DM
0 = (LM

x + LM
y )/2, where [DM

0 ] = rM and Lx, Ly are the cell diameters in the

x and y directions found from the equilibrium simulation of a single cell with the obtained

model parameters. The length scale based on lM0 appears to be inappropriate because, in

general, the cell dimensions will depend on the relative volume-to-area ratio and to some

extent on the current triangulation artifacts (discussed below). As an example, we can

define an RBC and a spherical capsule with the same lM0 , while the cell sizes would greatly

differ. However, in general, DM
0 is proportional to lM0 for fixed volume-to-area ratio. The

real RBC has an average diameter DP
0 = 7.82 µm (superscript P denotes “physical”), and

therefore the following length scale is adapted

rM =
DP

0

DM
0

m, (3.33)

where m stands for “meters”. Further, the Young’s modulus is used as the main scale

parameter. Matching the model and physical Young’s modulus Y M (kBT )M

(rM )2
= Y P (kBT )P

m2

provides us with the energy unit scale as follows

(kBT )M =
Y P

YM

(rM )2

m2
(kBT )P =

Y P

YM

(

DP
0

DM
0

)2

(kBT )P . (3.34)

In general, if the membrane is nearly incompressible, the scaling based on the shear modulus

is exactly the same as above. After we determined the model energy unit (as an example

for room temperature T = 296 K), we calculate the bending rigidity kb in model energy

units using equation (3.21). In addition, we define the force scale, NM , by

NM =
(kBT )M

rM
=
Y P

YM

DP
0

DM
0

(kBT )P

m
=
Y P

YM

DP
0

DM
0

NP . (3.35)

Scaling of model and physical mechanical properties does not require an explicit defini-

tion for the time scale as outlined above; however, it is necessary for the membrane rheology
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and dynamics. The scaling between model and physical times is defined as follows

τ =

(

tPi
tMi

)α

s =

(

DP
0

DM
0

ηP

ηM

YM
0

Y P
0

)α

s, ti =
D0η

Y0
, (3.36)

where τ is the model time, η is a characteristic viscosity, ti is the intrinsic time, and α is the

scaling exponent. Note that α characterizes time scale dependence, and is not necessarily

equal to one with numerous examples in rheology.

3.3 RBC mechanical properties

The elastic shear modulus µ0 measured experimentally lies between 2 and 12 µN/m and the

bending modulus k lies between 1× 10−19 and 7× 10−19 J , which corresponds to the range

of 25 − 171 kBT based on the room temperature T = 23oC. Since the precise geometry is

often not known, the discrepancies in the measurements arise, in part, from overly simplified

geometrical models used to extract values from the measured forces. In such cases, accurate

numerical modeling can provide a valuable aid in experimental parameter quantification.

In recent optical-tweezers stretching experiments [190] the RBC behavior was modeled

as a hyperelastic material together with the finite element method (FEM). From the FEM

simulations a membrane shear modulus µ0 in the range 5 − 12 µN/m was obtained. This

corresponds to the Young’s modulus of Y = 3µ0 = 15 − 36 µN/m due to the use of a

three-dimensional membrane model. Dao et al. [42] performed coarse-grained molecular

dynamics (CGMD) simulations of the spectrin-level cytoskeleton which yielded a worse

comparison to the experimental stretching response than FEM. Their derivation of the

shear modulus µ0 and the area-compression modulus K did not take into account the area

constraint providing the estimated area-compression modulus to be K = 2µ0. This results

in a Young’s modulus underprediction by about 50% and explains the poor performance of

the spectrin-level model in comparison with FEM.

3.3.1 RBC stretching: success and problems

Next, we performed RBC stretching simulations and compared the results with the exper-

imental data of RBC deformation by optical tweezers [190]. Here, we used the average

RBC diameter of DP
0 = 7.82 µm. The aforementioned FEM simulations of RBC membrane

[190] showed an agreement with the experimental data for µP
0 = 5.3 µN/m; however, we
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found that a slightly better correspondence of the results was achieved for µP
0 = 6.3 µN/m

and Y P = 18.9 µN/m (two-dimensional properties of the three-dimensional elastic model),

which we selected to be the targeted properties. Table 3.2 shows a set of the model and

physical RBC parameters using the coarse-graining procedure described in section 3.2.7.

In all cases µM
0 = 100, while x0 was equal to 2.2 for the WLC models and 2.05 for the

Model Nv lP0 pP or kP
s lM0 DM

0

WLC-C 500 5.58 × 10−7 2.53 × 10−9 0.56 8.267

WLC-C 1000 3.95 × 10−7 3.58 × 10−9 0.4 8.285

WLC-C 3000 2.28 × 10−7 6.19 × 10−9 0.23 8.064

FENE-C 500 5.58 × 10−7 2.4 × 10−6 0.56 8.265

WLC-POW 500 5.58 × 10−7 1.99 × 10−9 0.56 8.25

Table 3.2: RBC physical (“P” in SI units) and simulation (“M” in model units) parameters.

FENE models, and the exponents q = 1 (eq. (3.2)) and m = 2 (eq. (3.5)). The area and

volume constraints coefficients were set to ka = 5000, kd = 0, and kv = 5000 for WLC-

C and FENE-C models, while ka = 4900, kd = 100, and kv = 5000 for the WLC-POW

model. The triangulation for all Nv was performed using the energy relaxation method.

The imposed Young’s modulus for all cases was Y M = 392.453, which is about 2% lower

than that in the incompressible limit Y M = 4µM
0 = 400. Using equation (3.34) we found

the energy unit (kBT )M based on (kBT )R at room temperature T = 296 K. The bending

rigidity kc was set to 2.4× 10−19J , which seems to be a widely accepted value and is equal

to approximately 58(kBT )R. The total RBC area Atot
0 was equal to Nt

√
3

4 (lM0 )2, where Nt

is the total number of triangle plaquettes with the area A0 =
√

3
4 (lM0 )2. Note that for all

triangulations used here Nt = 2Nv − 4. The total RBC volume V tot
0 was found according

to the following scaling V tot
0 /(Atot

0 )3/2 = V R/(AR)3/2, where V R = 94 µm3 and AR = 135

µm2 according to the average RBC shape described by equation (3.29).

The RBC was suspended in a solvent which consists of free DPD particles with the num-

ber density n = 3. Note that the macroscopic solvent properties (e.g., viscosity) were not

important here, because we were interested in the final cell deformation for every constant

stretching force. Thus, we allowed enough time for the RBC to reach its final deforma-
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tion state without close monitoring of the stretching dynamics. Meanwhile, the solvent

maintained the temperature at the constant value of (kBT )M .

Figure 3.5 shows a sketch of the RBC before and after deformation. The total stretching

NN +-dc D0

Before stretch

DT

After stretch

DA

Figure 3.5: RBC sketch before and after deformation.

force FP
s was in the range 0...200 pN , which was scaled into model units FM

s according to

equation (3.35). The total force FM
s was applied to N+ = εNv vertices (drawn as small

black spheres in figure 3.5) of the membrane with the largest x-coordinates in the positive

x-direction, and correspondingly −FM
s was exerted on N− = N+ vertices with the smallest

x-coordinates in the negative x-direction. Therefore, a vertex in N+ or N− was subject to

the force fM
s = ±FM

s /(εNv). The vertex fraction ε was equal to 0.02 corresponding to a

contact diameter of the attached silica bead dc = 2 µm used in experiments. The contact

diameter was measured as
(

maxij |y+
i − y+

j | + maxij |y−i − y−j |
)

/2, where y+
i , y+

j and y−i ,

y−j are the y-coordinates of vertices in N+ and N−, respectively. The simulations for the

given force range were performed as follows: i) B = 16 was chosen, which defines the force

increment ∆FP
s = 200 pN/B with corresponding ∆FM

s . ii) The loop i = 1...B was run with

the stretching force i·∆FM
s during time 2τ each. The time τ was long enough in order for the

RBC to converge to the equilibrium stretched state for the given force. Thus, the time [0, τ ]

was the transient time for convergence, and during time [τ, 2τ ] the deformation response

was calculated. The axial diameter DA was computed over time τ as |xmax − xmin|, where

xmax is the maximum x position among the N+ vertices, while xmin is the minimum among

N−. The transverse diameter DT was calculated as 2×maxi=1...Nv

√

(yi − cy)2 + (zi − cz)2,

where cy, cz are the y and z center of mass coordinates.
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Figure 3.6 presents the RBC stretching response for a different number of vertices Nv

(left) and spring models (right) with RBC parameters from table 3.2; also included are

experimental results [190] and the spectrin-level RBC model results of [42]. Independent
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Figure 3.6: Computational results for different Nv (left) and spring models (right) compared
with the experiments in [190] and the spectrin-level RBC model in [42].

of the number of vertices or spring model we find excellent agreement of the simulation

results with the experiment. A noticeable disagreement in the transverse diameter may be

partially due to experimental errors arising from the fact that the optical measurements

were performed from a single observation angle. RBCs subjected to stretching may rotate

in y-z plane as observed in our numerical simulations, and therefore measurements from a

single observation angle may result in underprediction of the maximum transverse diameter.

However, the simulation results remain within the experimental error bars. The solid line

in figure 3.6 corresponds to the spectrin-level RBC [42] of a similar type employing the

WLC-C model. Their derivation of linear elastic properties did not include a contribution

of the area constraint, which results in the Young’s modulus being underpredicted by about

50%. From the region of small near-linear deformation (0 − 50 pN), it is apparent that

the solid line corresponds to a membrane with a larger Young’s modulus compared to the

experiment. In addition, the ratio x0 was set to 3.17, which results in near-linear elastic

deformation, and ignores the nonlinear RBC response at large deformations. Finally, we

note that the FENE-C model appears to be less stable (requires a smaller time step) at

large deformations due to a more rapid spring hardening compared to WLC-C. The WLC-

POW model performs similarly to WLC-C; however, a weak local area constraint (kd > 0)
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may be required for stability at large deformations as it mimics the second in-plane force

term in equation (3.2) for the WLC-C model. Figure 3.7 demonstrates typical RBC shape

evolution from equilibrium (0 pN force) to 100 pN total stretching force for different Nv

using the WLC-C model. Note that the RBCs show local anomalous surface features (hills)

0 pN

N = 500

100 pN

v N = 1000v N = 3000v

Figure 3.7: RBC shape evolution at different Nv and total stretching forces for the WLC-C
model.

in equilibrium which are due to local membrane stresses since it is not possible to have

regular hexagonal triangulation of the RBC surface with equal edges. The strength of

the local buckling depends on the relative interplay of the in-plane elasticity and bending

rigidity. Increase of the membrane bending stiffness results in a smoother RBC surface,

while a decrease would result in a more buckling. However, this feature seems to be less

pronounced for higher Nv. Other membrane models yield similar shapes.

Despite the demonstrated success of the RBC models, several problems remain due to

the fact that the membrane is not stress-free. Figure 3.8 shows the RBC response of the

WLC-C (Nv = 500) model for different stretching directions (left) with energy relaxation

triangulation and the RBC response for models with different triangulations (right). While

the RBC triangulated through the energy relaxation method gives satisfactory results with

differences in the stretching response on the order of 5 − 8%, RBCs triangulated by other

methods show a much greater discrepancy with the experiment. Figure 3.9 shows the RBC

shapes at equilibrium and at the stretching force of 100 pN for point charges, advancing front

triangulations (WLC-C model), and for a “stress-free” model introduced in the next section.

The RBCs triangulated by point charges and advancing front methods show pronounced
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Figure 3.8: RBC stretching along lines with different orientation angles (left) and triangu-
lation methods (right) compared with the experiments in [190].

0 pN

point charges

100 pN

advancing front stress-free model

Figure 3.9: RBC shape evolution for different triangulations and the stress-free model in-
troduced in the next section.

buckling and a non-biconcave shape for realistic bending and elastic RBC properties due

to stronger local stresses arising from more irregular triangulation when compared to the

energy relaxation mesh. In order to obtain a smooth biconcave shape the membrane bending

rigidity has to be set to about 500(kBT )R and 300(kBT )R for point charges and advancing

front methods, respectively, which is much higher than the bending rigidity of the real RBC

of about 58(kBT )R. Local buckling features are less pronounced for stretched cells since the

membrane is subject to strong stretching stresses. Moreover, figure 3.8 shows that these

models have higher effective elastic moduli than those measured, as they are subject to a

higher membrane stress at equilibrium due to triangulation artifacts. Also, they appear to
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yield a stronger stretching anisotropy (10 − 15%) compared to the free energy relaxation

method. The effect of local stresses on the membrane equilibrium shape appears to be

a drawback for existing models [126], which is often compensated by setting artificially

high values for the bending rigidity. Figure 3.9 also shows the corresponding RBC shapes

(advancing front triangulation) with a “stress-free” model which proves to be independent

of triangulation and will be proposed next.

3.3.2 Stress-free membrane model

To eliminate the aforementioned membrane stress anomalies we propose a simple “anneal-

ing” procedure. For each spring we define li0 i = 1...Ns which are set to the edge lengths

after the RBC shape triangulation, since we assume it to be the equilibrium state. Accord-

ingly we define lim = li0 × x0 and Aj
0 j = 1...Nt for each triangular plaquette. The total

RBC area Atot
0 =

∑

j=1...Nt
Aj

0 and the total volume V tot
0 is calculated from the RBC tri-

angulation. Then, we define the average spring length as l̄0 =
∑

i=1...Ns
li0, and the average

maximum spring extension as l̄m = l̄0 × x0; these are then used in the linear elastic prop-

erties estimation using equations (3.10 and 3.13). Here, we omit the WLC-C and FENE-C

models because it may not be possible to define a single in-plane area expansion potential

(the second force term in equation (3.2)) which would define different individual equilib-

rium spring lengths for a triangle with distinct sides. However, for the WLC-POW and

FENE-POW models the individual equilibrium spring length can be simply defined. Based

on given l̄0, l̄m and µM
0 the WLC or FENE spring parameters (p or ks) can be calculated

analogously to the previous model and then set to the same value for all springs. Then,

the individual power force coefficients ki
p i = 1...Ns (eq. (3.5)) are defined for each spring

in order to set the given equilibrium spring lengths li0. An additional generalization of the

model is to define individual spring parameters (pi or ki
s) and the power force coefficients

ki
p for all springs. Here, a system of two constraints (equilibrium length li0 and imposition

of µM
0 ) needs to be solved for every spring. However, computational results did not differ

for both stress-free approaches for the studied membranes.

We perform tests using the WLC-POW model for different triangulation methods and

number of vertices. Table 3.3 shows a set of the model and physical RBC parameters. Other

parameters are µM
0 = 100, x0 = 2.2, m = 2 (eq. (3.5)), ka = 4900, kd = 100, and kv = 5000.

Figure 3.10 presents simulation results for Nv = 500 with different triangulations (left) and
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Nv lP0 pP l̄M0 DM
0

27344 7.55 × 10−8 14.68 × 10−9 0.15 15.87

9128 1.31 × 10−7 8.48 × 10−9 0.13 8.12

3000 2.28 × 10−7 4.86 × 10−9 0.23 8.07

1000 3.95 × 10−7 2.81 × 10−9 0.4 8.07

500 5.58 × 10−7 1.99 × 10−9 0.56 8.06

250 7.8 × 10−7 1.4 × 10−9 0.79 8.08

100 1.25 × 10−6 8.88 × 10−10 1.23 8.05

Table 3.3: RBC physical (“P” in SI units) and simulation (“M” in model units) parameters.
Stress-free model.

a range of the number of vertices Nv from 100 to 27344 (right). A substantial improvement
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Figure 3.10: Stress-free RBC model for different triangulation methods with Nv = 500 (left)
and number of vertices with the energy relaxation triangulation (right) compared with the
experiments in [190].

is observed when compared with the results in figure 3.8 (right). Note that the stress-

free model, when probed along different stretching directions results in deviation in the

stretching response on the order of 1% for the free energy triangulation method and about

3− 5% for the other triangulation techniques. In addition, the stress-free model eliminates

equilibrium shape artifacts for different triangulations shown in figure 3.9, and can be used

even in cases of much lower bending rigidity. The stretching response for different number
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of vertices shows excellent agreement with the experimental results. Here, Nv = 27344

corresponds to a spectrin-level of RBC modeling as in [126], while Nv = 100 − 500 is a

highly coarse-grained RBC. Figure 3.11 presents RBC shapes for the cases of high coarse-

graining and spectrin-level models. Even though the coarse-grained model of Nv = 100

0 pN

100 pN

N = 100v N = 250v N = 27344v

Figure 3.11: RBC shapes for highly coarse-grained models (Nv = 100, 250) and the spectrin-
level model (Nv = 27344).

yields correct mechanical deformation results, it does not provide an accurate or smooth

RBC shape description, which can be of importance in RBC dynamics. We suggest the

minimum Nv to be used for the RBC model should be about 250 − 300.

The dependence of the RBC deformation response on the ratio x0 and on the number

of vertices N+, N− (figure 3.5) is shown in figure 3.12. As mentioned above, small RBC
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Figure 3.12: The stretching response of the stress-free RBC model for different ratio x0

(left) and number of vertices in percents which are subject to the stretching force (right)
compared with the experiments in [190].



62

deformations are independent of the ratio x0; however, at large deformations this parameter

plays a significant role and governs the nonlinear RBC response. In addition, figure 3.12

(right) shows that the RBC response is sensitive to the fraction of vertices (shown in percent)

to which the stretching force is applied. It is equivalent to changing dc in figure 3.5, which

characterizes the attachment area of the silica bead in the experiments.

3.3.3 Comparison with a single spectrin tetramer

It is rather remarkable that RBCs can be accurately modeled with just a few hundred

points, which is about one hundred times computationally cheaper than the spectrin-level

RBC model, where Nv ∼ 27000. At the spectrin-level of RBC modeling, each spring

represents a single spectrin tetramer, and therefore the spring force WLC-POW should

mimic the spectrin tetramer deformation response. We are not aware of any experimental

single spectrin stretching results; however, in [142] this has been done by means of numerical

simulation using coarse-grained molecular dynamics (CG-MD). Figure 3.13 compares the

single spectrin-tetramer stress-strain response to the spring force of the spectrin-level RBC

model. The “WLC-POW fit” curve assumes that the maximum extension spring length is
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Figure 3.13: A single spectrin-tetramer stress-strain response [142] compared to the spring
force of the spectrin-level RBC model.

200 nm as in the CG-MD simulations of [142], which corresponds to l0 = 91 nm with x0 =
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2.2. This equilibrium length corresponds to an effective spectrin-level model represented by

Nv = 18826 (eq. (3.30)) actin junction complexes, which is lower than that found in atomic

force microscopy experiments [194, 192]. The dashed line in figure 3.13 corresponds to the

spring force of the spectrin-level model in [42] with parameters l0 = 75 nm, x0 = 3.17, and

lm = 237.75 nm which results in about 50% underprediction of the macroscopic Young’s

modulus. Finally, the dash-dotted line corresponds to our stress-free spectrin-level model

with Nv = 27344. The discrepancy between the CG-MD and the spectrin-level models arises

from great variability in the spectrin structure characterized by variable spectrin lengths

and numbers of actin junction complexes. As discussed in the coarse-graining section 3.2.7

for the effective spectrin-level model, the equilibrium spectrin length is directly related to

the number of junction complexes. However, the spectrin-level model spans a wide range in

terms of the number of junction complexes, i.e. 27000−45000, as documented in [194, 192].

3.3.4 Pf-parasitized RBCs

One of the main characteristics of the malaria disease is progressive changes in RBC me-

chanical properties and geometry. Progression through the parasite development stages

(ring → trophozoite → schizont) leads to a considerable stiffening of infected RBCs in com-

parison with healthy ones [190, 158]. In addition, the schizont stage is often characterized

by “near spherical” RBC shape, while the preceding stages maintain their biconcavity.

Figure 3.14 shows a comparison of simulation results of healthy and parasitized RBCs

at different stages compared with the optical tweezers experiments [190]. The simulation

results were obtained with the stress-free model (Nv = 500) having µ0 = 6.3 µN/m for

the healthy RBC, 14.5 for the ring stage, 29 for the trophozoite, and 60 µN/m for the

schizont, which is consistent with the experiments [190, 158]. The ratio x0 is equal to

1.8 for the infected RBCs. The bending rigidity is set to 2.4 × 10−19 J for all cases, as

the dependence of the membrane bending stiffness for different stages is not known. The

additional simulation curve for the schizont stage marked “near spherical” corresponds

to stretching a membrane of ellipsoidal shape with the axes ax = ay = 1.2az. Here,

the membrane shear modulus is found to be 40 µN/m in order to match the stress-strain

response with the experiment, which is smaller than that for the biconcave-shape simulation.

For the near-spherical cell geometry a membrane is subject to a stronger local stretching

for the same uniaxial deformation compared to the biconcave shape. In the case of the
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Figure 3.14: The stretching response of healthy and Pf-parasitized RBCs for different stages
compared with the experiments in [190].

deflated biconcave shape the inner fluid volume can be deformed in response to stretching,

while in the near-spherical shape the fluid volume applies an additional resistance onto

the stretched membrane. Experiments show that for the schizont stage the RBC has a

near-spherical shape, and therefore the ellipsoidal geometry should be more accurate. In

conclusion, the cell geometry plays an important role and has to be closely modeled for

accurate extraction of parameters from experiments. Figure 3.15 presents typical RBC

shapes for the schizont stage using the original WLC-C model and the stress-free model for

biconcave and near-spherical geometry. The WLC-C model shows strong local buckling due

0 pN

WLC-C stress model

100 pN

stress-free model near spherical shape

Figure 3.15: Malaria infected RBC shape evolution at the schizont stage for original and
stress-free models, and near-spherical shape.
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to local stress anomalies, which is not completely eliminated even for the stretching force

of 100 pN , while the stress-free model yields a smooth RBC surface.

3.4 Rheology

The first experiments to obtain RBC rheological characteristics employed a creep test and

cell extensional recovery [104] to derive the RBC relaxation time scale, which was found

to be on the order of tc = 0.1 seconds. However, this technique cannot provide a quan-

titatively accurate characteristic membrane time scale since whole cell deformations result

in non-uniform strains and strain-rates along the RBC [213] as shown below. Recent ex-

periments [167] used optical magnetic twisting cytometry (OMTC) to obtain the dynamic

complex modulus of the membrane, a basic rheological characteristic of viscoelastic materi-

als. In another set of experiments [161, 10], membrane thermal fluctuations were measured

resulting in the complex modulus in qualitative agreement with OMTC. These experiments

provide enough evidence for the RBC membrane to be viscoelastic.

RBCs parasitized by Plasmodium falciparum (Pf) become much stiffer than healthy

ones and may change their morphology. In addition, cell rheological properties are greatly

affected in malaria disease as shown in OMTC experiments [133]. Measurements of thermal

fluctuations on the membrane surface [158] showed a significant decrease in fluctuations as

the parasite develops, confirming the increase in RBC stiffness. Moreover, experiments [158,

133] with infected RBCs at different temperatures showed an additional membrane stiffening

at febrile temperature (41o C) in comparison with those at physiological temperature (37o

C).

Most of the current RBC models are purely elastic and lack viscous contribution in the

membrane. As a result they cannot reproduce the single RBC response to time-dependent

loads and may also yield an incorrect rheology of the cell suspension (blood). Further, our

viscoelastic model is subjected to several rheological tests in comparison with the exper-

iments, a topic that has not been previously addressed. Both healthy and Pf-parasitized

RBCs (often denoted as Pf-RBCs) are considered.
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3.4.1 Twisting torque cytometry

The twisting torque cytometry (TTC) is a numerical analog of the experimental technique

OMTC [167], where a ferrimagnetic microbead is attached to the RBC top and is sub-

jected to an oscillating magnetic field. In TTC, an attached to the membrane microbead

is subjected to an oscillating torque. Bead response is measured in both experiments and

simulations resulting in the dynamic complex modulus of healthy and infected RBCs as

shown below.

3.4.1.1 Healthy RBCs

Figure 3.16 shows a sketch of TTC where a microbead is attached to the RBC top with an

oscillating torque applied. In analogy with the experiments, the modeled RBC is attached

displacement

oscillating torque

Figure 3.16: A sketch of the numerical setup of the twisting torque cytometry with the
attached microbead subjected to the oscillating torque.

to a solid surface, where the wall-adhesion is modeled by keeping fifteen percent of vertices

stationary on the RBC bottom, while other vertices are free to move. The adhered RBC is

filled and surrounded by fluids having viscosities much smaller than the membrane viscosity;

thus, only the membrane viscous contribution is measured. The microbead is represented

by a set of vertices on the corresponding sphere, that move as a rigid body. The attachment

is simulated by including several RBC vertices near the microbead bottom into the rigid
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microbead motion, while the torque on the microbead is applied only to its vertices. Figure

3.17 presents a typical bead response for different torque frequencies obtained from TTC.

The bead movement measured as the center-of-mass displacement maintains the same oscil-
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Figure 3.17: A characteristic response of an attached microbead subjected to the oscillating
torque per unit volume (normalized by the bead volume) for different frequencies.

lating frequency compared to the torque per unit volume, but it is shifted by a phase angle

φ depending on the oscillating frequency. For example, for a purely elastic material the

phase angle φ is equal to zero independent of the torque frequency under the assumption

of no inertial effects. For viscoelastic materials the phase angle increases with frequency as

shown in figure 3.17. The linear complex modulus can be extracted from a dependence of

the phase angle on the torque frequency as follows

g′(ω) =
∆T

∆d
cos (φ), g′′(ω) =

∆T

∆d
sin (φ), (3.37)

where g′(ω) and g′′(ω) are the two-dimensional storage and loss moduli (G′ and G′′ in 3D),

and ∆T and ∆d are the torque and bead displacement amplitudes. Under the assumption

of no inertial effects the phase angle lies in the range between 0 and π/2, but it can be

larger than π/2 otherwise.

Figure 3.18 presents components of the complex modulus compared with the experi-

mental data [167]. We find a good agreement of the membrane moduli in simulations with

the experimental data for the bending rigidity kc = 4.8 × 10−19 J and the membrane vis-

cosity ηm = 0.022 Pa · s. Twisting torque cytometry showed that the storage modulus

assumes the following dependence g′(ω) ∼ k0.65
c Y 0.65

0 . Figure 3.18 shows dependence of g′
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Figure 3.18: g′ and g′′ of healthy RBCs obtained from TTC simulations for different mem-
brane viscosities and bending rigidities in comparison with the OMTC experiments [167].
The inclusion figure demonstrates presence of inertial effects in simulations at high frequen-
cies of the torque.

on only the bending rigidity of the membrane since the Young’s modulus of healthy RBCs

was obtained and fixed by the RBC stretching tests described in section 3.3. Note that the

comparison indicates that bending rigidity of a healthy RBC should be equal to about 4

to 5 × 10−19 J , which is twice larger than the value of kc = 2.4 × 10−19 J used in many

publications. The loss modulus g′′ is independent of the membrane elastic properties and

is governed by the RBC viscosity. Here, the time scale assumes the exponent α = 0.85 and

η = ηm in equation (3.36) since the loss modulus shows similar dependence with respect to

frequency. The exponent of g′′ in simulations is equal to 0.85, while it was reported to be

0.64 in the experiments. This discrepancy may result from fitting errors in both simulations

and experiments since data were fitted over only two orders of magnitude in frequency. In

addition, we can define a RBC characteristic time tc found as the g′ and g′′ intersection,

which uniquely relates the membrane elastic properties and the viscous dissipation. From

the intersection in figure 3.18 we obtain tc = 1/ωc ≈ 0.1 s, in agreement with the RBC

characteristic relaxation time found in RBC recovery experiments [104].

The inset plot in figure 3.18 illustrates that for high frequencies inertial effects are ob-
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served in TTC simulations especially affecting the results for g′. Decreasing of the bead

mass allows us to obtain rheological data for higher torque frequencies, but it may be com-

putationally expensive since much smaller timesteps in simulations are required to ensure

numerical stability. In addition, when the loss modulus (g′′) dominates the storage modulus

(g′) the bead-displacement amplitudes become extremely small for a fixed torque resulting

in difficulties to obtain reliable displacement measurements in experiments. However, in

simulations it is possible to successfully detect bead displacements on the order of several

nanometers.

3.4.1.2 Pf-parasitized RBCs

Here, the twisting torque cytometry technique is applied to Pf-RBCs at different stages

of the parasite development. TTC for healthy RBCs in the previous section revealed that

the storage modulus (g′) depends on the membrane elastic properties and bending rigidity,

while the loss modulus (g′′) is governed by the membrane viscosity. The stretching tests on

the parasitized RBCs in section 3.3.4 resulted in the shear modulus µ0 = 14.5 µN/m for the

ring stage, 29 µN/m for the trophozoite, and 60 µN/m for the schizont at room temperature

T = 23o C. However, potential changes in the bending stiffness and the membrane viscosity

for different stages are not known, and therefore, we set kc = 2.4× 10−19 J and ηm = 0.022

Pa · s in all simulations. Figure 3.19 shows components of the complex modulus for healthy

and Pf-RBCs at different stages. It also includes several data points for the frequency 0.75

Hz obtained in OMTC experiments [133]. Simulation results show the expected trend:

increase in g′ for the consecutive intra-erythrocytic stages since the shear modulus of the

membrane is increased, while g′′ does not change for different stages because the membrane

viscosity is kept constant. Agreement between TTC and experiments is qualitative at

best. Experimental data show an increase of g′ for the progressing stages of the parasite

development, but it appears to be less pronounced than that in the TTC simulations.

Moreover, experiments show an increase in g′′ which indicates a rise in the membrane or

the internal fluid viscosity.

Several unresolved issues may contribute to the present discrepancies between the TTC

simulations and the OMTC experiments. First, the shear modulus used in simulations

was obtained by fitting the experimental data of RBC stretching with optical tweezers

[190], where a whole cell was subjected to deformation, while the OMTC technique probes
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Figure 3.19: Components (g′ and g′′) of the complex modulus for healthy and Pf-parasitized
RBCs at different stages of the parasite development obtained from TTC simulations. Ex-
perimental data [133] for the frequency 0.75 Hz are drawn in symbols.

membrane properties locally. Local properties may be non-isotropic resulting in deviations

of the OMTC data. However, recent measurements of membrane thermal fluctuations [158]

of parasitized RBCs for different stages showed similar shear moduli to those obtained

by optical tweezers. Note that thermal undulations are directly correlated with the local

membrane properties. Second, a potential change in the membrane bending rigidity during

the parasite development would greatly affect measurements of the storage modulus as

shown in the previous section for healthy RBCs. Third, presence of the growing parasite

inside RBCs may strongly influence experimental measurements of the complex modulus

especially for later intra-erythrocytic stages since its volume becomes comparable with that

of the RBC. Finally, an alteration in the membrane or the internal fluid viscosity would

influence measurements of the loss modulus as shown in the previous section. In conclusion,

modeling of realistic RBCs in health and malaria disease requires more accurate and detailed

experimental measurements of various RBC properties for different stages of the parasite

development.
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3.4.1.3 Healthy and Pf-parasitized RBCs at different temperatures

Recent OMTC experiments [133] showed a strong dependence of membrane rheological

properties on temperature for healthy and Pf-infected RBCs. Specifically, the increase of

temperature from the physiological value T = 37o C to the febrile T = 41o C results in

considerable stiffening of Pf-parasitized RBCs. Analogous conclusions were made in the

experiments that observed membrane thermal fluctuations [158] discussed in the next sec-

tion. Table 3.4 outlines the shear moduli of healthy and Pf-RBCs for different temperatures

obtained in the experiments [158]. Healthy and Pf-RBCs at ring stage do not show a signif-

Temperature 23o C 37o C 41o C

Healthy 6.3 5.8 4.9

Ring 14.5 14.5 20.4

Trophozoite 29 35 56.6

Schizont 60 71.8 95

Table 3.4: Shear moduli of healthy and Pf-parasitized RBCs in µN/m at different temper-
atures obtained in [158].

icant change in their shear moduli at different temperatures, while trophozoite and schizont

stages are characterized by a substantial increase in their membrane stiffness. Dependence

of other membrane properties (e.g., bending rigidity, membrane viscosity) on temperature is

not known, and therefore we assume kc = 2.4×10−19 J and ηm = 0.022 Pa ·s in simulations

that follow.

We perform TTC simulations for healthy RBCs at different temperatures with the shear

moduli outlined in table 3.4. Figure 3.20 presents components of the complex modulus for

healthy RBCs at different temperatures and includes OMTC experimental data [133] for

the frequency 0.75 Hz. The change in the complex modulus for healthy RBCs at different

temperatures appears to be relatively small in simulations. A small decrease in g ′ with

temperature elevation is found since the membrane shear modulus becomes smaller as shown

in table 3.4. In contrast, the experiments show a gradual increase in the storage modulus as

temperature rises, which indicates progressive membrane stiffening. This is in contradiction

with several experiments (e.g., RBC micropipette aspiration [205], monitoring of membrane

thermal fluctuations [158]), where a gradual membrane softening with temperature increase
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Figure 3.20: g′ and g′′ for healthy RBCs at different temperatures. Experimental data [133]
for the frequency 0.75 Hz are drawn in symbols.

was found. Other experiments (e.g., ektacytometry [210], optical tweezers [141]) have shown

a slight increase in the RBC shear modulus with temperature elevation, but statistical

significance was not reached. Moreover, TTC simulations suggest that the increase of the

shear modulus by 10% − 30% with changing temperature would result in a much smaller

rise in g′ than that found in the experiments (see figure 3.20). Hence, this discrepancy

must be due to other changes in the membrane taking place at different temperatures.

An increase in the membrane bending rigidity with increasing temperature would offer

a possible explanation for the membrane’s gradual stiffening found in the experiments.

In order to quantitatively follow the experimental data in figure 3.20, the RBC bending

stiffness should increase from its value at room temperature to that at T = 41o C by a

factor between three and four according to the TTC simulation results in section 3.4.1.1.

However, several experiments on lipid vesicles [47, 122] showed a slight decrease in the

membrane bending rigidity with increasing temperature suggesting the same to be likely

true for RBCs. Marinkovic et al. [133] proposed a significant role of entropic component to

explain their experimental results since the RBC spectrin network is able to rearrange [49]

under certain conditions such as metabolic activity or large strains.

Another characteristic feature of the experimental data [133] in figure 3.20 is the increase
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of the loss modulus g′′ with increasing temperature indicating a rise in the membrane

viscosity. The viscosity of fluids is known to decrease when temperature is elevated [175]

suggesting the analogous behavior for the fluid-like lipid membrane of RBCs. The present

discrepancies between the simulations and the experiments require further investigation.

Figure 3.21 shows storage and loss moduli of Pf-RBCs at the trophozoite stage (left)

and the schizont stage (right) for different temperatures. The OMTC experimental data
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Figure 3.21: g′ and g′′ of Pf-RBCs at the trophozoite stage (left) and the schizont stage
(right) for different temperatures. Experimental data [133] for the frequency 0.75 Hz are
drawn in symbols.

[133] for the frequency 0.75 Hz are also included. The TTC simulations show the expected

trend: increase in g′ since the membrane shear modulus is increased according to the data

in table 3.4, that is in qualitative agreement with the experiments. Correspondence be-

tween the experiments and the simulations appears to be slightly better for trophozoites

than schizonts; however, it is qualitative at best. Here, the discrepancies may be well due to

unknown changes in the bending rigidity and the membrane viscosity for different tempera-

tures, presence of the Pf-parasite, and potential metabolic activities discussed above. Hence,

accurate experimental measurements of RBC properties at different parasite development

stages and temperatures are of great interest.

3.4.2 Membrane thermal fluctuations

Thermal fluctuations of healthy and Pf-RBCs were measured in experiments using microrhe-

ology [10] by dynamical tracking of microbeads attached to the RBC surface and diffraction
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phase microscopy [161, 158], where instantaneous RBC-height maps were obtained. Ther-

mal undulations are directly correlated with the membrane properties and can be used to

derive the dynamics complex modulus.

3.4.2.1 Thermal fluctuation maps and RBC membrane properties

Diffraction phase microscopy experiments [158] monitored thermal fluctuations of an ad-

hered to a solid surface RBC by measuring instant heights of the cell. Adhesion of the

modeled RBC to a solid surface is performed by fixing a fraction of vertices on the RBC

bottom, while other vertices are able to move. The cell is filled and surrounded by fluids

with different viscosities. Thermal fluctuations on the RBC top are monitored in time.

Figure 3.22 shows the instant thickness and fluctuation maps of a healthy RBC (A and

C) and a Pf-parasitized RBC in trophozoite stage (B and D). Both RBCs have the same

equilibrium shape (A and B), while the shear elastic modulus was set to 6.3 and 29 µN/m

for the healthy and Pf-RBCs in trophozoite stage, respectively. The images C and D indi-

cate that the Pf-RBC has a smaller fluctuation amplitude than that of the healthy one in

agreement with the results in [158].

A number of simulations is performed for different stages of the parasite development

to identify dependence of thermal fluctuations on the membrane properties. Figure 3.23

presents membrane fluctuation distributions for different stages of Pf-RBCs at room tem-

perature in comparison with the experiments [158]. Circles in figure 3.23 are the results

of simulations employing the biconcave RBC shape (eq. (3.29)) with bending rigidity

kc = 2.4×10−19 J . The strength of RBC adhesion here is characterized by the 0.13 fraction

of vertices on the RBC bottom held stationary, while the corresponding shear moduli of

Pf-RBCs at room temperature are given in table 3.4. Agreement between the distributions

in experiments (solid lines) and simulations is found to be excellent for the case of healthy

RBCs, while simulations for ring and trophozoite stages predict more narrow distributions

than those in the experiments, and a wider distribution for the schizont stage. The curve in

figure 3.23 plotted with “*” symbols corresponds to a simulation employing nearly spher-

ical membrane (often observed in experiments) for the schizont stage, and yields a better

agreement with the experiments. Hence, effective geometry and local curvature may affect

thermal fluctuation measurements. However, shown discrepancies between the experiments

and the simulations suggest that the shear modulus alone cannot provide an appropriate
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Figure 3.22: Instantaneous height and fluctuations of healthy RBC (A and C) and Pf-RBC
in trophozoite stage (B and D). The instant fluctuation map is obtained by subtracting time-
averaged cell shape from the instantaneous height map. Zero value in A and B corresponds
to the half height of RBC.

description of thermal fluctuations.

Figure 3.24 shows dependence of fluctuation measurements on the experimental con-

ditions (left) and the membrane properties (right). Circles in figure 3.24 are the full-

width half-maximum (FWHM) values of the calculated distributions and the “*” symbols

correspond to the FWHM values of the fitted Gaussian distributions, that are equal to

2σ
√

−2 log (0.5), where σ is the standard deviation. Figure 3.24 (left) shows that as the

strength of RBC attachment characterized by the fraction of vertices held stationary de-

creases, the thermal fluctuations distribution widens since the FWHM values increase. The

adhesion strength may be difficult to control in experiments; however, our simulation re-

sults indicate independence of thermal fluctuation measurements on the adhesion strength

if the fraction of the fixed vertices is greater than 0.1. Furthermore, the simulation results
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Dependence of fluctuations on the bending rigidity and the shear modulus normalized by
healthy RBC values kc = 2.4×10−19 J and µ0 = 6.3 µN/m (right). Circles are the FWHM
values of the simulated distributions, and the “*” symbols are the FWHM of the fitted
Gaussian distributions.

in figure 3.24 (left) show that thermal fluctuations may not be isotropic on the cell surface.

Blue symbols are the FWHM measurements obtained for the circular areas of thickness 0.5
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µm and different radii on the RBC top. Thermal fluctuations appear to be smaller in the

RBC center and on the side compared with a maximum in-between. This can be partially

explained by the RBC geometry since only height fluctuations are monitored here. In ad-

dition, a higher membrane curvature in central and side regions than that in the middle

can contribute to damping of effective thermal fluctuations. Finally, presence of a rigid Pf

parasite next to the Pf-RBC membrane may greatly affect fluctuation measurements. In

light of the discussed issues, measurements of thermal fluctuations locally would provide

more accurate and detailed information. Further, the FWHM values in simulations are

averaged over a RBC surface area of radius 3 µm from the cell center.

Figure 3.24 (right) presents dependence of the FWHM values on the membrane bending

rigidity and the shear modulus normalized by their healthy RBC values kc = 2.4 × 10−19

J and µ0 = 6.3 µN/m. Both membrane properties strongly affect measurements of ther-

mal fluctuations with a common trend: the stiffer the RBC, the smaller the fluctuation

amplitudes characterized by FWHM values. These findings in combination with localized

measurements of thermal fluctuations may provide a great opportunity to measure local

Pf-RBC elastic and bending properties in experiments.

Pf-RBCs become stiffer as the parasite develops, and they show a significant stiffening

when temperature is increased from the physiological value T = 37o C to the febrile T = 41o

C observed in the experiments [158, 133] and discussed in section 3.4.1.3. In addition, febrile

temperature can lead to irreversible changes in the membrane properties for later stages of

Pf-RBCs, while healthy RBCs and those at the ring stage recover their elastic properties as

temperature is lowered. Figure 3.25 shows the FWHM of thermal fluctuation distributions

for different Pf-RBC stages at physiological and febrile temperatures. The shear moduli

for different stages and temperatures are shown in table 3.4. The FWHM value of healthy

RBCs at physiological temperature is slightly lower in simulations (blue circles) than that

in experiments (black circles), while at room temperature agreement of thermal fluctuation

distributions was excellent (see fig. 3.23). Hence, the increase in temperature from 23o C

to 37o C and the small decrease in the shear modulus from 6.3 µN/m to 5.8 µN/m cannot

fully explain an increase of thermal fluctuations as temperature is elevated from 23o C to

37o C. This suggests that there may be additional changes in the membrane properties

(e.g., bending rigidity) or biochemical activities (e.g., metabolic) that influence thermal

undulations when temperature is increased. An effective decrease in the membrane bending
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Figure 3.25: Pf-RBC FWHM of thermal fluctuation distributions for different stages of the
parasite development at the physiological T = 37oC and the febrile T = 41oC temperatures.
Black circles are the median values of FWHM in experiments [158], while other colors
correspond to simulations. Blue circles assume the bending rigidity kc = 2.4 × 10−19J ,
green 4kc/5, red kc/4, and gray kc/2. The corresponding shear moduli are outlined in table
3.4.

rigidity by about 20% as temperature reaches 37o C (shown by the green circles) provides

a good agreement between the simulations and the experiments. This seems to provide a

plausible explanation since several experimental results on lipid vesicles [47, 122] show a

slight decrease in bending rigidity with increasing temperatures. However, as we increase

temperature to the febrile value, discrepancy between simulations (blue) and experiments

(black) for healthy RBCs becomes dramatic. This difference can be reconciled by an effective

bending rigidity to be four times lower (red circles) than kc = 2.4 × 10−19 J at room

temperature. Even though a sudden decrease in bending rigidity may potentially exist, it

is more likely that other effects are involved. Thermal fluctuations may be influenced by

metabolic activity such as the consumption of adenosine triphosphate (ATP) resulting in

the spectrin network remodeling [49] and substantial enhancement of membrane undulations

[88]. It is not clear whether metabolic activity was present in the experiments [158], nor

whether it is actively triggered at the febrile temperature. In contrast, recent experiments

[66] reported no dependence of membrane fluctuations on ATP. Thus, further investigation

is required.

The FWHM values of the Pf-RBCs in figure 3.25 at physiological temperature are lower

in simulations than those in experiments. This indicates a complex dependence of membrane
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thermal fluctuations on the membrane properties and potential metabolic activities. As an

example, healthy and ring-stage RBCs at T = 37o C show comparable FWHM values in

the experiments, while the corresponding shear modulus for the ring-stage is about 2.5

times higher than that of healthy RBCs. A decrease in the membrane bending rigidity is

likely to take place for Pf-RBCs since the malaria parasite exposes intramembrane proteins

that are known to affect membrane properties; however, it offers only partial explanation

for the discrepancies found. Simulation results at the febrile temperature seem to show a

better agreement with experiments for later stages of parasite development. However, we

did not find any consistent trend that would properly correlate the experimental FWHM

values with membrane properties at different stages and temperatures. Shown differences

suggest that more reliable experimental data are needed in order to control a simultaneous

interplay of RBC membrane properties and metabolic activities at different temperatures

and Pf-RBC stages. In addition, local measurements of thermal fluctuations would be

favorable to eliminate the existing anisotropy discussed above.

3.4.2.2 Complex modulus of healthy and Pf-RBCs

Microbeads attached to the cell surface were tracked in the microrheology experiments

[10] resulting in the three-dimensional complex modulus G∗ with components G′ and G′′,

analogously to the two-dimensional version described in section 3.4.1.1. To mimic these

experiments, the attached RBC is surrounded by a fluid of viscosity ηo = 1 × 10−3 Pa · s.
In addition, the RBC is filled with a fluid of the viscosity ηi = 5 × 10−3 Pa · s similar to

the RBC cytosol which is a hemoglobin solution. The viscosity of hemoglobin solutions was

measured in [33] yielding a range of 3 − 10 × 10−3 Pa · s for the physiologically relevant

concentrations of hemoglobin. The membrane viscosity is set to ηm = 0.022 Pa · s. The

mean square displacement (MSD) < ∆r2(t) > of several points on the RBC top is measured.

Theoretical developments in microrheology [99] provide a relation between MSD and G∗ as

follows

G∗(ω) =
kBT

CL(< ∆r2(t∞) > +iω < ∆r2(ω) >)
, (3.38)

where i =
√
−1, < ∆r2(ω) > is the unilateral Fourier transform of < ∆r2(t) > − <

∆r2(t∞) >, C is a constant, and L is a length scale. Note that the corresponding C and

L depend on the physical problem and selected theoretical model. As an example, the



80

MSD of microbeads in a viscoelastic fluid can be well approximated by the generalized

Stokes-Einstein relation, where C = 6π and L is the bead radius. This interpretation was

chosen by Amin et al. [10] for microbeads attached to the RBC surface. However, the

Stokes-Einstein relation cannot be valid in this case since the membrane elastic properties

are not taken into account. Several other models [99] attempt to incorporate effects of the

elastic and bending properties, but there is no agreement whether a particular model yields

quantitatively accurate results for RBC rheology. Therefore, we do not favor any specific

theoretical model and will present our results for G∗(ω) up to a constant. Moreover, relative

trends of the complex modulus with respect to frequency are more informative than the

exact values.

Figure 3.26 shows the spectral density of healthy RBCs (left), and storage G′ and loss

G′′ moduli (right) at room temperature. Theoretical predictions for viscoelastic vesicles
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Figure 3.26: RBC spectral density of healthy RBCs (left) and the components of the complex
modulus G∗ (right) at room temperature obtained from MSD (inset plot). Dash-dotted lines
are drawn to the eye to illustrate the power with respect to frequency. Experimental results
[10] are obtained by dynamical tracking of microbeads attached to the RBC surface.

[99] yield the asymptotic scaling of the spectral density with frequency obtained from MSD,

when the tracked beads are much smaller than the membrane, as follows

Re(< ∆r2(ω) >)) ∼ k−1/3
c ω−5/3, (3.39)

where Re is the real part. Similar exponents were found for actin-coated vesicles in the

experiments [99]. Our simulation results for healthy RBCs show that Re(< ∆r2(ω) >)) ∼
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k−0.26
c which is close to the theoretical prediction of −1/3. This also indicates that the value

of the MSD plateau (shown as inset in figure 3.26 (left)) at long times < ∆r2(t∞) > is pro-

portional to k−0.26
c . Furthermore, the power of the spectral density at high ω is found to be

−1.85 in simulations in agreement with −5/3 in equation (3.39). Figure 3.26 (right) presents

a comparison of experimental and simulation results for the complex modulus of healthy

RBCs. The time scale exponent used here is the same as in the twisting torque cytometry

simulations α = 0.85, while η = ηo + ηi + ηm in equation (3.36). This is consistent with the

exponent of G′′ found to be 0.85. For the calculation of G∗ (eq. (3.38)) we assumed that

C = 3π and L = 0.25 µm in agreement with those used in the experiments [10]. While the

behavior of the loss modulus G′′ with respect to frequency provides a reasonable agreement

between the experimental and simulation data, the behavior of the storage modulus G′ is

clearly different. In simulations G′ shows a plateau at low frequencies indicating that in this

regime the RBC membrane is nearly elastic, which is typical for viscoelastic solid materials

and is consistent with the twisting torque cytometry in section 3.4.1.1. However, G′ found

in the experiments shows a significant decrease at low frequencies typical for viscoelastic

fluids. This disagreement may be well due to differences in measurement techniques since

in simulations we measure three-dimensional RBC-membrane thermal fluctuations directly

at the network surface, while in experiments displacement of the attached microbeads is

tracked. Note that G′(ω) ∼ k0.26
c Y 0.65

0 . The scatter at high frequencies is due to data

underresolution at short times.

Further, MSD measurements are performed for Pf-RBCs at different stages of the para-

site development at room temperature. The shear moduli for various stages are outlined in

table 3.4, while the bending stiffness and the membrane viscosity are set to kc = 2.4×10−19

J and ηm = 0.022 Pa · s, respectively. Figure 3.27 shows components of the complex mod-

ulus for healthy and Pf-RBCs at different stages, T = 23o C. We found a similar increase

in G′ as that in the twisting torque cytometry simulations in section 3.4.1.2 since Pf-RBCs

become stiffer during the consecutive stages of the parasite development. The loss modulus

G′′ remains nearly the same for the progressing stages in agreement with the TTC simula-

tions. Figure 3.28 presents the storage and loss moduli of healthy (left) and Pf-RBCs at the

schizont stage (right) for different temperatures with the corresponding shear moduli given

in table 3.4. Healthy RBCs show a slight decrease in the storage modulus with temperature,

while Pf-RBCs at the schizont stage show an increase in G′ in accordance with the TTC sim-
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Figure 3.27: G′ and G′′ of healthy and Pf-parasitized RBCs at different stages of parasite
development. Thermal fluctuation measurements at T = 23o C.
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Figure 3.28: Components of the complex modulus for healthy (left) and Pf-RBCs at the
schizont stage (right) for different temperatures.

ulations and the employed shear moduli. Agreement between the two-dimensional complex

moduli from the twisting torque cytometry and the three-dimensional one obtained from

measurements of thermal fluctuations indicates equivalence of these different rheological

techniques.

3.4.3 Creep test and cell recovery

A creep test is the standard rheological technique to measure time-dependent deformation of

a material under constant load or stress, while a recovery test provides dynamic relaxation

of a material after deformation. The dynamic stretching and recovery of a whole RBC was
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performed by micropipette aspiration [104] and by optical tweezers [101]. The creep test on a

single RBC was also done locally [167] using OMTC by subjecting an attached ferrimagnetic

microbead to a constant magnetic field. The agreement among these experiments can

be described by capturing the order of magnitude of the characteristic relaxation time.

However, quantitative agreement among different experiments is poor, and the values of

the obtained relaxation times may differ by the factor of 3 − 5.

Several issues may contribute to this poor quantitative agreement such as geometry,

stress and strain magnitudes, and simplified models to extract the parameters of interest.

Whole cell stretching or recovery measures RBC rheological membrane properties on aver-

age since the membrane strains and stresses are not uniform along the cell due to a varying

cell circumference along the stretching axes. In addition, various strain rates may greatly af-

fect quantitative rheological predictions [213]. Moreover, whole cell stretching experiments

subject a RBC to relatively high strains where a nonlinear response may be present, and

hence applied linear rheological models may fail. Hence, local membrane deformation tech-

niques (e.g., OMTC) are more favorable to measure bulk rheological properties of a RBC

membrane since the applied loads are local and have much smaller magnitudes compared to

whole cell deformations. Another complication which often arises in rheology of viscoelastic

materials is that there exists a spectrum of relaxation times where a single relaxation time

may be only relevant in a certain range of experimental conditions. The described difficul-

ties can be successfully resolved in numerical simulations using realistic cell models to aid

in the design and interpretation of experiments.

The numerical setup for the creep test followed by cell recovery is analogous to RBC

stretching in section 3.3 observing a time-dependent RBC deformation. Thus, the total

stretching force f is applied to N− and N+ vertices (figure 3.5) in negative and positive

direction, respectively, while the axial cell diameter is monitored. Internal/external fluid

viscosities are set to ηi = 5 × 10−3 Pa · s and ηo = 1 × 10−3 Pa · s, respectively, while

the membrane viscosity is varied. Our simulations showed that the characteristic time

scale depends on the RBC membrane and fluid properties as Y −0.75
0 and η0.75, where η =

ηo + ηi + ηm. Hence, the time scale exponent in equation (3.36) is set to α = 0.75, which

is consistent with the twisting torque cytometry and membrane thermal fluctuation tests

presented above. The assumption of linear dependence (α = 1) of the time scale with the

membrane properties made in experiments [104] appears to be a rather crude approximation.
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Figure 3.29 (left) shows creep tests of healthy RBCs for different membrane viscosities.

The comparison between the experimental data and simulations suggests that the RBC
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Figure 3.29: The normalized creep compliance (f = 7 pN) for different membrane viscosities
(left) and applied forces (right) with ηm = 0.022 Pa · s. The left figure also shows the creep
test by micropipette aspiration [104] and by OMTC [167].

membrane viscosity lies in the range of 0.02− 0.06 Pa · s. The main difference between the

experiments is that the micropipette aspiration [104] deforms the whole cell with relatively

high strains, while OMTC [167] applies deformations on the membrane locally with small

strains. Figure 3.29 (right) illustrates differences in the creep response for distinct total

applied forces. This demonstrates the complexity of the RBC membrane response which

depends on total strains and strain-rates [213].

To study dynamics of RBC recovery after stretching with force f we introduce the

time-dependent elongational index e(t) analogously to that in [104] as follows

e(t) =
(λ− λ∞)(λ0 + λ∞)

(λ+ λ∞)(λ0 − λ∞)
= exp

[

−
(

t

tc

)δ
]

, (3.40)

where λ = DA/DT , λ0 and λ∞ correspond to the ratios at times t = 0.0 and t = ∞, tc is the

characteristic time, and δ is the exponent (Note that in [104] δ = 1, thus equation (3.40)

is a generalization of the equation (11) in [104]). Similar to the creep test, the time scale

exponent here is set to α = 0.75. Figure 3.30 (left) shows RBC recovery after deformation

by the force of 7 pN , having ηm = 0.022 Pa · s. In case of δ = 1 we observe a rather

poor fit to RBC recovery, while the fit with δ = 0.7 yields excellent agreement with the

recovery dynamics. Figure 3.30 (right) demonstrates sensitivity of the recovery dynamics
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Figure 3.30: RBC recovery after deformation by the force of f = 7 pN for different fits
(left) and after different stretching forces (right).

to the total stretching force (or initial stretch). The response is not sensitive to a small

initial stretch; however, the recovery is very different in case of a high initial stretch, where

non-linear effects may be present. In addition, we note that RBC recovery showed a long

tail decay and it is important to have a long enough sample to correctly measure λ∞, which

may greatly affect the fitting parameters. Thus, the experiments on RBC recovery have to

be observed for at least several seconds, in contrast to the RBC recovery [104] over about

0.5 s.

3.5 Dynamics

RBC dynamics in shear flow was investigated in experiments [197, 79, 80, 4] and in three-

dimensional simulations [53, 159]. The behavior is mainly characterized by two regimes:

tumbling at low shear rates and tank-treading at high shear rates. Several attempts were

made to theoretically describe RBC behavior in shear flow [4, 181] depending on a number

of cell properties (e.g., ellipsoidal geometry, membrane shear modulus, and viscosity) and

flow conditions (e.g., shear rate, and viscosity contrast between external and internal fluids).

We performed a number of simulations to quantify RBC dynamics in shear flow depending

on the conditions mentioned above. A single RBC in Poiseuille flow in tubes having the

diameter 8 − 15 µm shows a transition from the biconcave shape to a parachute-like shape

as the flow rate increases, as found in several experiments [198, 69] and in simulations



86

[150]. The biconcave-to-parachute transition will be characterized for different membrane

properties.

3.5.1 RBC dynamics in shear flow

Experimental observations [197, 79, 80, 4] of a RBC in shear flow show a tumbling-to-

tank-treading transition. This behavior is attributed to the existence of a minimum energy

state of the RBC membrane shown by Fischer [79]. In these experiments a single RBC was

subjected to the tank-treading motion for several hours, and after the flow was stopped the

RBC would relax to its original biconcave shape having exactly the same relative positions

of several attached microbeads as those before shearing. Thus, we need to exceed a certain

energy barrier in order for a RBC to start tank-treading. Theoretical predictions [4, 181]

for this behavior consider a RBC of an ellipsoidal shape tank-treading along the fixed

ellipsoidal path. Here, the RBC dynamics depends on the membrane shear modulus, shear

rate of the flow, and the viscosity contrast defined as λ = (ηi + ηm)/ηo. In case of λ < 3

the theories predict tumbling at low shear rates and tank-treading at high shear rates with

a narrow intermittent region around the tumbling-to-tank-treading transition characterized

by an unstable RBC behavior. Thus, RBC tumbling can be followed by tank-treading and

vice versa. However, in case of λ > 3 there is a well-defined tumbling regime followed

by an intermittent region, while stable tank-treading may not be present. The viscosity

ratio of healthy RBCs in blood is much greater than three. In addition, the tank-treading

state shows a RBC swinging motion around the average tank-treading axes with certain

frequency and amplitude. Further, we use numerical simulations to observe RBC behavior

and deformation in shear flow and to discuss reliability of the theoretical predictions.

A single RBC is placed in linear shear flow between two parallel walls. The viscosity

of the external solvent is set to ηo = 0.005 Pa · s, while that for the internal cytoplasm, if

present, has the same value of ηi = 0.005 Pa · s. When used, the membrane viscosity is

set to ηm = 0.022 Pa · s in consistency with the rheological results in section 3.4. Figure

3.31 shows RBC tumbling and tank-treading frequencies for different simulation setups

versus shear rates in comparison with the experiments [197, 80]. A purely elastic cell

with or without inner solvent (circles and squares) results in a significant overprediction of

the tank-treading frequencies in comparison with the experiments since it does not have

enough viscous dissipation exerted by the internal fluid. In principle, the internal solvent
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Figure 3.31: Tumbling and tank-treading frequency of a RBC in shear flow for different
cases: 1) ηo = 0.005 Pa · s, ηi = ηm = 0 (circles); 2) ηo = ηi = 0.005 Pa · s, ηm = 0
(squares); 3) ηo = ηi = 0.005 Pa · s, ηm = 0.022 Pa · s (triangles).

viscosity can be substantially increased in order to follow the experimental data. However,

the RBC cytoplasm is a hemoglobin solution with a well-determined viscosity of about

0.005 Pa · s [33], and therefore additional viscous dissipation must be in the membrane.

This is supported by the results of the third case (triangles) in figure 3.31 showing a good

agreement with the experimental data. In contrast, the tumbling frequencies appear to

be nearly independent of the involved viscosities since the RBC membrane is subject to

nearly pure rotation. Moreover, presence of the internal fluid and the membrane viscosity

slightly shifts the tumbling-to-tank-treading transition to higher shear rates marked by the

intermittent region. From simulations we estimate the tank-treading energy barrier of a

RBC to be about Ec = 3 to 3.5×10−17 J found as a change in the membrane elastic energy

during the tank-treading motion right after the tumbling-to-tank-treading transition has

occurred. In the theoretical model by Skotheim and Secomb [181] this energy barrier Ec

was set to 10−17 J in order to match the experimental data. In simulations as RBC tank-

treads, the elastic energy difference increases with shear rate within about 20% of the Ec

value indicating an increase in membrane deformations.

Note that in all cases a finite intermittent region in terms of shear rates is observed, but
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it becomes wider in the case of non-zero membrane viscosity. This is consistent with the

experiments but not with the theoretical predictions. Similar results for the intermittent

region were reported in simulations of viscoelastic vesicles by Kessler et al. [111]. This

suggests that theoretical predictions describe RBC dynamics in shear flow qualitatively at

best since they are based on several simplifications such as an ellipsoidal RBC shape and

the fixed (ellipsoidal) RBC tank-treading path. Experiments by Abkarian et al. [4] and our

simulations show that the RBC does not follow a fixed path and deforms along the tank-

treading axis with strains of the order of 0.1 − 0.15. Figure 3.32 (a) and (b) show several

snapshots of tumbling and tank-treading RBC with the bending rigidity kc = 2.4× 10−18 J

which is ten times higher than that often accepted for healthy RBCs. Our simulation results

(a) γ = 8 s -1

γ = 16 s -1

(b) γ = 32 s -1

γ = 190 s -1

Figure 3.32: Snapshots of tumbling RBC (a) and tank-treading RBC (b) for different shear
rates. The following parameters are used in simulations: viscosities ηo = ηi = 0.005 Pa · s,
ηm = 0.022 Pa · s, bending rigidity kc = 2.4× 10−18 J , and the Föppl-von Kármán number
κ = 85. Blue particles are the tracing points.

show that the RBC deformation in shear flow depends on the relative ratio of membrane

elastic and bending properties characterized by the Föppl-von Kármán number defined as
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follows

κ =
Y0R

2
0

kc
, (3.41)

where R0 =
√

πA0/4. Note that the theoretical models do not take into account membrane

bending rigidity. The case in figure 3.32 corresponds to the Föppl-von Kármán number

κ = 85. The tumbling-to-tank-treading transition occurs at shear rates of about 20 −
25 s−1. The results show a negligible deformation during tumbling behavior, and small

shape deformations during tank-treading right after the transition. In contrast, figure 3.33

(a) and (b) present analogous snapshots of a tumbling and tank-treading RBC with the

bending rigidity kc = 2.4 × 10−19 J , and κ = 850. Here, we observe a significant shape

(a) γ = 8 s -1

γ = 16 s-1

(b) γ = 32 s-1

γ = 190 s-1

Figure 3.33: Snapshots of a tumbling RBC (a) and a tank-treading RBC (b) for different
shear rates. The following parameters are used in simulations: viscosities ηo = ηi = 0.005
Pa · s, ηm = 0.022 Pa · s, bending rigidity kc = 2.4 × 10−19 J , and the Föppl-von Kármán
number κ = 850. Blue particles are the tracing points.

deformation during tumbling and tank-treading. However, the corresponding frequencies

are not strongly affected in comparison with the previous case of κ = 85. Further decrease

of the membrane bending rigidity results in membrane buckling. A discrete network cannot
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adequately capture the membrane bending properties on length scales comparable with

the characteristic size of the network elements. To rule out the possible effects of the

membrane discretization we simulated RBCs discretized with Nv = 1000 and 3000 vertices

that showed similar membrane deformations for the analogous Föppl-von Kármán number.

Such findings raise a question about the magnitude of the RBC bending rigidity, which

may be several times larger than the widely accepted value of kc = 2.4 × 10−19 J . Note

that the rheological results in section 3.4.1.1 also support a larger value for the bending

rigidity of healthy RBCs. Moreover, we comment on a potential change in the membrane

shear modulus in the cases of Pf-parasitized RBCs. Increase in µ0 gives a higher Föppl-von

Kármán number, and also would proportionally increase the tank-treading energy barrier

Ec resulting in a shift of the tumbling-to-tank-treading transition to higher shear rates.

From figures 3.32 and 3.33 it can be noticed that the RBC oscillates (swings) around

the tank-treading axes with a certain frequency and amplitude. This behavior was also

observed in experiments [4]. Figure 3.34 shows the average RBC tank-treading angle and

swinging amplitude. The obtained values are consistent with the experimental data. The
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Figure 3.34: Swinging average angle (filled symbols) and amplitude (open symbols) in
degrees for the three cases: 1) ηo = 0.005 Pa · s, ηi = ηm = 0 (circles); 2) ηo = ηi = 0.005
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swinging average angle appears to be larger for a purely elastic membrane without cytosol,

while that with cytosol shows no dependence of the inclination angle on the internal fluid
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and membrane viscosities. Furthermore, the swinging amplitude is not sensitive to fluid

and membrane properties. Note that the swinging frequency is equal to exactly twice that

of the tank-treading frequency.

3.5.2 RBC dynamics in Poiseuille flow

It was found in experiments [198, 69] that RBC dynamics in Poiseuille flow in tubes of

a diameter comparable with the RBC size is characterized by a transition from biconcave

to the parachute-like shape as the flow rate is increased. Figure 3.35 shows the parachute

shape of a RBC simulated in a tube of diameter 9µm. At low pressure gradients the fluid

Figure 3.35: RBC parachute shape in Poiseuille flow in the tube having the diameter of
9µm.

flow is weak and the RBC retains its biconcave shape, while as the pressure gradient is

increased the RBC will transit into a parachute-like shape. The strength of the Poiseuille

flow can be characterized in terms of the mean flow velocity defined as

v̄ =
1

S

∫

v(r)dS, (3.42)

where S is the area of the tube cross-section, and v(r) is the axial flow velocity. Note that

for a Newtonian fluid v̄ = vc/2, where vc is the maximum flow velocity in the center. To

identify the biconcave-to-parachute RBC transition we introduce the gyration tensor given
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as follows

Gmn =
1

Nv

∑

i

(ri
m − rC

m)(ri
n − rC

n ), (3.43)

where ri are the RBC vertex coordinates, rC is the center-of-mass, and m, n can be x, y,

or z. The gyration tensor has three eigen-values which allow us to characterize the RBC

shape. As an example, the gyration tensor for the equilibrium biconcave shape has two

larger eigen-values corresponding to the cell diameter and one smaller corresponding to

the RBC height. Thus, the biconcave-to-parachute transition can be characterized by the

smallest eigen-value becoming larger as the RBC elongates along the flow axes. Figure 3.36

shows a dependence of the shifted eigen-value of the gyration tensor for different bending

rigidities (left) and membrane shear moduli (right). The dashed line marks the biconcave-to-
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Figure 3.36: The shifted eigen-value of the gyration tensor for different bending rigidities
(left) and membrane shear moduli (right). The shift is done by subtracting the eigen-value
of the equilibrium biconcave shape. C = 0.05 is the volume fraction of a single RBC.

parachute transition depending on the mean flow velocity. The transition for healthy RBCs

occurs at a mean flow velocity of about 65 µm/s. Cells having a larger bending rigidity

or membrane shear modulus (Pf-RBCs) show the transition at stronger flows with a nearly

linear dependence of the transition on the bending rigidity kc and the shear modulus µ0.

These results are consistent with the numerical simulations of Noguchi and Gompper [150].

The eigen-values also show that stiffer capsules are subject to a smaller cell elongation along

the flow for the same mean velocity. Therefore, stiffer cells exhibit a higher flow resistance in

comparison with softer ones shown in figure 3.37. The relative apparent viscosity is defined
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Figure 3.37: The relative apparent viscosity for different bending rigidities (left) and mem-
brane shear moduli (right). C = 0.05 is the volume fraction of the single RBC.

as

λapp =
ηapp

ηo
, ηapp =

nfR2
0

8ū
, (3.44)

where n is the particle number density, f is the force exerted on each particle, R0 is the

tube radius, and ū is the mean flow velocity calculated from the simulated velocity profile

according to equation (3.42). Note that nf is equal to the flow pressure drop ∆P/L, where

L is the tube length. Figure 3.37 shows a slight increase of the apparent viscosity for stiffer

cells resulting in an increased flow resistance. The flow resistance increases by only several

percent while the membrane properties are varied up to ten times. Such a small difference in

the apparent viscosity is attributed to a very low cell concentration with the volume fraction

of C = 0.05. For higher RBC volume fractions the apparent viscosity is more sensitive to a

change in the RBC membrane properties.

3.6 Summary

We presented mesoscopic modeling of RBCs using the DPD method. In analogy with the

spectrin network of real RBCs the membrane is represented as a network of interconnected

viscoelastic springs supplying elastic and viscous membrane properties. The network takes

into account the membrane bending resistance found for the lipid bilayer. Furthermore, it

incorporates local and global area constraints providing membrane area-incompressibility,

and volume constraint mimicking the incompressibility of the internal cytosol. The model is
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validated through a number of tests including membrane mechanics, rheology, and dynamics

in shear and Poiseuille flows, and is used to represent healthy and Pf-parasitized RBCs.

The macroscopic properties of a membrane can be uniquely related to the network

parameters using the derived analytical relations. This completely eliminates an adjust-

ment of the model parameters. We also proposed a stress-free RBC model which leads to

triangulation-independent membrane properties, while the other RBC models suffer from

stress anomalies, which result in a triangulation-dependent deformation response and an

anisotropic equilibrium shape. Mechanical properties of modeled healthy and Pf-RBCs are

compared with the optical tweezers experiments yielding excellent agreement for different

levels of coarse-graining starting from spectrin-level modeling (Nv = 27344 vertices) and

ending with only Nv = 100 vertices for full membrane representation. However, we suggest

that the minimum number of vertices to be used for the RBC membrane should be about

Nv = 250 − 300 as the lower Nv may not accurately represent the RBC’s smooth shape,

which is of importance for RBC dynamics.

Here, we summarize the procedure for the RBC model. First, we obtain a triangulation

of the equilibrium RBC shape defined by equation (3.29) for the given number of vertices

Nv. This triangulation sets the required equilibrium lengths for the springs, triangle areas

and the total RBC area and volume. Second, the modeled membrane shear modulus µ0,

area and volume constraint coefficients (eq. (3.7)) are chosen. This defines our RBC

model parameters using equations (3.10, 3.13, 3.14 and 3.21). In addition, we need to set

the membrane viscosity using equation (3.27). The length, energy unit, and time scales

are then defined based on equations (3.33, 3.34, and 3.36). Here, we suggest the RBC

diameter to be obtained through an equilibrium simulation rather than assuming it from

the analytical RBC shape (eq. (3.29)) as they may be slightly different depending on the

relative contributions of in-plane elasticity and membrane bending rigidity. After these two

simple steps, the linear elastic properties of the model will match those of the real RBC.

In addition, we mention that for large RBC deformations we may need to adjust the spring

maximum-extension length which governs the non-linear RBC response. However, it is

convenient to set the ratio x0 = l0/lmax = 2.2 for the WLC springs and x0 = 2.05 for the

FENE springs. We emphasize that our procedure does not involve parameter adjustments

through numerical testing.

The RBC rheology was first probed by TTC showing a good agreement with the ex-
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periments for healthy RBCs having the membrane viscosity ηm = 0.022 Pa · s at room

temperature. The TTC results for healthy and Pf-RBCs at different temperatures showed

rather qualitative agreement with the experiments since dependence of the membrane bend-

ing rigidity and viscosity for different stages of the parasite development on temperature are

not known. The second rheological test monitored membrane thermal fluctuations. Calcu-

lated fluctuation distributions of healthy and Pf-RBCs show only partial agreement with

those obtained in the experiments due to many uncertainties in the membrane properties

and potential presence of metabolic activities. Complex moduli for healthy and Pf-RBCs at

different temperatures derived from the mean square displacement of several points on the

fluctuating membrane show consistent results with those obtained in TTC simulations. The

third test followed time-dependent whole cell stretching and relaxation. We found that these

tests result in a complex behavior due to the non-uniform cell strains and a dependence of

the cell response on the applied stresses. In particular, such tests cannot accurately provide

meaningful membrane characteristic relaxation time attempted in a number of experiments.

In addition, the experiments attempt to fit linear relaxation models which appear to be a

crude approximation while the power-law model is preferred. The comparison of the sim-

ulation results with the cell response obtained in experiments yields a membrane viscosity

between 20 and 60 times that of water. The two former rheological measurements probed

local membrane properties, and hence they are more reliable in comparison to the latter one.

In addition, the two former tests raised a question about the magnitude of the membrane

bending-rigidity and viscosity, where more accurate quantitative experimental predictions

would be desired.

RBC dynamics was simulated in shear and Poiseuille flows. In shear flow a RBC shows

two basic behaviors: tumbling at low-shear rates and tank-treading at high-shear rates. In

addition, there exists a narrow intermittent region where RBC behaviors can interchange.

Our model is able to quantitatively capture RBC dynamics in shear flow. However, the com-

parison of the simulation results with existing theoretical predictions revealed that theories

can predict RBC behavior in shear flow qualitatively at best since they are based on a num-

ber of simplifications. The theories assume ellipsoidal RBC shape and RBC tank-treading

along the fixed ellipsoidal path, while simulations show appreciable RBC deformations in

the flow. Furthermore, bending rigidity is not taken into account in theoretical predictions,

while RBCs in simulations may show strong membrane deformations within a shear-rate
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range around the tumbling-to-tank-treading transition. The RBC deformations depend on

the relative membrane elastic properties and bending rigidity, and suggest that the RBC

bending rigidity may be several times larger than kc = 2.4 × 10−19 J . Experimental data

on RBC deformations around the tumbling-to-tank-treading transition are not available,

but would provide potential confirmation of complex deformations observed in simulations.

RBC dynamics in Poiseuille flow in a tube of 9 µm diameter showed a RBC transition to

parachute-like shape occurring at a mean flow velocity of about 65 µm/s. This transition

occurs at a larger mean flow velocity for stiffer cells having a higher bending rigidity or

shear modulus. An order of magnitude increase in cell stiffness results in only several per-

cent increase of the flow resistance in case of low RBC volume fractions (C = 0.05). The

cell stiffness is expected to have a much more drastic effect for high volume fractions of

RBCs.

Most of the current RBC models assume a purely elastic membrane, and therefore they

are able to capture only its mechanical response. Our simulations show that the membrane

viscosity has to be considered in order to correctly capture single RBC rheology and dynam-

ics. The presented model is general enough and can be used in many simulation methods,

such as Lattice Boltzmann, Brownian dynamics, immerse boundary method, multiparticle

collision dynamics, etc. In addition, this model can be employed in simulations of RBCs in

disease such as malaria and sickle cell anemia.



Chapter 4

Blood flow in health and malaria

disease

4.1 Introduction

Blood is a physiological fluid that consists of erythrocytes or red blood cells (RBCs), leuko-

cytes or white blood cells (WBCs), platelets, and various molecules suspended in plasma.

Its main functions are the transport of oxygen and nutrients to cells of the body, removal

of waste products such as carbon dioxide and urea, and circulation of molecules and cells

which mediate the organism’s defense and immune response and play a fundamental role in

the tissue repair process. RBCs constitute approximately 45% of the total blood volume,

WBCs around 0.7%, and the rest is taken up by blood plasma and its substances. Under

healthy conditions RBCs have a biconcave shape of approximately 8 µm in diameter and

are highly deformable, which allows them to pass through narrow capillaries with a diam-

eter several times smaller than the RBC size. Due to a high volume fraction of RBCs, the

rheological properties of blood are mainly determined by RBC properties.

In vitro experiments [68, 169, 165] of blood flow in glass tubes with diameters ranging

from 3 − 4 µm to 1000 µm have found a dependence of the apparent blood viscosity on

the tube diameter, RBC volume fraction or hematocrit (Ht), cell aggregability, and flow

rate. In tubes with diameters larger than 500 − 600 µm blood can be assumed to be a

nearly Newtonian fluid with a constant effective viscosity, while in smaller tubes it shows

complex rheological behavior. The apparent blood viscosity reaches its minimum at the

97
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tube diameter of about 7 µm and shows a significant increase with respect to this minimum

as the tube diameter decreases or increases. An increase of the apparent viscosity with

increasing tube diameter is known as the Fahraeus-Lindquist effect [68]. This effect is

attributed to a cross-stream migration of RBCs in tube flow leading to the formation of two

phases [86, 32]: a flow core consisting mainly of RBCs and a cell-free layer (CFL) next to

the tube wall devoid of cells. The CFL has a lower viscosity in comparison with the RBC

core and serves as a lubrication layer reducing the effective blood viscosity [32].

The cross-stream migration of RBCs in tube flow is governed by cell-wall hydrodynamic

interactions which drive the cells away from the wall and by cell-cell hydrodynamic inter-

actions which tend to disperse RBCs [85]. The CFL formed by cell migration depends on

the tube diameter, Ht value, and the flow rate, and is correlated with the apparent blood

viscosity such that increasing CFL thickness reduces the apparent viscosity of blood.

In vivo experiments [164, 131, 115] of blood perfused through microvessels showed the

Fahraeus-Lindquist effect mediated by a CFL formed next to the vessel walls. However,

blood flow resistance in real microvessels is markedly higher than that in the microtubes

[166, 206]. Microvessels in comparison with glass tubes are elastic, lined with endothelium,

relatively short, and may be irregular in shape. These differences are likely to attenuate RBC

migration resulting in a decreased CFL and an increased effective viscosity. In addition,

irregularities at the vessel walls (e.g., geometry, glycocalyx layer) may contribute to spatial

variations of the CFL which tend to diminish the effect of the CFL on the apparent blood

viscosity [179].

Computational modeling of blood flow in microtubes or microvessels is challenging since

a continuum description is not adequate and the motion of individual deformable cells have

to be simulated explicitly. Several computational approaches to model blood flow as a

suspension of cells have recently been developed. These include two-dimensional models

[188, 15] and three-dimensional simulations [129, 54, 137]. Even though two-dimensional

models may qualitatively capture the behavior of a RBC suspension, their quantitative pre-

dictions have to be considered cautiously, since RBC motion and deformation in a flow are

inherently three-dimensional. Three-dimensional modeling of a RBC suspension is limited

due to computational expense such that the number of cells modeled in [129, 137] was on

the order of O(10). Dupin et al. [54] were able to simulate blood flow in microchannels

with a characteristic size up to 30 µm employing O(102) RBCs.
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We have developed an efficient parallel code which employs the multiscale RBC model

described in chapter 3. This code allows us to simulate the total number of RBCs on

the order of O(104). Blood flow in tubes with diameters ranging from 10 µm to 40 µm

is simulated for different Ht values. Flow velocity profiles, the Fahraeus-Lindquist effect,

and the corresponding CFLs will be examined and compared with available experiments. In

addition, the flow of a RBC suspension is simulated through a constriction of a microchannel

with the characteristic size of 100 µm following the experiments by Faivre et al. [70].

In the experiments it was found that the CFL downstream is significantly enhanced in

comparison with that upstream due to a “focusing” effect achieved through migration of

cells to the channel center within the constriction. This effect will be examined for different

constriction widths and lengths, viscosities of the suspending fluid, Ht values, and rigidities

of the cell membrane, and will be compared with experiments. Finally, to demonstrate

parallel efficiency of the developed code a flow in a microchannel 1 mm long and 100 µm

wide is simulated with 5000 RBCs.

Blood flow may be significantly affected by altered RBC properties occurring in malaria

disease. In malaria, RBCs become hosts of Plasmodium parasites which change the cell

properties. Pf-parasitized RBCs lose their deformability [190, 158] due to membrane stiff-

ening up to ten times higher than that of healthy cells. This can lead to capillary occlusions

[38, 180]. Moreover, at the final stage of intra-erythrocytic parasite development (schizont)

the formed parasitic vacuoles force the RBC to attain a near-spherical shape further im-

pairing its ability to deform. An additional change in the RBC properties, which may dra-

matically alter blood flow, is cytoadherence of Pf-parasitized RBC to vascular endothelium

and to other RBCs at later stages [23, 140, 51]. This appears to be a survival mechanism

for the parasite, which otherwise may be destroyed while passing through the spleen [60].

Recent in vitro experiments [35, 212, 11] have examined adhesive dynamics of infected

RBCs in microfluidic flow channels. In these experiments the channel walls were coated with

purified protein ligands participating in cytoadherence (e.g., ICAM-1) or with mammalian

CHO cells expressing such ligands. Adhesion dynamics of Pf-parasitized RBC on purified

ICAM-1 showed rolling or “flipping” behavior in a wide range of shear rates without a

detachment or an arrest of RBCs. In contrast to ICAM-1, adhesive dynamics on a surface

coated with mammalian CHO cells showed that the majority of RBCs were firmly attached

with infrequent complete detachment. This difference in behavior is not entirely understood.
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It is believed that the stable binding of RBCs on mammalian CHO cells is not mediated

by any unknown expressed proteins [11] and the difference is attributed to the flow micro-

environment. Thus, numerical simulations of the RBC adhesive dynamics may be able to

aid in understanding this issue.

The developed blood flow model is used for simulations of blood flow through microtubes

in malaria. The increased flow resistance in malaria due to an increase in the RBC stiffness

is quantified for a wide range of parasitemia levels. An adhesive dynamics model similar

to that developed by Hammer and Apte [96] is implemented to simulate the adhesion of

leukocytes and Pf-parasitized RBCs in various flows. The simulations of leukocyte adhesive

dynamics serve as the model validation, since it has been extensively studied in experiments

[9, 8, 90] and in simulations [96, 113, 119]. The adhesive behavior of Pf-parasitized RBCs

is studied for a range of model parameters since, to the best of our knowledge, no data of

specific bond properties are available. The “flipping” behavior of infected RBCs appears to

be due to increased cell stiffness and the presence of a “rigid” parasite inside of the cells,

whereas healthy RBCs under similar modeled adhesion conditions yield crawling dynamics.

A comparison with the experiments [11] will be made where it is possible, and physical

insights will be provided.

The chapter is organized as follows. Section 4.2 presents results on blood flow modeling

in microtubes. Flow resistance and the corresponding CFLs are examined for healthy blood

conditions and in malaria. Section 4.3 contains blood flow results in a microfluidic channel

with a constriction. In section 4.4 the adhesive dynamics model is described and is used to

simulate interactions of leukocytes and Pf-parasitized RBCs with an adhesive surface. A

brief summary in section 4.5 concludes this chapter.

4.2 Blood flow

This section presents results on modeling of blood flow in microtubes in health and malaria

disease. Blood is modeled as a suspension of RBCs using the WLC-POW model described

in chapter 3. Blood flow is simulated in tubes of diameters ranging from 10 µm to 40 µm.

Properties of the modeled cell suspensions flowing through tubes and corresponding cell-

free layers are evaluated for different flow rates and tube hematocrit values. In addition, we

simulate blood flow in malaria, where the cell suspension consists of a mixture of healthy
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and Pf-parasitized RBCs.

4.2.1 Modeling parameters

Blood is simulated with a number of RBCs suspended in a solvent. Here, a single fluid for

both external and internal solvents was used, so that particle reflections at the membrane

surface were omitted. Turning off reflections of solvent particles at the RBC membranes

results in a reduction of the computational cost by two to three times as estimated from

previous simulations. To approximate membrane impenetrability by solvent particles the

DPD repulsive force (see section 2.2.2) between them and the membrane vertices of RBCs

was employed. This does not fully guarantee separation of the internal and external fluids

by the RBC membrane, but it nearly eliminates membrane crossing by solvent particles.

To identify an effect of such a simplification we have run several simulations of blood flow

in small tubes (D = 10 µm) with the separation of the internal and the external fluids

(through reflections), and no significant differences in the simulated blood properties with

those obtained using the simplified model were found.

Suspended RBCs assumed the shear modulus µ0 = 6.3 µN/m, the bending rigidity

2.4×10−19 J , and the membrane viscosity ηm = 0.022 Pa ·s. We employed the WLC-POW

model with the following parameters: µM
0 = 100, x0 = 2.2, ka = 4900, kd = 100, and

kv = 5000 (see section 3.2 for details). The DPD interactions among different particle types

(solvent (S) and wall (W) particles, RBC vertices (V)) are outlined in table 4.1. Random

interaction a γ rc k(eq.(2.11))

S-S and S-W 4.0 30.0 1.5 0.25

S-V, W-V 2.0 45.0 1.5 0.25

V-V 100.0 30.0 0.5 0.25

Table 4.1: DPD simulation parameters in blood flow simulations.

force coefficients for different interactions were obtained from equation (2.10) using the

energy unit kBT = 0.0945 calculated according to the energy scale in equation (3.34). The

number densities of both solvent and wall were set to nS = nW = 3. The RBC volume

was assumed to be slightly larger than that of the triangulated network (V0 = 92.45), since

there exist repulsive interactions between solvent particles and RBC vertices resulting in a
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thin solvent-free layer next to the RBC membrane. The effective RBC volume was obtained

from an analysis of the three-dimensional solvent distribution next to the membrane in an

equilibrium simulation, and was set to V ′ = 105. Thus, the cell volume fraction or tube

hematocrit was calculated as follows

Ht =
NcV

′

Vt
, (4.1)

where Nc is the number of RBCs in the volume Vt = πR2L, R is the tube radius and L is

the tube length.

Two types of excluded volume (EV) interactions among cells were considered. The

first case is shown in table 4.1, where the repulsive force coefficient between membrane

vertices aV −V is set to 100. This method introduces a non-zero screening length between

two membrane surfaces governed by the cutoff radius of the repulsive interactions rc = 0.5.

Hence, the choice of a smaller cutoff radius may result in overlapping of cells, while a larger

one would increase the screening distance between cells which may be unphysical and may

strongly affect simulation results at high volume fractions of RBCs. The second method to

enforce EV interactions among cells employed reflections of RBC vertices on the membrane

surfaces of other cells. The repulsive force coefficient in this case was set to aV −V = 2

yielding the screening length between two RBC surfaces to be virtually zero. These two

methods of EV interactions will be called “repulsion” and “reflection”, respectively. In

addition, several simulations employed a net repulsion of RBCs from the wall by setting the

repulsive force coefficient between the wall particles and the cell vertices to aW−V = 30.

They employ “reflection” EV interactions and will be denoted as “wall force” further in text.

This was done to minimize the effect of near wall density fluctuations of the suspending fluid,

which influences simulation results of blood flow in small tubes (D = 10 µm). Performance

of the described methods is discussed below.

4.2.2 Blood velocity profiles

RBCs in Poiseuille flow migrate to the tube center forming a core in the flow. Figure 4.1

shows a sample snapshot of RCBs flowing in a tube of a diameter D = 20 µm. A RBC core

formation is clearly observed with a thin plasma layer (not shown) next to the tube walls

called the cell-free layer (CFL). The cell core of the flow results in plug-like velocity profiles
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Figure 4.1: A snapshot of RCBs in Poiseuille flow in a tube of a diameter D = 20 µm.
Ht = 0.45.

shown in figure 4.2 for tubes of diameters D = 10 µm (left) and D = 40 µm (right) for

different Ht values. Velocity profiles and subsequent number density distributions are shown
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Figure 4.2: Typical velocity profiles of blood flow in tubes of diameters D = 10 µm (left)
and D = 40 µm (right) for different Ht values employing “repulsion” EV interactions.
Dashed lines show the corresponding parabolic profiles of the Newtonian plasma with no
cells present for the same pressure gradients. Dotted lines indicate the corresponding CFL
thicknesses.

over the half tube because of flow axisymmetry. Dashed lines in figure 4.2 correspond to

the parabolic profiles of the Newtonian plasma in absence of the cells for the same pressure

gradients ∆P/L, where ∆P is the pressure drop over the tube length L. Velocity profiles are

plotted in physical units, where the time scale was defined in equation (3.36) with α = 1.0

and η = 0.0012 Pa · s is the plasma viscosity. Velocity curves are averaged over the tube
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cross-section and over 2×105 time steps which corresponds to the total time of 0.1 seconds.

Pressure gradients employed here are 2.633 × 105 Pa/m and 6.582 × 104 Pa/m for tubes

of diameters 10 µm and 40 µm, respectively. In the case of low Ht (e.g., 0.15) the velocity

profiles closely follow parabolic curves in the near-wall region. In the central region of the

tube a substantial reduction in velocity is found for all volume fractions in comparison with

the parabolic profiles indicating a decrease in the flow rate given by

Q =

∫

A
v(r)dA, (4.2)

where A is the cross-sectional area. As the volume fraction of RBCs is increased the flow

rate decreases for the same pressure gradient. For small tube diameters (e.g., D = 10 µm)

we observe plug-flow profiles with a nearly flat velocity in the center, while for larger tubes

the velocity profiles only slightly resemble plug-flow. Moreover, flat velocity profiles are

extended to the tube walls for larger Ht values indicating a wider RBC core and smaller

CFL. Table 4.2 presents blood flow characteristics for different tube diameters andHt values.

The table includes mean flow velocities defined as v̄ = Q/A, mean shear rates ¯̇γ = v̄/D,

Ht D (µm) v̄ (mm/s) ¯̇γ (s−1) ∆P/L (Pa/m) vc (mm/s) vp (mm/s)

0.15 10 0.61 61.22 2.633 × 105 0.94 1.37

0.3 10 0.47 47.03 2.633 × 105 0.7 1.37

0.45 10 0.286 28.6 2.633 × 105 0.4 1.37

0.15 20 1.172 58.6 1.316 × 105 1.87 2.74

0.3 20 0.933 46.64 1.316 × 105 1.44 2.74

0.45 20 0.566 28.32 1.316 × 105 0.87 2.74

0.15 40 2.23 55.74 6.582 × 104 3.75 5.48

0.3 40 1.66 41.55 6.582 × 104 2.63 5.48

0.45 40 1.11 27.65 6.582 × 104 1.81 5.48

Table 4.2: Blood flow characteristics for different tube diameters and Ht values employing
“repulsion” EV interactions.

pressure gradients ∆P/L, centerline flow velocities vc, and the corresponding centerline
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velocities vp of the Newtonian plasma in absence of the cells. The mean flow velocities

increase for tubes having larger diameters with comparable shear rates.

4.2.3 RBC and plasma distributions

Figure 4.3 shows center-of-mass distributions of RBCs in tubes of D = 10 µm (left) and

D = 40 µm (right) for different cell volume fractions. The center-of-mass distributions
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Figure 4.3: Center-of-mass distributions of RBCs in tubes of D = 10 µm (left) and D = 40
µm (right) for different Ht values with “repulsion” EV interactions. Dotted lines denote
the corresponding CFL thicknesses.

for lower Ht values appear to be more confined around the tube centerline. This results

in a larger cell-free layer that can be roughly estimated as R − rc=0, where rc=0 is the

radius at which the probability of finding RBCs becomes zero. Even though the RBC

distributions are directly correlated with the width of the RBC core in Poiseuille flow,

they do not precisely define a boundary between the CFL and the RBC core, since they

correspond to measurements of cell centers. In section 4.2.6 this boundary is defined based

on instantaneous measurements of the edge of the cell core with respect to the centerline.

Note that for the case of D = 40 µm the probability of finding a cell at r = 0 is very close

to zero, which appears to be due to limited statistics in simulations since no cell centers

may be located in the small neighborhood of r = 0 during the sampling time.

To quantify RBC deformations along the flow direction (x) we introduce the x compo-
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nent of the cell radius of gyration Rx
g (r) given by

Rx
g (r) =

〈

1

Nv

Nv
∑

i=1

(xi − xcm(r))2

〉

, (4.3)

where Nv is the number of cell vertices, 〈∗〉 denotes time averaging, xi are the x coordinates

of RBC vertices, and xcm(r) is the cell center-of-mass at r. Figure 4.4 presents Rx
g (r)

normalized by its equilibrium value Rx
g (eq) in tubes of diameters 10 µm (left) and 40

µm (right) for different Ht. Rx
g (eq) is calculated according to equation 4.3 for the RBC
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Figure 4.4: The x component of the RBC radius of gyration in tubes of D = 10 µm (left)
and D = 40 µm (right) for different cell volume fractions using “repulsion” EV interactions.
Dotted lines show the corresponding CFL thicknesses.

biconcave shape in equilibrium. The curves in figure 4.4 do not extend completely to the

wall (r = D/2) since there are no cells in the CFL. The ratio Rx
g (r)/Rx

g (eq) is larger in the

near-wall region than in the tube center indicating stronger deformations of cells next to the

wall due to larger shear rates. Moreover, the ratio in figure 4.4 appears to be independent

of the Ht value.

Figure 4.5 presents the number densities of blood plasma normalized by their average

values in tubes of diameters 10 µm (left) and 40 µm (right) for different Ht values. The

average number density of blood plasma is given by navg
s = Ns/Vt, where Ns is the total

number of solvent particles in the volume Vt. The plotted number density profiles show

higher density values near the tube walls indicating the presence of CFL. In addition,

density fluctuations are found next to the tube walls becoming more pronounced at high Ht
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Figure 4.5: Number density profiles of the suspending solvent normalized by their average
in tubes of diameters 10 µm (left) and 40 µm (right) for different RBC volume fractions
using “repulsion” EV interactions. Dotted lines denote the corresponding CFL thicknesses.

values and small tube diameters. The effect of the existing near-wall density fluctuations

will be discussed below.

4.2.4 Fahraeus effect

The Fahraeus effect was discovered in in vitro experiments of blood flow in glass tubes [67],

which showed an increased value of discharge hematocrit (Hd) measured at the tube exit

in comparison with that of the cell suspension before the tube entrance. Hd is defined as

the volume fraction of RBCs exiting a tube per unit time. This effect is directly correlated

with cell migration to the tube centerline. Hence, the RBC core is moving faster than the

average blood velocity resulting in an increased Hd value measured at the tube discharge.

We define Hd in simulations as follows

Hd =
v̄c

v̄
Ht, (4.4)

where v̄ = Q/A and v̄c is the average cell velocity calculated by averaging over velocities of

all cell vertices and also averaged in time after the stationary state is reached. Pries et al.

[165] have compiled a number of experiments on blood flow through glass tubes of different
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diameters at various Ht values to obtain an empirical relation between Ht and Hd given by

Ht

Hd
= Hd + (1 −Hd)

(

1 + 1.7e−0.35D − 0.6e−0.01D
)

, (4.5)

where the tube diameter D is in µm. Figure 4.6 compares Hd values in simulations with

those from equation (4.5) for different tube diameters and cell volume fractions. The left
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Figure 4.6: Discharge hematocrits for various RBC volume fractions and tube diameters in
comparison with the approximation in equation (4.5). “Repulsion” (left) and “reflection”
(right) EV interactions are employed.

figure corresponds to the “repulsion” EV interactions among the cells with the parameters

in table 4.1 that result in a small screening distance between two RBC membrane surfaces

discussed in section 4.2.1. The right plot contains simulation results obtained with “re-

flection” EV interactions yielding essentially no screening length among RBCs. Agreement

between simulations and empirical values from equation (4.5) is excellent for low Ht values,

while discrepancies are found for large Ht and small tube diameters (D = 10 µm). EV

interactions appear to be of importance at Ht = 0.45 since the cells are closely packed.

The introduced screening length among the cells with “repulsion” EV interactions results

in a wider RBC core compared with that using “reflection” EV interactions. This yields a

smaller CFL and flow rate (shown in the next section) and consequently a smaller Hd value

as seen in figure 4.6.

The remaining discrepancies for small tube diameters are due to solvent density fluctua-

tions next to the wall as shown in figure 4.5. Figure 4.7 presents Hd values from simulations

using the “wall force” method (see section 4.2.1). Additional wall repulsion of RBCs re-
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Figure 4.7: Hd for different RBC volume fractions and tube diameters obtained by the “wall
force” method that utilize a net repulsion of cells from the wall.

duces the effect of near-wall density fluctuations of blood plasma in tubes of small diameters

yielding good agreement of the simulated Hd values with those in in vitro experiments. Note

that the repulsive wall does not affect the simulation results for low Ht values and large tube

diameters since the CFL is wider than the distance of the effective cell-wall interactions.

In conclusion, the “wall force” method yields superior results for Hd in comparison

with the other two considered approaches. The “repulsion” method for EV interactions

introduces a non-zero screening distance among RBCs, which may be unphysical. Cell-cell

hydrodynamic interactions mediated by the simulated blood plasma are likely to be affected

by this screening layer among the cells. The “reflection” approach eliminates the effect of

the artificial screening layer to yield better results compared with the “repulsion” method.

However, both methods “repulsion” and “reflection” do not apply any treatments of the

existing solvent density fluctuations near the walls. The “wall force” method extends the

“reflection” approach to minimize the effect of density fluctuations. It proves to be the best

approach and therefore, it is recommended for future runs.



110

4.2.5 Fahraeus-Lindquist effect

The Fahraeus-Lindquist effect [68] corresponds to a decrease in the apparent blood viscosity

with decreasing tube diameter found in experiments of blood flow in glass tubes [165]. The

apparent viscosity is defined as follows

ηapp =
π∆PD4

128QL
=

∆PD2

32v̄L
. (4.6)

The apparent viscosity increases for higher Ht values since higher cell crowding yields larger

flow resistance. It is more convenient to consider the relative apparent viscosity defined as

ηrel =
ηapp

ηs
, (4.7)

where ηs is the solvent viscosity. Figure 4.8 shows the simulated ηrel values in comparison

with the empirical fit to experiments [165] for the tube diameter range 10 − 40 µm and

Ht values in the range 0.15 − 0.45. Simulations in the left figure employed “repulsion” EV
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Figure 4.8: Relative apparent viscosity obtained with “repulsion” (left) and “reflection”
(right) EV interactions in comparison with experimental data [165] for various Ht values
and tube diameters.

interactions. They significantly overpredict the relative apparent viscosity for Ht = 0.45

and tube diameters of 10−20 µm. The “reflection” EV interactions in the right figure yield

better correspondence between the simulated viscosities and those from the experiments

since a non-zero screening length among the cells is not implied a priori. These results are

consistent with the Hd values discussed in the previous section. In addition, the remaining
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discrepancies in ηrel for Ht = 0.45 are due the near-wall density fluctuations (figure 4.5)

of the suspending plasma mentioned in section 4.2.4. To minimize influence of the solvent

fluctuations an analogous set of simulations was performed with the “wall force” method

shown in figure 4.9. Excellent agreement between simulations and experiments was found
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Figure 4.9: Relative apparent viscosity obtained with the “wall force” setup in comparison
with experimental data [165] for different Ht values and tube diameters.

for this case. The “wall force” method appears to be the best among three considered

approaches, which is consistent with the Hd values discussed in section 4.2.4 and with the

corresponding CFLs presented next.

4.2.6 Cell-free layer

The CFL is a near-wall layer of blood plasma absent of RBCs (see figure 4.1) since they

are subject to migration to the tube center in Poiseuille flow. The fluid viscosity of the

CFL region is much smaller than that of the tube core populated with RBCs providing an

effective lubrication for the core to flow. The thickness of the CFL is directly related to

the Fahraeus and the Fahraeus-Lindquist effects. Thus, in small tubes the CFL thickness

is significant with respect to the tube diameter resulting in a smaller relative apparent

viscosity and larger Hd in comparison with those in larger tubes, where the CFL thickness

becomes negligible with respect to the tube diameter.
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To determine the CFL thickness δ we measured the outer edge of the RBC core (see

figure 4.1) which is similar to CFL measurements in experiments [131, 115]. Figure 4.10

shows a sample CFL edge (left) from simulations and CFL thickness distribution (right)

for Ht = 0.45 and D = 20 µm. The cell edge was measured by projecting cell vertices
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Figure 4.10: An example of a CFL edge (left) and CFL thickness distribution (right) for
Ht = 0.45 and D = 20 µm.

of a snapshot of RBCs on the x − y plane, where curves of the RBC core minimum and

maximum were fitted. Discrete samples of δ from the obtained curves were taken every 0.5

µm in x. In addition, several cell edge curves were extracted from a single snapshot by

rotating the RBC core before projection on the x−y plane, and a number of core snapshots

corresponding to different times was averaged. A steep beginning of the CFL thickness

distribution in figure 4.10 (right) characterizes the global minimum of the RBC core, while

the slowly decaying tail corresponds to a number of cavities in the RBC core formed by two

or more adjacent RBCs and shown in figure 4.10 (left). To characterize variations in CFL

thickness the standard deviation (SD) σδ was calculated. Also, the persistence of spatial

variation was obtained by calculation of the correlation length of the cell edge pattern given

by

C(d) =
〈

(δ(x) − δ̄)(δ(x+ d) − δ̄)
〉

, (4.8)

where C(d) is the covariance of (δ(x)− δ̄) and (δ(x+ d)− δ̄), δ̄ is the average CFL, and d is

the separation length. The covariance decreases to zero with increasing d, and if C(d′) ≈ 0,

then d′ is the correlation length of the cell edge pattern. Table 4.3 presents the simulated
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correlation lengths for different Ht values and tube diameters. The correlation length of

Ht = 0.15 Ht = 0.3 Ht = 0.45

D = 10 µm 8.3 18.5 27.1

D = 20 µm 8.5 18.3 27.8

D = 40 µm 8.0 18.7 27.3

Table 4.3: Correlation lengths of the cell edge pattern for different tube diameters and Ht

values.

the cell edge pattern increases for larger Ht since the cell core is denser. Note that in case

of Ht = 0.15 the correlation length is comparable with the cell diameter indicating small

correlations among separate cells. The lengths d′ appear to be independent of the tube

diameter which is in agreement with in vivo experiments [115] for the vessel diameter range

of 20 − 50 µm. Furthermore, d′ values found in [115] for Ht = 0.42 are in the range of

25 − 35 µm, which is consistent with the simulated values of 27 − 28 µm for Ht = 0.45 in

table 4.3.

Figure 4.11 shows CFLs for different tube diameters and cell volume fractions obtained

using the “repulsion” and “reflection” EV interactions (left) and the “wall force” method

in comparison with in vitro experiments [169] and in vivo experiments [131, 115] (right).

Simulated CFLs are consistent with the described Fahraeus and Fahraeus-Lindquist effects.
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Figure 4.11: CFLs obtained in blood flow simulations employing the “repulsion” and “re-
flection” EV interactions (left) and the “wall force” setup in comparison with experimental
data [169, 131, 115] (right) for various Ht values and tube diameters.
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CFLs are wider for lower Ht values and larger tube diameters indicating migration of RBCs

to the tube centerline. CFL thicknesses for different EV interactions in figure 4.11 (left)

seem to have insignificant discrepancies. This appears to be true for larger tube diameters

and lower cell volume fractions in agreement with the analogous independence of the relative

apparent viscosity of a RBC suspension on EV interactions found in section 4.2.5. However,

in case of small tube diameters and high Ht values even a small change in the CFL thickness

may result in a considerable increase of the relative apparent viscosity. As an example, for

the case of D = 10 µm and Ht = 0.45 the CFLs are 1.19 µm, 1.3 µm, and 1.45 µm for

the “repulsion”, “reflection” EV interactions, and the “wall force” method, respectively,

while the corresponding ηrel values are 2.4, 2.002, and 1.6 (figures 4.8 and 4.9) showing a

significant decrease.

A comparison of the simulated CFLs and those obtained in experiments in figure 4.11

(right) shows partial agreement. Note that our simulations mimic blood flow in rigid and

long tubes. Thus, the CFL measurements are carried out after the stationary state is reached

and cell migration can be neglected. Bugliarello and Sevilla [25] performed experiments of

blood flow in glass tubes at various Ht values shown by the “x” symbols in figure 4.11

(right). The CFLs obtained in these experiments appear to be larger than the simulated

values. Reinke et al. [169] conducted in vitro experiments of blood flow at Ht = 0.45 in

glass tubes. The obtained CFL value for D = 31 µm, Ht = 0.45 suitable for comparison

(diamond symbol in figure 4.11 (right)) shows good agreement with simulations. Note that

simulated CFLs lie within the range of a scatter in the available in vitro experimental data

on CFLs. We are not aware of any other in vitro experimental measurements of CFLs

suitable for comparison.

CFLs from in vivo experiments [131, 115] plotted in figure 4.11 (right) show satisfactory

agreement with simulations for high Ht values (Ht = 0.42 − 0.45), while for low Ht the

correspondence is rather poor. In fact, available in vivo measurements of CFLs show a

scatter in the results. Yamaguchi et al. [209] found the CFL in cat cerebral microvessels

to be approximately 4 µm (not shown in figure 4.11 (right)) and independent of vessel

diameter. Maeda et al. [131] reported CFLs in the range of 1− 1.8 µm for vessel diameters

10−40 µm at Ht = 0.45, where a rabbit mesentery was perfused. Kim et al. [115] obtained

CFLs in the range of 0.5−3 µm increasing from the diameter 10 µm to 50 µm at Ht = 0.42

where a rat cremaster muscle was used. The variability of in vivo measurements of the CFL
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and their discrepancies with simulations shown in figure 4.11 (right) may be due to several

reasons such as the existence of the glycocalyx layer, variations in vessel width, use of a

short vessel, close proximity of the site of CFL measurements to vessel bifurcations, vessel

elasticity, and spatial resolution of the measurements.

The thickness of the glycocalyx layer is estimated to be on the order of 0.4 − 0.5 µm

[40, 202]. Experimental data of Kim et al. [115] shown in figure 4.11 (right) include the

glycocalyx thickness and yield satisfactory agreement with simulations. Subtracting its av-

erage thickness from the experimental CFL values would result in very thin CFLs especially

for small vessel diameters (D = 10 µm) and yield further discrepancies in comparison with

simulations. The other mentioned experimental sources do not explicitly state whether the

thickness of the glycocalyx layer was included into CFL measurements. The largest discrep-

ancies between simulated CFLs and those measured in in vivo experiments are on the order

of the glycocalyx thickness for Ht = 0.42 − 0.45, while for lower Ht values discrepancies

appear to be more significant.

Variations in vessel diameter may locally alter blood flow and impact CFL measure-

ments. Maeda et al. [131] reported spatial variations in the vessel diameter on the order

of several percent, while Kim et al. [115] estimated a potential error in CFL measurements

to be approximately 10% due to the change in the vessel diameter. Even though variations

in the vessel diameter seem to have a rather insignificant effect on CFL measurements, it

may influence migration of RBCs to the center of the vessel which is the main mechanism

for CFL development. Moreover, RBC migration strongly depends on the vessel length and

flow non-uniformity due to nearby vessel bifurcations. The perfused vessel length was not

specified in experiments and it may not be long enough to allow RBCs to fully migrate to

the vessel center and to form a steady core of the flow. In simulations, periodic boundary

conditions in the direction of the tube axes were employed, which is essentially equivalent to

the infinite length of the tube, and complete migration of RBCs can be considered to be fully

achieved. Incomplete migration of RBCs in short vessels would result in the smaller CFLs

found in experiments [131] in comparison with those in simulations (figure 4.11 (right)). In

section 4.3 a strong influence of the channel length on the CFL will be shown for the case

of a RBC suspension flowing through a constriction in a microfluidic device.

Upstream flow conditions such as vessel bifurcations affect the width of the CFL [164, 59].

Kim et al. [115] reported a non-axisymmetric nature of CFL variations on opposite sides
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of the arteriole with a difference of 0.5 µm in the mean width of CFLs on the two sides.

This difference in CFLs was attributed to a possible effect of upstream bifurcations. Note

that the simulated CFLs here are found to be axisymmetric. Pries et al. [164] reported

that an axisymmetric cell profile is recovered after at least ten vessel diameters downstream

of a bifurcation. However, this distance may not be long enough to account for full RBC

migration. At high Ht values CFLs may not be very sensitive to the discussed geometrical

uncertainties present in the in vivo experiments, while at low Ht they may significantly

affect measured CFLs. An example of this effect is shown in a microfluidic channel in

section 4.3.

The CFLs obtained by Maeda et al. [131] plotted in figure 4.11 (right) are smaller

than those obtained in the simulations. In accordance, the reported values of the relative

apparent viscosity for the hardened vessels of diameters in the range of 25−35 µm were 1.63,

2.0, and 2.83 for Ht = 0.16, 0.3, and 0.45, respectively. These viscosities are considerably

higher than those found in in vitro experiments [165] (1.29, 1.65, and 2.19 for D = 30 µm

andHt = 0.15, 0.3, and 0.45), which provides an additional explanation for the discrepancies

found. Finally, spatial resolution of the experimental measurements may contribute to the

discrepancies between the simulated CFLs and those obtained in in vivo experiments. Kim

et al. [115] reported that their spatial resolution was 0.4 µm, which is on the order of the

thickness of the glycocalyx layer, while the spatial resolution was not specified in [131].

Figure 4.12 (left) presents SD values σδ of the CFL thickness. Spatial variations of

the CFL thickness characterized by σδ appear to increase with tube diameter in agreement

with experiments [115]. The observed discrepancies between simulated and experimental

SD values may be due to the differences discussed in the previous paragraph. The obtained

SD values of the CFL thickness appear to be independent of Ht and a model selected for EV

interactions among cells (not shown here). Figure 4.12 (right) shows CFLs at Ht = 0.45 for

different tube diameters and shear rates ¯̇γ. The CFL thickness is slightly decreasing with

increasing shear rate or equivalently flow rate. This is consistent with experiments [115],

where the same trend was found for the range of shear rates 100−500 s−1. A decrease in the

CFL thickness for higher flow rates is attributed to intensified hydrodynamic interactions

among cells at higher shear rates that tend to expand the RBC core of the flow. Note

that a decrease in the CFL thickness in this case may not necessarily result in an increase

of the relative apparent viscosity because it corresponds to a characteristic viscosity of a
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Figure 4.12: Spatial variations of the CFL thickness (SD) (left) and CFLs for different shear
rates at Ht = 0.45 (right) for various Ht values and tube diameters. In vivo experimental
data [115] for Ht = 0.42 are included in the left plot for comparison.

RBC suspension averaged over the tube cross-section. A suspension of RBCs shows a shear-

thinning behavior with shear-dependent viscosity. Analysis of blood rheological properties is

beyond the scope of this work; however, several examples of shear-thinning fluids (polymer

melts and solutions) and the analysis of their rheological properties are presented in chapter

6. Finally, simulation results for a lower Ht than Ht = 0.45 did not show a statistically

significant increase or decrease in the CFL thickness for shear rates in the range 10 − 100

s−1.

4.2.7 Increased flow resistance in malaria disease

Blood in malaria is simulated as a mixture of healthy and Pf-parasitized RBCs. Simulation

parameters are the same as those in section 4.2.1 using the “wall force” method. Pf-

parasitized RBCs are characterized by the membrane shear modulus µ0 = 31.5 µN/m which

is five times larger than that of healthy cells and corresponds to the trophozoite stage of

parasite development. Other membrane properties (e.g., bending rigidity, viscosity) are

identical to those of healthy RBCs. The percentage of Pf-parasitized RBCs with respect to

the total number of cells in a unit volume is called parasitemia level. Several parasitemia

levels (25%, 50%, and 100%) are considered for tube diameters 10 − 20 µm and Ht values

0.3 − 0.45. Parasitemia levels employed here are higher than those often found in clinical

blood tests [24, 208, 95] of individuals suffering from malaria. At a parasitemia level above
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0.2% an immune response is initiated and levels around 10% are found in very severe

cases of malaria with high mortality [24, 208, 95]. Clinical tests are able to detect Pf-

parasitized RBCs at a parasitemia level as small as 0.0001 − 0.0004%. Active malaria

disease in most cases is characterized by parasitemia in the range of 0.5% − 10%. Even

though the parasitemia levels simulated here are beyond this range, we aim to span the

full range of parasitemia 0% − 100% to evaluate dependence of blood flow properties on

parasitemia levels. At low parasitemia levels differences in measured properties may not

be significant and therefore, they would be difficult to detect. However, an estimation of a

contribution of Pf-parasitized RBCs to blood flow properties at realistic parasitemia levels

in malaria will be provided at the end of this section.

Figure 4.13 shows a snapshot of RCBs flowing in a tube of the diameter D = 20 µm

at a parasitemia level of 25%. Healthy cells are drawn in red and Pf-parasitized RBCs in

Figure 4.13: Healthy (red) and Pf-parasitized (blue) RCBs in Poiseuille flow in a tube of
the diameter D = 20 µm. Ht = 0.45, parasitemia level 25%.

blue, while the total tube Ht is 0.45. The core of the flow is formed by the cells with a CFL

next to the tube wall resulting in the plug-like velocity profiles presented in figure 4.14 for

tubes of diameters D = 10 µm (left) and D = 20 µm (right) for different parasitemia levels

at Ht = 0.45. Dashed lines are the corresponding parabolic profiles of Newtonian plasma

in the absence of cells for the same pressure gradients given in table 4.2. An increase of the

parasitemia level yields a decrease in flow rate shown by a decrease in velocity at the tube

center.

Figure 4.15 shows the relative apparent viscosity of simulated blood in malaria for Ht =

0.45 (left) and Ht = 0.3 (right) at different parasitemia levels. The effect of parasitemia
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Figure 4.15: Relative apparent viscosity of blood in malaria with Ht = 0.45 (left) and
Ht = 0.3 (right) for various parasitemia levels and tube diameters. Symbol “x” in the
left figure corresponds to the schizont stage with a near-spherical shape (see section 3.3.4).
Experimental data correspond to the empirical fit by Pries et al. [165].

level on flow resistance characterized by the relative apparent viscosity appears to be more

prominent for small tube diameters and high Ht values. Thus, at Ht = 0.45 blood flow

resistance in malaria may increase up to 50% in vessels of diameters around 10 µm and

up to 43% for vessel diameters around 20 µm. For larger vessel diameters the difference

between the increased flow resistance due to parasitemia and that of healthy blood decreases

further. However, in the case of Ht = 0.3 the resistance is subject to a maximum increase by
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40% for D = 10 µm and about 25% for D = 20 µm showing a weaker dependence than that

for the case of Ht = 0.45. Moreover, an increase in the relative apparent viscosity due to

parasitemia for the case of Ht = 0.15 is found to be on the order of 10% for D = 10 µm and

about several percent for larger vessel diameters. Symbol “x” in figure 4.15 (left) presents

flow resistance in malaria at 25% parasitemia level with the infected RBCs at schizont stage

having a near-spherical shape (see section 3.3.4 for details). Besides the difference between

near-spherical and biconcave shapes, the shear modulus of these cells is approximately two

times larger than that of RBCs at throphozoite stage (most of the simulations shown). This

results in a further increase in flow resistance when compared with RBCs at the trophozoite

stage and the same parasitemia level. However, the increase is within 10% and is likely to

be insignificant for realistic parasitemia levels as discussed below.

Figure 4.16 shows the corresponding CFLs of blood flow in malaria at Ht = 0.45 (left)

and Ht = 0.3 (right) for different parasitemia levels and tube diameters. Simulated CFLs
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Figure 4.16: CFLs of simulated blood flow in malaria with Ht = 0.45 (left) and Ht = 0.3
(right) for various parasitemia levels and tube diameters. Symbol “x” in the left figure
corresponds to the schizont stage with a near-spherical shape (see section 3.3.4).

are consistent with the results on the relative apparent viscosity presented above. The CFL

thickness decreases with an increase in the parasitemia level resulting in larger blood flow

resistance. A decrease in CFL thickness at a non-zero parasitemia is due to the increased

stiffness of Pf-parasitized RBCs. Hence, stiffer cells are less compliant to deformations

resulting in an impaired close packing of RBCs in the flow core in comparison with softer

cells of healthy blood. This leads to an increase in the cell core width and consequently to



121

a decreased CFL.

Finally, we comment on the increased blood flow resistance in capillaries and small

arterioles for realistic parasitemia levels of less than 10% as found in the majority of malaria

cases [24, 208, 95]. According to the simulation results shown above the increase in the

relative apparent viscosity should be below 10−15%. Note that it is likely that the predicted

resistance in simulations is underestimated due to a potential increase in membrane bending

rigidity of Pf-parasitized RBCs and the presence of “rigid” parasites inside the cells discussed

in chapter 3. An increase in bending rigidity as well as a rigid body inside the cells would

further impair the ability of Pf-parasitized RBCs to comply with deformations in the flow

and consequently prevent their close packing in the flow core. However, taking these changes

into account may not yield a substantial increase in blood flow resistance in malaria at the

realistic parasitemia levels. Hence, we estimate that the maximum increase in flow resistance

in malaria to be 25%.

In fact, other conditions not considered in this section are more likely to significantly

influence blood flow resistance in malaria. Stiffer Pf-parasitized RBCs can block small

capillaries up to 5 − 6 µm in diameter as shown in microfluidic experiments [180] and

discussed in the introduction. In addition, the property of Pf-parasitized RBCs to adhere

to each other and to vessel endothelium at later stages of parasite development may strongly

impair blood flow in capillaries and small arterioles resulting in a substantial increase of

flow resistance. This condition will be modeled and discussed in detail in section 4.4.

4.3 Blood flow through a constriction

In this section we systematically examine blood flow in a microchannel undergoing sudden

constriction. An augmentation of the cell-free layer downstream of the constriction will

be investigated for different microchannel geometries, hematocrit values, viscosities of a

suspending fluid, and cell mechanical properties. Simulation results will be compared with

experiments [70] and physical insights of an enhancement of the CFL thickness downstream

of the constriction will be provided. In addition, we demonstrate the potential capability

of the developed code for the blood flow model with a simulation employing 5000 RBCs.

In general, we are able to simulate O(104) of RBCs with a high parallel efficiency.
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4.3.1 Microfluidic geometry and simulation parameters

The microfluidic channel geometry is sketched in figure 4.17. The channel is aligned with the

L L

L

u d
Wcw

y

x

c

Figure 4.17: Sketch of the geometry of a microfluidic channel having sudden constriction.

x direction. W is the channel width being the same upstream and downstream, while wc is

the width of the constriction. Lu, Lc, and Ld are the lengths of upstream, constriction, and

downstream parts, respectively. W = 100 µm, Lu = 100 µm, and Ld = 200 µm are kept

the same in all simulations, while wc is varied from 25 µm to 50 µm and the constriction

length Lc from 50 µm to 200 µm. The channel height in z direction is equal to H = 20 µm.

The simulated channel is assumed to be periodic in x and z.

The microfluidic geometry used in the simulations is similar to that in experiments [70];

however several disparities have to be pointed out. The fabricated channels in experiments

are non-periodic in z with the height of 75 µm yielding a three-dimensional flow in contrast

to a nominally two-dimensional flow in simulations. Furthermore, the experimental channels

are non-periodic in x direction having an inflow and outflow and the lengths Lu and Ld

are essentially longer than those employed in simulations. Finally, note that the corners

at the end of the upstream part and the beginning of the constriction (see figure 4.17)

are smoothed out in agreement with those found in experimental geometry. Influence of

these differences between simulations and experiments on measured flow properties will be

discussed below.

Table 4.4 presents the simulation parameters similar to those defined in table 4.1. The

energy unit is set to kBT = 0.3. The WLC-POW model is employed for RBCs with the

parameters: µM
0 = 100, x0 = 2.2, ka = 4900, kd = 100, and kv = 5000 (see section 3.2
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interaction a γ rc k(eq.(2.11))

S-S and S-W 25.0 10.0 1.25 0.25

S-V, W-V 10.0 15.0 1.25 0.25

V-V 50.0 10.0 0.5 0.25

Table 4.4: DPD simulation parameters in blood flow through a microfluidic channel.

for details). The solvent viscosity is equal to 10.7 in DPD units. The simulated Ht values

are 0.026 and 0.16 in agreement with those in experiments [70]. A uniform body force is

applied to all DPD particles in the region of 50 µm in length from the channel entrance and

in the region of 100 µm in length at the channel end to drive the flow. The uniform body

force is equivalent to a constant pressure gradient which can be considered uniform in these

regions. The pressure gradient in the region around the constriction is not constant, which

voids the validity of application of the uniform body force in that area.

4.3.2 Typical flow profiles

Fluid flow in a microfluidic device is characterized by the Reynolds (Re) number defined as

Re =
ρoQ

ηoH
, (4.9)

where ρo and ηo are the density and viscosity of the suspending solvent and Q is the

total flow rate. Based on this definition the Re number employed in simulations is equal

to approximately 5, while in experiments it is approximately 10−2. Even though our Re

number is larger than the experimental value, we will still attempt a comparison between

simulations and experiments. An enhancement of the CFL downstream of the constriction

appears to be mainly due to a cross-stream migration of cells in a microchannel flow, which

is often characterized by a capillary number for cases of vesicles in a flow [26, 5]. We define

the local capillary (Ca) number as follows

Ca = τ γ̇, τ =
ηoR0

Y
, γ̇ =

Q

w2H
, (4.10)

where τ is the characteristic relaxation time of a cell, γ̇ is the average shear rate, R0 =
√

A/(4π) is the characteristic cell size and A is the cell area; Y is the Young’s modulus of
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a RBC, and w is the local channel width. The Ca number includes several characteristics

of the simulated suspension such as the cell size, its rigidity, solvent viscosity, and the flow

strength which govern RBC migration in microchannel flow. The Re number alone does not

provide a sufficient characterization for the cell migration since it reflects only properties of

the suspending fluid and the flow strength. In fact, in case of a small Re number (on the

order of one or smaller) the Ca number appears to be the main characteristic parameter of

the flowing suspension of RBCs.

Figure 4.18 shows the contour of the x component of velocity Vx normalized by Vmax

as well as the flow streamlines for Re = 5 and Ht = 0.026. Vmax is the maximum flow

Figure 4.18: Flow streamlines and the contour of the x component of velocity Vx normalized
by Vmax. Re = 5 and Ht = 0.026.

velocity within the constriction. The streamlines show two symmetric recirculation regions

downstream of the constriction. These regions become smaller if the Re number of the flow

is decreased, while they would elongate for larger Re numbers. Figure 4.19 presents cross-

sectional normalized velocity profiles extracted across the channel at x = 140 µm (left)

and 50 µm after the constriction (right) for different constriction lengths Lc. The dashed

line in the left figure corresponds to a Newtonian parabolic profile of the same flow rate.

The velocity profiles in the constriction are nearly parabolic due to the low RBC volume

fraction Ht = 0.026. Note that velocity profiles for different constriction lengths Lc are

nearly identical since the flow appears to be very close to that of a Newtonian fluid.
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Figure 4.19: Normalized velocity profiles extracted across the channel at x = 140 µm (left)
and 50 µm after the constriction (right) for different constriction lengths Lc. The dashed
line in the left figure represents a parabolic Newtonian profile.

4.3.3 CFL measurements up- and downstream of the constriction

To measure CFLs upstream and downstream of the constriction, individual cells are tracked

in simulations. Figure 4.20 shows a sample snapshot of RBCs in microchannel flow at

Ht = 0.026. This plot illustrates that RBCs appear to be more confined around the flow

Figure 4.20: Snapshot of RBCs flowing through a constriction in a microchannel. Ht =
0.026.

centerline down the constriction resulting in an enhanced CFL downstream in comparison

with that in upstream. To quantitatively estimate CFL thickness upstream (δu) and down-

stream (δd) trajectories of individual RBCs are recorded as shown in figure 4.21. These

trajectories represent the center-of-mass motion of cells. The RBC core widths upstream
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Figure 4.21: Trajectories of individual RBCs in microchannel flow to estimate CFL thick-
nesses and cell core widths upstream and downstream of the constriction.

and downstream are defined as

wu = max
xu

i ,j
{yj

c(x
u
i )} − min

xu
i ,j

{yj
c(x

u
i )} + 2R0,

wd = max
xd

i ,j
{yj

c(x
d
i )} − min

xd
i ,j

{yj
c(x

d
i )} + 2R0,

(4.11)

where yj
c(xi) is the y component of the RBC center-of-mass at the position xi of a flowing

cell, while index j runs over all cells in a simulation. The superscripts u and d denote

upstream and downstream RBC positions, respectively. Consequently, the CFL thicknesses

are found as δu = (W − wu)/2 and δd = (W − wd)/2. Note that the wu and δu values

in simulations may potentially depend on the initial conditions created by placing RBCs

randomly in the flow domain since the upstream length of the microchannel is relatively

short and CFL measurements are taken right after the flow startup. In order to eliminate

dependence of the CFLs on inflow RBC distribution, Lu has to be long enough to provide

ample time for RBC cross-stream migration and to achieve a steady-state cell distribu-

tion before the constriction. The length Lu is not specified in experiments [70] nor is the

sensitivity of the CFL measurements on Lu tested. Our simulations are performed with

Lu = 100 µm resulting in δu = 5.6 µm and wu = 88.8 µm, while in experiments δu is found

to be 4 µm. In addition, the use of periodic boundary conditions in simulations yields a

persistent focusing of RBCs around the channel centerline since an increased CFL thickness

downstream of the constriction is transfered further upstream due to periodicity. Therefore,
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simulations are advanced only for the time long enough to allow a single RBC to move two

full channel lengths. Moreover, trajectories of RBCs showing their second passage through

the constriction are discarded since they reflect a “double” focusing effect.

4.3.4 Enhancement of the downstream CFL for different conditions

CFLs downstream are affected by the cell distribution across the flow in front of the con-

striction. In light of the uncertainties in cell distribution upstream described in the previous

section, comparisons of downstream CFLs obtained in simulations and experiments are ex-

pected to show a rather qualitative than quantitative agreement.

Figure 4.22 shows ratios wd/wu for different constriction widths wc and lengths Lc in

comparison with experiments [70]. It is clear that the constriction provides a mechanism
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Figure 4.22: Ratio of the downstream and upstream widths of a RBC distribution wd/wu

depending on the constriction width wc and length Lc compared with experiments [70].
Ht = 0.026.

for focusing RBCs around the centerline of the channel characterized by an enhanced CFL

downstream compared with that upstream. The focusing effect can be explained by cross-

stream migration of RBCs in microchannel flow due to cell-wall and cell-cell hydrodynamic

interactions. In general, RBCs tend to migrate away from the walls due to a hydrodynamic
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lift [26, 5]; however, under certain conditions (e.g., flow strength, cell concentration) RBCs

are able to migrate away from the channel centerline attributed to hydrodynamic interac-

tions among cells and their deformability. Similar migration effects are found for dilute and

semi-dilute polymer solutions in Poiseuille flow, which are discussed in detail in chapter 5.

RBC migration in the constriction appears to be the main reason for an enhanced CFL

downstream. The cell distribution upstream may also contribute to the focusing effect as

discussed in the previous section; nonetheless the cell distribution upstream is the same in

all simulations due to an identical setup for the initial conditions.

The ratios wd/wu in figure 4.22 for different constriction widths and fixed Lc = 50 µm

indicate a substantial increase in the downstream CFL for wc = 25 µm in comparison with

that of wc = 50 µm. In the case of wc = 50 µm the cell drift to the channel centerline

is weaker due to the smaller local shear rates than those in the case of wc = 25 µm for

the same flow rate Q. Thus, the local Ca number in the constriction is twice smaller for

wc = 50 µm than for wc = 25 µm. In addition, in case of wc = 50 µm RBCs need to

migrate a longer distance away from the walls in order to achieve a similar focusing effect

as that found for the case of wc = 25 µm. Moreover, the drift velocity of solid particles

in a rectangular channel flow [116] was found to be inversely-proportional to the square of

their distance from the wall. Hence, the RBC drift is strongly attenuated when a cell is far

enough from the walls, which may strongly affect the focusing effect in microchannels with

larger wc.

To identify an effect of the constriction length on the CFL downstream we performed

several simulations for various Lc in the range of 50−200 µm and fixed wc = 25 µm. Results

are plotted in figure 4.22 showing a stronger cell focusing effect with increasing Lc. The

CFL downstream is significantly enhanced in the case of a larger Lc due to longer times

spent by flowing RBCs within the constriction resulting in their larger migration to the

channel centerline. Thus, microfluidic channels with a narrow and long constriction yield

the largest CFL thickness downstream. Finally, the comparison of simulation results with

experiments in figure 4.22 shows a qualitative agreement of the CFL trends with respect to

the constriction width and length.

Figure 4.23 presents the dependence of wd/wu on the viscosity of a suspending fluid for

various Lc in comparison with experiments [70]. Increase in the solvent viscosity results

in a larger Ca number of the flow, which enhances RBC migration towards the channel
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Figure 4.23: Ratio wd/wu with respect to the viscosity of a suspending fluid for different
Lc compared with experiments [70]. Ht = 0.026.

centerline within the constriction and consequently, provides a more confined RBC distri-

bution downstream. The simulation results for ηo = 3 cP show a gradual decrease in the

wd/wu ratio with increasing Lc, which is consistent with the results for ηo = 1 cP discussed

above. In experiments, higher viscosities of a suspending medium are employed showing a

qualitatively similar dependence of the enhanced CFLs downstream on solvent viscosity.

The effect of RBC stiffness on the CFL thickness downstream of the constriction is

shown in figure 4.24. Hardened RBCs assume a Young’s modulus five times larger than

Y = 18.9 µN/m of healthy RBCs. Hardened cells are subject to a weaker focusing effect

in comparison with soft RBCs since their migration within the constriction is attenuated.

In accordance, the Ca number for a suspension with hardened cells is smaller than that

for healthy RBCs indicating the same conclusion. Experimental data in figure 4.24 are in

qualitative agreement with simulation results.

4.3.5 Focusing effect for higher hematocrit values

Further, we examine the focusing effect for Ht = 0.16. Two microchannels with fixed

wc = 25 µm but different constriction lengths Lc = 50 µm and Lc = 100 µm are considered.
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Figure 4.24: Ratio wd/wu with respect to cell stiffness for various Lc in comparison with
experiments [70]. Ht = 0.026.

Figure 4.20 shows a snapshot of RBCs in a microchannel flow atHt = 0.16. The plot visually

Figure 4.25: RBCs at Ht = 0.16 flowing through the constriction in a microchannel.

shows an increase of the CFL thickness downstream in comparison with that upstream. To

quantitatively characterize this CFL enhancement RBC trajectories are traced analogously

to the aforementioned method used in simulations of suspensions with Ht = 0.026. Figure

4.26 compares ratios wd/wu for the two cases of Ht = 0.16 and Ht = 0.026 and different

constriction lengths. In the case of Ht = 0.16 the focusing effect is substantially attenuated
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Figure 4.26: Ratios wd/wu for various Lc and Ht values 0.026 and 0.16.

in comparison with that of Ht = 0.026. In addition, an increase of the constriction length

results in a weaker CFL enhancement downstream for larger Ht values. The microfluidic

devices simulated here are proposed to be used to effectively separate RBCs and blood

plasma in [70] presented for Ht = 0.16. Our simulation results suggest that the focusing

effect in such microchannels can be successfully used for segregation of RBCs and blood

plasma only in cases of relatively low cell volume fractions (Ht ≤ 0.15 − 0.2). At the

physiological Ht level of 0.45 the focusing effect will be insignificant voiding the efficiency

of the use of such microchannels.

4.3.6 Computational work

Finally, we comment on the computational efficiency of the implemented parallel code for

the blood flow model since these microchannel simulations correspond to relatively large

simulation systems. As an example, the simulation system for the case of Ht = 0.16 and

Lc = 100 µm contained 990 RBCs and 2.8×106 DPD particles and was run on 924 processors

showing a parallel efficiency approximately equal to 90%. To further verify the scalability of

the developed code we set up a simulation of the microchannel with the following dimensions:

Lu = 200 µm, W = 100 µm, wc = 25 µm, Lc = 100 µm, Ld = 830 µm, and H = 30 µm.
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This simulation system contained 5000 RBCs and 1.14 × 107 DPD particles and was run

on 3864 processors. The obtained parallel efficiency was approximately 85%. Note that

these simulations test the weak scaling of parallel efficiency with the number of processors

since the number of cores is increased proportionally to the size of the simulated system.

Nevertheless, it proves scalability of the developed code up to at least 5000 CPUs with the

number of simulated RBCs on the order of O(104).

4.4 Adhesive dynamics of leukocytes and Pf-parasitized RBCs

In this section we describe the simulations of adhesive dynamics of leukocytes and Pf-

parasitized RBCs with the endothelium lining blood vessel walls. The adhesive dynamics

model is based on a stochastic formation/dissociation of bonds which correspond to recep-

tor/ligand interactions. The model is able to successfully reproduce different types of the

adhesive dynamics of cells such as firm adhesion, continuous rolling over a surface, and

rolling in a “stop-and-go” manner. Cytoadhesive dynamics depends on a number of factors

such as density of the available receptors and ligands, their interactions (e.g., bond forma-

tion/dissociation rates, bond strength), cell properties (e.g., cell shape, elasticity, bending

rigidity), and flow conditions (e.g., shear rate, shear stress). The effect of some of those

conditions will be examined for leukocytes and infected RBCs in malaria. In particular, Pf-

parasitized RBCs show a “flipping” rather than “rolling” behavior attributed to an increased

cell stiffness in comparison with that of healthy RBCs. A comparison with experiments will

be provided where it is possible.

4.4.1 Adhesion model

Adhesion of cells to surfaces is mediated by the interactions between receptors and ligands

which are the adhesion sites distributed on a cell and a surface, respectively. The adhesion

model provides rules of formation and dissociation of bonds between receptors and ligands.

The kinetics model of single bond dissociation was first offered by Bell [17], where the rate of

bond dissociation was varying exponentially with the bond force. Dembo et al. [46] derived

self-consistent expressions for the bond formation/dissociation rates following the Boltz-

mann distribution for the binding affinity. Based on these kinetics rates the first attempts

to model cell adhesion used deterministic [97] and probabilistic [37, 96] approaches. The
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probabilistic model developed by Hammer and Apte [96] is commonly used in simulations

and is known as adhesive dynamics.

Figure 4.27 shows a sketch of RBC adhesion. A potential bond (black lines in figure

Figure 4.27: Sketch of RBC adhesion. Receptors are in blue, ligands in yellow, and black
lines denote bonds.

4.27) may be formed only if it is close enough to a free ligand, which is characterized by

the reactive distance don. A ligand is called free if it is not bound to any receptors. During

the time a receptor is within the distance don to a free ligand, a bond can be formed with

on-rate kon. Reversely, existing bonds are ruptured with off-rate koff or if their length

exceeds the rupture distance doff . The rates kon and koff are defined as follows

kon = k0
on exp

(

−σon(l − l0)
2

2kBT

)

,

koff = k0
off exp

(

σoff (l − l0)
2

2kBT

)

,

(4.12)

where k0
on and k0

off are the reaction rates at the distance l = l0 between a receptor and

a ligand with the equilibrium spring length l0 defined below. The effective on and off

strengths σon and σoff define a decrease or an increase of the corresponding rates within

the interaction lengths don and doff , and kBT is the unit of energy. The force exerted on
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the receptors and ligands by an existing bond is given by

F (l) = ks(l − l0), (4.13)

where ks is the spring constant. The probabilities of bond formation and dissociation are

defined as follows

Pon =



















1 − e−kon∆t for l < don

0 for l ≥ don

, Poff =



















1 − e−koff∆t for l < doff

0 for l ≥ doff

, (4.14)

where ∆t is the time step in simulations. The described model is similar to the adhesive

dynamics model developed by Hammer and Apte [96]. In their model σon = σts and

σoff = ks − σts, where σts is the transition state spring constant.

During the course of a simulation the receptor/ligand interactions are considered every

time step. First, all existing bonds between receptors and ligands are checked for a potential

dissociation according to the probability Poff . A bond is ruptured if ξ < Poff and left

unchanged otherwise, where ξ is a random variable uniformly distributed on [0, 1]. If a

bond is ruptured the corresponding ligand is available for new binding. Second, all free

ligands are examined for possible bond formations. For each free ligand we loop over the

receptors within the distance don, and bond formation is attempted for each found receptor

according to the probability Pon. This loop is terminated when a bond is formed. Finally,

the forces of all remaining bonds are calculated and applied.

Note that this algorithm permits only a single bond per ligand, while receptors may

establish several bonds if several ligands are free within their reaction radius. This provides

an additional capability for the adhesive dynamics model compared with that employing

one-to-one interactions between receptors and ligands. Also, this assumption appears to fur-

nish a more realistic representation of adhesive interactions of leukocytes and Pf-parasitized

RBCs with a surface. The leukocyte membrane displays a large number of ruffles on its sur-

face called microvilli [61, 143], and the cell adhesion is mediated by receptors concentrated

on a small area of microvilli tips as shown in experiments [203]. Similarly, Pf-parasitized

RBCs display a number of parasitic nanometer-size protrusions or knobs on the membrane

surface [106, 103, 145], where receptors that mediate RBC adherence are clustered.
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4.4.2 Scaling of model and physical units

To relate DPD non-dimensional parameters of the adhesive model to those in physical units

we have to define length and time scales. The length scaling is based on the cell diameter

and is defined as in equation (3.33). The time scale is given as follows

τ =
γ̇M

γ̇P
s, (4.15)

where γ̇ is the characteristic shear rate of a flow, the superscripts “P” and “M” correspond

to physical and model units, respectively, and “s” denotes seconds. Simulation parameters

are chosen in such a way that this time scale is equivalent to that defined in equation (3.36)

with α = 1 and therefore, the following equality is satisfied

γ̇M

γ̇P
=
DP

0

DM
0

ηP
o

ηM
o

YM
0

Y P
0

, (4.16)

where D0 is the cell diameter, ηo is the external fluid viscosity, and Y is the cell Young’s

modulus. The scales of force and energy are then defined as follows

NM =
ηP

o

ηM
o

(

DP
0

DM
0

)2
γ̇P

γ̇M
NP , (kBT )M =

ηP
o

ηM
o

(

DP
0

DM
0

)3
γ̇P

γ̇M
(kBT )P , (4.17)

where “N” denotes the Newton force unit. Note that the definitions above yield the same

scales as in equations (3.35 and 3.34) if the equality in equation (4.16) is satisfied.

4.4.3 Adhesive dynamics of leukocytes in shear flow

Leukocyte or white blood cell (WBC) adhesion to the vascular endothelium is a crucial

step in the immune response [185]. Rolling along the vessel wall allows WBCs to efficiently

monitor for potential molecular signals, since the rolling velocity at the vessel wall is much

smaller than that of the blood flow. In fact, microfluidic experiments [77] showed that

WBCs adhere only above a critical threshold of shear. Firm adhesion of leukocytes is

generally recognized as the final step of the WBC adhesive dynamics within a vessel with

further cross-endothelium migration into the surrounding tissue.

Adhesion of WBCs to the endothelium is mediated by receptors from the selectin family

which are known to have fast association and dissociation kinetics [121]. Trajectories of a
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rolling WBC are often characterized by a “stop-and-go” WBC motion rather than rolling

with a constant velocity along the vessel wall [9, 27]. The sporadic rolling behavior is due

to a stochastic nature of formation and dissociation of receptor-ligand bonds. However, at

high shear rates WBC rolling was observed to be less erratic and showing smaller variations

in rolling velocity than at low shear rates [27]. In addition, rolling at high shear rates is

further stabilized by an increase in the number of receptor-ligand bonds [27].

Freely circulating WBCs are spherical in shape, while the attached or rolling leukocytes

resemble a “tear-drop” shape. WBC deformations for the wall shear rates in the range

50− 800 s−1 were found to be up to 140% in in vivo experiments [78]. WBC deformability

plays a significant role in the stability of rolling at high shear rates. The area of binding may

increase three times at high wall shear rates [78]. In addition, a deformed WBC is subject

to a smaller hydrodynamic drag than that of a solid sphere of similar size. Experiments

with receptor-coated spheres [157] showed more erratic rolling in comparison with normal

WBCs.

4.4.3.1 Simulation setup and physical parameters

A sketch of the simulation setup is shown in figure 4.28. A WBC membrane is represented

Figure 4.28: Sketch of a modeled WBC above the lower wall. Receptors are drawn in blue
and ligands in red.

by a network on a sphere with the radius R = 5 µm similar to the RBC membrane model

described in chapter 3. The total number of receptors is Nr = 1000. Ligands are placed

on the lower wall on a square lattice with the lattice constant d = 0.25 µm. Linear shear

flow is generated by the upper wall moving with velocity V , while the lower wall is kept
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stationary. The domain dimensions are set to 40 × 30 × 20 µm with periodicity in x (flow)

and z directions. Simulation (in DPD units) and physical (in SI units) parameters are shown

in table 4.5. Note that the receptor and ligand densities in simulations are smaller than

Parameters Simulations Physical Typical values Ref.

WBC radius (R) 5 5 × 10−6 m 4.5 − 5 × 10−6 m [8]

Young’s modulus (Y ) 7720 0.4 × 10−3 N/m 0.3 − 1.2 × 10−3 N/m [41, 108]

bending rigidity (kc) 60 3 × 10−18 J 1 − 3 × 10−18 J [214]

shear rate (γ̇) 0.1 100 s−1 50 − 300 s−1 [28]

temperature (T ) 0.0828 310 K 293 − 310 K

external fluid 20 10−3 Pa · s 1 − 3 × 10−3 Pa · s [28]

viscosity (ηo)

internal fluid 54 2.7 × 10−3 Pa · s

viscosity (ηi)

spring constant (ks) 20000 10−3 N/m 10−5 − 10−2 N/m [96, 82]

equilibrium spring 0.025 25 × 10−9 m 10 − 40 × 10−9 m [46]

length (l0)

reactive distance (don) 0.1 10−7 m

rupture distance (doff ) 0.1 10−7 m < 1.5 × 10−7 m [135]

on strength (σon) 10.0 5 × 10−7 N/m −5 − 5 × 10−3 N/m [46]

off strength (σoff ) 1.0 5 × 10−8 N/m −5 − 5 × 10−3 N/m [46]

unstressed on rate (k0
on) 10−3 − 10 1 − 104 s−1 103 − 104 s−1 [173]

unstressed off rate (k0
off ) 10−5 − 10 10−2 − 104 s−1 0.5 − 300 s−1 [8]

receptor density (nr) 3.18 3.18 mol/µm2 200 − 500 mol/µm2 [121]

ligand density (nl) 16 16 mol/µm2 200 − 500 mol/µm2 [121]

Table 4.5: Simulation (in DPD units) and physical (in SI units) parameters for leukocyte
adhesive dynamics.

those found in experiments [121], since we employ a coarse-grained model of a WBC (see

section 3.2.7 for details). Thus, the receptor/ligand interactions in simulations correspond

to effective bonds that may represent several physical bonds.
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A WBC is placed at a distance of 50 nm from the lower wall. Before the flow startup,

each simulation is run for 0.5 s in equilibrium (V = 0) to allow for initial binding of the

WBC. After that the shear flow is started and WBC dynamics is monitored for 10 s. Besides

receptor/ligand interactions a WBC is subject to the buoyant force ∆ρVWBCg, where VWBC

is the WBC volume, g is the gravitational acceleration, and ∆ρ is the density difference

between the internal and external fluids which is equal to 50 kg/m3 [144]. Table 4.6 presents

additional DPD parameters for interactions among particles representing external solvent

(So), internal fluid (Si), WBC vertices (V ), and walls (W ). Note that DPD interactions

Interaction a γ rc k(eq.(2.11))

So − So, So −W 4.0 9.15 1.5 0.25

Si − Si 4.0 20.0 1.5 0.25

So − V , Si − V , W − V 2.0 20.0 1.5 0.25

V − V 0.0 9.15 1.0 0.25

Table 4.6: DPD parameters used in simulations of WBC dynamics. So and Si denote
external and internal solvent particles, V corresponds to WBC vertices, and W represents
wall particles.

not included in table 4.6 are turned off. The WLC-POW model is employed for WBCs with

the parameters: µM
0 = 2000, x0 = 2.2, ka = 50000, kd = 1000, kv = 50000, and m = 2 (see

section 3.2 for details).

4.4.3.2 Simulation results of leukocyte dynamics

The simulations of WBC adhesive dynamics are performed for ranges of unstressed on

and off rates shown in table 4.5. Similar ranges were considered in [119] for the adhesive

dynamics of a solid spherical particle. Several states of WBC adhesive dynamics can be

defined based on the average cell velocity v̄c and pause time τ̄p. The average pause time is

calculated from the time sequence {Λi}i=1...T of WBC motion defined as

Λi =



















1 if vi
c > 0.01Vm, in motion

0 if vi
c ≤ 0.01Vm, arrest

, (4.18)
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where i denotes a step in time, T is the total number of steps, Vm = V/2 is the flow velocity

at the channel center, and vi
c = (xi

c − xi−1
c )/∆t is the WBC center-of-mass velocity while

xi
c is the cell center-of-mass and ∆t is the time interval. This sequence is then analyzed

to calculate the average length of an arrest (average pause time) which is equivalent to

the average length of continuous subsequences of zeros multiplied by ∆t. The average cell

velocity is defined as follows

v̄c =
1

T − 1

T
∑

i=2

vi
c. (4.19)

The WBC dynamics is divided into four states according to the average pause time τ̄p

and cell velocity v̄c:

1) Firm adhesion: the state of the WBC arrest which is characterized by τ̄p > 0.5 s.

Infrequent small jumps in the cell velocity are possible due to rare bond dissociation.

2) Stop-and-go rolling: the cell motion is described by frequent interchanges between

WBC arrest and mobility. This state is defined by 0.1 s < τ̄p ≤ 0.5 s.

3) Stable rolling: the state corresponds to WBC motion with a relatively stable rolling

velocity. It is established if τ̄p ≤ 0.1 s and v̄c < 0.8Vm.

3) Free motion: the WBC is moving freely with the channel flow, when adhesion inter-

actions are not able to resist a lift on the cell due to hydrodynamic flow. This state

is characterized by τ̄p ≤ 0.1 s and v̄c ≥ 0.8Vm.

The time interval is chosen to be ∆t = 0.01 s. The simulations are run for 10 s, while data

analysis is performed for times after 1 s to exclude flow startup effects.

Figure 4.29 presents the center-of-mass displacements (xc) and velocities (vc) for different

WBC adhesion states. The “A” plots show that firm adhesion is characterized by relatively

long times of cell arrests. However, rare events of sudden motion may be present due to

erratic bond dissociation. They are represented by several submicron steps in the WBC

displacement and the corresponding peaks in the cell velocity shown in figure 4.29 “A”.

Note that WBC velocity fluctuates around the zero value and frequently displays small

negative values; however, no net motion in the negative x direction is observed. This may

be due to the presence of thermal fluctuations or a retraction of a WBC and its bonds

to the surface after deformation by hydrodynamic flow, since the center-of-mass velocity
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Figure 4.29: Center-of-mass displacements (xc) and velocities (vc) for various adhesion
states of a WBC. A - firm adhesion, B - stop-and-go rolling, C - stable rolling, and D - free
motion.

is measured based on current and previous positions with the time interval ∆t = 0.01

s. The stop-and-go rolling shown in figure 4.29 “B” is well described by a staircase-like

displacement directly related to frequent peaks in the cell velocity and intermittent WBC

stops. In contrast, stable rolling is characterized by a near linear WBC displacement shown

in figure 4.29 “C”. Finally, under free motion (4.29 “D”) WBCs move in shear flow near the

channel center with the average velocity slightly lower than Vm = 1500 µm/s. The adhesive

interactions are not strong enough to counterbalance cell-wall hydrodynamic interactions,

which force WBCs to migrate to the channel center. After WBC detachment from the wall,

no further adhesive interactions are encountered.

Figure 4.30 shows the WBC adhesion dynamics states for wide ranges of unstressed on
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(k0
on) and off (k0

off ) rates from table 4.5 normalized by the shear rate. This plot is called
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Figure 4.30: On-off state diagram of WBC adhesion dynamics states: firm adhesion
(squares), stop-and-go rolling (triangles), stable rolling (circles), and free motion (crosses).
The letters “A-D” mark simulations shown in figure 4.29. Dashed lines are drawn for the
eye to identify regions corresponding to different states.

on-off state diagram similar to that by Korn and Schwarz [119]. Firm adhesion occurs if the

bond dissociation rate is small. Under this condition bond rupture is a rare event, while

bonds are formed with a faster rate to keep a WBC in arrest. At low values of k0
on the border

between firm adhesion and stop-and-go rolling motion (black dashed line in figure 4.30) is

achieved by a proper balance between the association and dissociation rates. However, this

border shows no dependence on the rate k0
on at its high values. This behavior is due to a

limited number of available receptors and ligands for binding. Thus, if there are no free

receptors or analogously no free ligands left for binding, a further increase of k0
on will have

no effect on the firm adhesion of a WBC.

As we increase the bond dissociation rate k0
off for a fixed k0

on, WBC firm adhesion

transits into the stop-and-go rolling state. Note that this behavior is observed in a thin
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stripe region of the on-off state diagram in figure 4.30 right above the “firm adhesion”

region. In light of this, the stop-and-go rolling can also be thought of as an unstable firm

adhesion. Hence, if the rate k0
off becomes significant enough in comparison with k0

on to

allow relatively frequent random ruptures of bonds, a WBC is subject to a stop-and-go

motion characterized by step-like displacements and velocity jumps shown in figure 4.29

“B”.

Upon a further increase in k0
off with respect to k0

on a WBC shows stable rolling or

detaches from the wall and undergoes a free motion in hydrodynamic flow. Note that stable

rolling is only possible if the association rate is large enough to facilitate fast bond formation.

Thus, stable WBC rolling on the wall can be described by a dynamic rupture of bonds at

the back of the cell contact area and their quick formation at the front of a WBC. Figure

4.30 shows that for small k0
on values, a WBC transits into a free motion above the border

of the stop-and-go rolling region (blue dashed line). In addition, a WBC detaches from the

wall if the bond dissociation rate becomes comparable with the rate of bond formation.

Figure 4.31 presents the corresponding on-off diagrams of the average WBC velocity

(left) and the average pause time (right) for various states of leukocyte adhesive dynamics.

The average cell velocity in the free motion region is above 1000 µm/s confirming that
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Figure 4.31: Contour plot of the on-off diagram of the average WBC velocity (left) and the
average pause time (right). Dashed lines indicate regions of different states of leukocyte
adhesive dynamics shown in figure 4.30.

no adhesive interactions between the WBC and the wall exist. In accordance, the average

WBC pause time is zero in this region. In the region of stable rolling the average velocity
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is in the range of 10− 400 µm/s depending on the relative interplay between k0
on and k0

off ,

while the pause time is below 0.1 s. The stop-and-go motion yields the rolling velocity in

the range of 1 − 70 µm/s and the pause time between 0.1 s and 0.5 s. Finally, in the firm

adhesion state the average velocity of WBCs is below 1.5 µm/s with the pause times larger

than 0.5 s. Kim and Sarelius [114] performed in vivo experiments of P-selectin-mediated

leukocyte rolling in postcapillary venules and found the average WBC rolling velocity to

be in the range of 20 − 30 µm/s at the shear rate γ̇ = 100 s−1. This range of the rolling

velocity fits well into the stable rolling region in figure 4.31 (left) with k0
off in the range of

10−20 s−1 and k0
on in the range of 100−1000 s−1. Firrell and Lipowsky [78] studied WBC

rolling in mesenteric venules of rats and reported the average cell velocity in the range of

30 − 50 µm/s, which also falls into the stable rolling region in figure 4.31 (left). Smith et

al. [183] found the characteristic pause time of selectin-mediated leukocyte rolling in a flow

chamber to be approximately 0.1− 0.2 s. This value corresponds to the stop-and-go WBC

region in figure 4.31 (right). Despite some differences in the aforementioned experiments,

the adhesive dynamics model is able to reproduce the WBC behavior found experimentally.

Figure 4.32 shows the on-off diagrams of the WBC contact area (left) and the deforma-

tion index (right). The contact area Ac and deformation index δ are defined as follows
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where Nc is the number of receptors the distance of which from the wall is smaller than

don = 100 nm, L is the WBC length, and H is its height. The maximum contact area of

about 30 µm is found for the firm adhesion. Consistently, states of firm adhesion correspond

to the maximum in the deformation index of approximately 1.1. A rolling WBC shows a

smaller contact area and deformation index, while a freely moving WBC has zero contact

area and a deformation index close to 1 indicating that the WBC remains spherical. A

contact area of about 20 µm was found in in vivo experiments [78] at a shear rate of

γ̇ = 100 s−1, which falls into the stable rolling region in figure 4.32 (left) in agreement with

the aforementioned average cell velocity in the range of 30 − 50 µm/s.

Leukocyte adhesive dynamics also depends on the medium viscosity (ηo), bond spring

constant (ks), and densities of receptors (nr) and ligands (nl), which was studied in [119]

through simulations of adhesive dynamics of a solid spherical particle. An increase in the

solvent viscosity for a fixed shear rate was shown to shift the border of the firm adhesion

region to lower off rate values, since cell arrest is sensitive to shear stress. At the same

time the effect of ηo on rolling behavior was found to be insignificant because it mainly

depends on the shear rate [156]. A change in the bond spring constant may have a more

complex effect on the WBC adhesive dynamics. For example, a decrease in ks may result in

a considerable shrinking of the stable rolling behavior region, while an increase of ks alters

the firm adhesion region [119].

An increase in nr or nl would generally shift the borders of regions of different adhesion

states to higher k0
off values, since more bonds can potentially be formed [119]. However,

this conclusion is credible only if nr and nl are properly balanced or nr ≈ nl. Note that if

nr is several times smaller than nl as in our simulations (see table 4.5), a further increase

in nl may not have a significant effect on the WBC adhesive dynamics, since there may be

no available receptors for binding.

Finally, WBC adhesive dynamics strongly depends on cell deformability [108, 156].

Softer cells have a larger contact area yielding an expanded firm adhesion region. In addi-

tion, a larger contact area has a stabilizing effect on rolling adhesion. More compliant cells

are subject to stronger deformations under hydrodynamic flow showing a larger deforma-

tion index δ. This results in a lower hydrodynamic force on the cell due to the flow which

stabilizes adhesive interactions [108, 156].

In conclusion, WBC adhesive dynamics is affected by many factors discussed above.
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However, the developed model is able to capture various states of cell adhesion. Next, we

apply the developed model to adhesive behavior of Pf-parasitized RBCs in malaria.

4.4.4 Adhesive dynamics of Pf-parasitized RBCs

Pf-parasitized RBCs undergo irreversible changes which significantly affect normal blood

circulation. Membrane stiffness of infected cells may increase up to ten-fold which may

create capillary occlusions [38, 180] and results in an increase of blood flow resistance

discussed in section 4.2.7. Furthermore, cytoadherence of infected RBCs to the vascular

endothelium may intensify formation of capillary physical blockages and strongly contribute

to the blood flow resistance [23, 51].

Even though infected RBCs are virtually invisible to the immune system, freely circu-

lating Pf-parasitized RBCs can be destroyed in the spleen [60]. Pf parasites expose adhesive

proteins on the RBC membrane surface to mediate adhesion to the endothelium in order to

survive for several days needed for their successful intra-cell development. This mechanism

facilitates further progression of malaria; however, it may severely disrupt normal blood

flow. Adherence of infected RBCs is believed to be the main cause of bleeding complica-

tions in cerebral malaria due to blockages of small vessels in the brain [6].

RBC adherence can occur in any individual suffering from malaria. However, some

people are subject to severe forms of malaria, while others may show only slight symptoms

with relatively high parasitemia levels. This is likely to be caused by differences in the

adhesive properties of infected RBCs in distinct individuals. In vitro experiments [35,

212, 11] on cytoadherence of Pf-parasitized RBCs in flow chambers revealed that their

adhesive dynamics can be strikingly different for distinct coatings of the flow chamber

walls. Adhesive dynamics of Pf-parasitized RBCs on purified ICAM-1 is characterized

by stable and persistent flipping (rolling) behavior for a wide range of wall shear stresses

[11]. In contrast, dynamics of infected RBCs on grown mammalian CHO cells shows firm

adhesion with a potential sudden detachment for the same range of wall shear stresses, even

though they express the same type of ligands [11]. The basis of the behavior dissimilarity

is attributed to a different flow micro-environment; however, it is not well understood.

Numerical simulations may aid in understanding the complex interactions between the

exposed proteins of Pf parasites and ligands on a coated surface. The developed RBC model

in combination with adhesive interactions described in section 4.4.1 is used to simulate
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adhesive dynamics of Pf-parasitized RBCs. Several model parameters are varied to identify

their impact on the adhesive dynamics and to capture Pf-parasitized RBC behavior found

in experiments [11].

4.4.4.1 Model and physical parameters

A Pf-parasitized RBC is modeled using the stress-free WLC-POW model described in sec-

tion 3.2 with the following parameters: µM
0 = 1000, x0 = 2.2, ka = 50000, kd = 1000,

kv = 50000, and m = 2. DPD parameters (see section 2.2.2) of interactions among external

solvent (So), internal fluid (Si), RBC vertices (V ), and wall (W ) particles are shown in

table 4.7. Pair interactions which are not specified in table 4.7 are switched off.

Interaction a γ rc k(eq.(2.11))

So − So, So −W 4.0 10.0 1.5 0.25

Si − Si 4.0 10.0 1.5 0.25

So − V , Si − V , W − V 2.0 20.0 1.5 0.25

V − V 100.0 10.0 0.75 0.25

Table 4.7: DPD parameters used in the simulations of RBC adhesive dynamics in malaria.

The simulation setup is analogous to that shown in figure 4.28. Initially, an infected

RBC is placed between two walls at the distance of 100 nm away from the lower wall. The

cell has Nr = 500 receptors, while ligands on the lower wall are distributed on the square

lattice with lattice constant d = 0.5 µm. The domain dimensions are the same as those

used in the leukocyte adhesive dynamics simulations above, where shear flow is generated

by moving the upper wall. Default adhesion parameters used in the simulations (DPD

units) and the corresponding physical parameters in SI units are presented in table 4.8.

The default parameters correspond to the schizont stage of intra-cell parasite development

with the Young’s modulus approximately ten times larger than that of healthy RBCs. An

infected RBC is also subject to the buoyant force ∆ρVWBCg with ρ = 50 kg/m3 analogously

to that in the WBC dynamics simulations above. The adhesive dynamics of Pf-parasitized

RBCs is monitored for several seconds.
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Parameters Simulations Physical

RBC diameter (D) 7.82 7.82 × 10−6 m

Young’s modulus (Y ) 3926 16.8 × 10−5 N/m

bending rigidity (kc) 8.66 3.7 × 10−19 J

shear rate (γ̇) 0.3333 33.33 s−1

temperature (T ) 0.1 310 K

external fluid viscosity (ηo) 22 9.5 × 10−3 Pa · s

internal fluid viscosity (ηi) 22 9.5 × 10−3 Pa · s

spring constant (ks) 400 1.71 × 10−5 N/m

equilibrium spring length (l0) 0.0 0.0 m

reactive distance (don) 0.35 3.5 × 10−7 m

rupture distance (doff ) 0.35 3.5 × 10−7 m

on strength (σon) 1.0 4.28 × 10−8 N/m

off strength (σoff ) 0.3333 1.43 × 10−8 N/m

unstressed on rate (k0
on) 116.67 11667 s−1

unstressed off rate (k0
off ) 1.0 100 s−1

receptor density (nr) 4.0 4.0 mol/µm2

ligand density (nl) 4.0 4.0 mol/µm2

Table 4.8: Default simulation (in DPD units) and physical (in SI units) parameters for RBC
adhesive dynamics in malaria.

4.4.4.2 Dynamics of infected RBCs in comparison with experiments

The adhesive dynamics of Pf-parasitized RBCs in shear flow is studied for various wall

shear stresses. The simulated RBC dynamics is compared with that found in experiments

[11] for two cases of wall coatings: with purified ICAM-1 and with mammalian CHO cells.

Figure 4.33 shows several successive snapshots of a cell rolling on the wall for the default

setup. At the post-processing step, blue particles are added as tracers for visual clarity

and distinct RBC snapshots are separated by shifting their x coordinate. The dynamics

of the Pf-parasitized RBC is characterized by “flipping” behavior initiated first by the cell

peeling off the wall due to the force of the hydrodynamic flow after flat RBC adhesion (the
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Figure 4.33: Top and side views of successive snapshots of a single flipping of an infected
RBC for the default case. Coordinates along the wall for different snapshots are shifted
in order to separate them for visual clarity. Blue particles are added as tracers during
post-processing to illustrate the membrane dynamics.

first snapshot in figure 4.33). After the majority of the initial cell contact area with the

wall is peeled off, a RBC flips over on its other side which is facilitated by the remaining

small contact area with the wall. During these steps Pf-parasitized RBCs undergo strong

membrane deformations as illustrated in figure 4.33. A similar behavior was found in

experiments [11] of Pf-parasitized RBCs which showed flipping (rolling) along a wall coated

with purified ICAM-1. In agreement with the simulations, RBCs in experiments also showed

strong membrane deformations characterized by local membrane buckling.

Figure 4.34 presents the corresponding displacement along the x coordinate (left) and

instantaneous RBC velocity (right). An infected RBC rolls in a relatively stable motion

which resembles a staircase. The segments of smaller displacements correspond to the stage

of a flat RBC adhesion followed by its slow peeling off the wall (see figure 4.33), while

the fragments of larger displacements represent the stage of RBC fast flipping described

above. The RBC velocity is in agreement with its displacement showing high peaks or

fast cell motion during the time segments with larger displacements. The average cell

velocity is approximately 5.8 µm/s. Figure 4.35 shows RBC displacement along the z

cross-flow coordinate (left) and instantaneous contact area (right) for the default simulation.

The displacement across the wall shows a jerky motion of an infected RBC within several

microns. This is due to a discrete number of bonds and their random rupture or dissociation.
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Figure 4.34: Pf-parasitized RBC displacement (left) and velocity (right) along the wall for
the default case.
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Figure 4.35: RBC displacement across the wall (left) and the cell contact area (right) for
the default setup.

Thus, if there is a non-uniform distribution of bonds over the contact area at some instance

of time, a Pf-parasitized RBC may be pulled to one side. In addition, the hydrodynamic

force on the RBC may be non-zero in z direction, since the cell is not symmetric due to

the local deformations shown in figure 4.33. The RBC contact area in figure 4.35 (right)

is correlated with its displacement and velocity in figure 4.34. Minima in the contact area

coincide with maxima in the RBC velocity corresponding to the stage of fast cell flipping

from its one side to the other. The cell contact area remains within the range of 10 − 50

µm2, while the average value is equal to 38.6 µm2.

To investigate the dependence of RBC adhesive dynamics on wall shear stress, the

velocity of the upper plate is changed. Note that the shear rate is altered at the same time.

However, the wall shear stress appears to be a key parameter which governs RBC adhesive
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dynamics, since adhered RBCs are driven by fluid stresses and roll along the wall with a

much smaller velocity than that of the hydrodynamic flow.

Several initial simulations with a varying wall shear stress and other fixed parameters

revealed that a Pf-parasitized RBC may exhibit firm adhesion at a shear stress lower than

0.317 Pa for the default case and can completely detach from the wall at higher wall shear

stresses. At low shear stresses, adhesion forces are strong enough to counteract the stress

exerted on the cell by hydrodynamic flow resulting in its firm sticking to the lower wall.

On the contrary, at high shear stresses existing bonds do not provide sufficiently strong

adhesive interactions which yields RBC detachment from the wall. RBC visualizations

showed that its detachment at high shear stresses occurs during the relatively fast motion

of RBC flipping, since the contact area at that step corresponds to its minimum. However,

in experiments [11] Pf-parasitized RBCs which moved on a surface coated with the purified

ICAM-1 showed persistent and stable rolling over long observation times and a wide range of

wall shear stresses between 0.2 Pa and 2 Pa. This suggests that there must be a mechanism

which stabilizes rolling of infected RBCs at high shear stresses. This fact is not surprising

since for example leukocyte adhesion can be actively regulated depending on flow conditions

and biochemical constituents present [185, 77].

To stabilize RBC binding at high shear stresses we introduce adaptivity of the bond

spring constant (ks) with a linear dependence on the flow shear stress. Thus, ks is in-

creased or decreased proportionally to an increase or decrease in the shear stress. Figure

4.36 presents the average rolling velocity of a Pf-parasitized RBC in comparison with exper-

iments of cell rolling on a surface coated with purified ICAM-1 [11]. The simulated average

velocities show a near-linear dependence on the shear stress and are in good agreement

with experiments. An observed discrepancy at the highest simulated shear stress suggests

that a further strengthening of cell-wall bond interactions may be required. However, the

simulated value remains between the 10th and the 90th percentiles found in experiments.

The dependence of the RBC rolling velocity on shear stress found in experiments is

clearly non-linear. Therefore, the assumption of linear dependence of ks on the shear stress

is likely to be an oversimplification. In addition, there may be a change in bond association

and dissociation kinetics with shear stress which would be able to aid in rolling stabilization

of infected RBCs at high shear rates. Our simulations suggest that adhesive dynamics of

Pf-parasitized RBCs is not sensitive to a slight change (below 30% − 40%) in k0
on and



151

Shear stress (Pa)

av
er

ag
e

ve
lo

ci
ty

(
m

/s
)

0 0.5 1 1.5
0

5

10

15

20

25

30 simulations, mean
experiments, mean
experiments, 25th and 75th percentiles
experiments, 10th and 90th percentiles

µ

Figure 4.36: Average rolling velocity of infected RBCs depending on the shear stress in
comparison with the experiments of cell rolling on purified ICAM-1 [11]. Experimental
data include mean values and curves that correspond to the 10th, 25th, 75th, and 90th
percentiles.

k0
off ; however, cell dynamics may be strongly affected if these parameters are changed

considerably as seen in the leukocyte dynamics simulations in section 4.4.3. Moreover,

experimental data show a much larger scatter in the average RBC velocity for different cells

observed than that in simulations (not shown). This is likely to be related to non-uniform

distributions of receptors on the RBC membrane and ligands on the wall. In the simulations,

distributions of both receptors and ligands are fixed and are nearly homogeneous with

approximately the same area occupied by each receptor or each ligand. A scatter in behavior

among distinct RBCs in the simulations is solely related to the stochastic nature of the

adhesive model. However, in experiments irregular distributions of receptors and ligands

are likely to significantly contribute to a scatter in RBC adhesive dynamics. Next, we show

an example where it appears to be important.

Antia et al. [11] also examined adhesive dynamics of Pf-parasitized RBCs on a surface

covered with grown mammalian CHO cells. Most of the infected RBCs showed persistent

firm adhesion with infrequent complete detachment. This behavior was not attributed to

the presence of any other types of ligands which may be expressed by the mammalian CHO

cells, since it is believed that they expose the same ligands as ICAM-1. The flow micro-

environment was identified to potentially contribute to the difference in RBC adhesive
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dynamics on purified ICAM-1 and on mammalian CHO cells.

Adhesive behavior of Pf-parasitized RBCs, explored by means of a numerical simulation

for various parameters, revealed several types of cell dynamics such as firm adhesion, RBC

peeling off the surface followed by flipping from its one side to the other or by detachment

from the wall, and very slow slipping along the wall. However, the video containing an

example of RBC adhesive dynamics on the mammalian CHO cells from experiments [11]

shows firm adhesion of Pf-parasitized RBCs for some time followed by a sudden detachment.

In contrast, firm adhesion in simulations appears to always be stable with no detachment

within the simulated time of approximately 30 s. Note that the RBC motion in experiments

before the detachment displays very slow slipping along the surface due to the hydrodynamic

flow and random collisions with other flowing RBCs. Considering RBC adhesive dynamics

observed in simulations and experiments it is likely that the sudden complete detachment

from the wall in this case is caused by RBC slipping into a wall region with a limited number

of ligands available for binding.

To verify this hypothesis we run a simulation in which ligand sites are removed from

the wall area between 30 µm and 40 µm in the x direction. RBC slipping along the wall is

achieved for the following simulation parameters: kc = 1.85×10−18 J , ks = 3.42×10−6 N/m,

and γ̇ = 6.7 s−1, while the other parameters are the same as in the default case (see table

4.8). Figure 4.37 presents RBC displacement along the x coordinate (left) and instantaneous

velocity (right). RBC displacement shows a slow slipping along the surface continued up to
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Figure 4.37: Displacement (left) and velocity (right) of a Pf-parasitized RBC along the wall
for the case of sudden cell detachment.

an x coordinate between 30 µm and 40 µm, where a complete cell detachment occurs due to
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no ligands present for binding. The corresponding cell velocity in figure 4.37 (right) confirms

the described dynamics. The simulation results are in good qualitative agreement with the

RBC dynamics on the mammalian CHO cells found in experiments [11]. At this time, no

other change in physical parameters of cell adhesion was found to be able to reproduce this

dynamics.

4.4.4.3 Dependence of RBC adhesive dynamics on membrane properties

In this section, the adhesive dynamics of Pf-parasitized RBCs in shear flow is described for

different membrane properties such as bending rigidity and Young’s modulus. Figure 4.38

presents several snapshots of a rolling RBC along a wall with the membrane bending rigidity

five times larger than that for the default case. This plot illustrates that the membrane

Figure 4.38: Top and side views of several snapshots of a rolling RBC with the bending
rigidity kc = 1.85 × 10−18 J . Coordinates along the wall for different snapshots are shifted
in order to separate them for visual clarity. Blue particles are added as tracers during
post-processing to show membrane dynamics.

surface is much smoother than in the case of low bending rigidity in figure 4.33. High

bending rigidity is able to resist stresses exerted by the hydrodynamic flow showing no local

buckling of the membrane. However, the Pf-parasitized RBC experiences strong membrane

deformations during the peeling stage of the flipping motion similar to those seen for RBCs

with low bending resistance.

Figure 4.39 shows the average rolling velocity (left) and the average contact area (right)

with respect to the membrane bending rigidity normalized by its default value given in
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table 4.8. RBCs with lower bending rigidity roll with lower velocity along the wall than
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Figure 4.39: Average RBC rolling velocity (left) and average contact area (right) for different
membrane bending rigidities normalized by 3.7 × 10−19 J .

those with higher bending resistance. Figure 4.39 (right) shows that more compliant RBCs

form a larger contact area with the solid surface resulting in a larger number of bonds

connecting cell receptors with the wall ligands. Hence, softer cells experience stronger

binding interactions with the wall which slows down their rolling motion. Note that for

normalized bending rigidities larger than approximately 7 − 8, RBC rolling velocity and

contact area seem to level off to constant values. This indicates that the RBC adhesive

dynamics becomes independent of the membrane bending rigidity if the RBC is sufficiently

stiff.

Further, the effect of the membrane Young’s modulus on RBC adhesive dynamics is

considered. The Young’s modulus of Pf-parasitized RBCs increases during intra-cell para-

site development which was discussed in section 3.3.4. The default case of RBC adhesive

dynamics presented above corresponds to the last stage of parasite development (schizont

stage) with the Young’s modulus about ten times larger than that of a healthy RBC. How-

ever, adhesion of a Pf-parasitized RBC also occurs at the trophozoite stage of parasite

development which precedes the schizont stage and is characterized by a five-fold increase

in the membrane Young’s modulus in comparison with that of healthy RBCs. Therefore, the

Young’s modulus in simulations is varied from its value for healthy RBCs (Y = 18.9× 10−6

N/m) to that of the schizont stage given in table 4.8.

Figure 4.40 presents successive snapshots of a rolling RBC with the same membrane

properties as a healthy RBC. The plotted sequence of RBC snapshots shows that the cell
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Figure 4.40: Top and side views of several snapshots of a rolling RBC with the Young’s
modulus Y = 18.9 × 10−6 N/m. Coordinates along the wall for different snapshots are
shifted in order to separate them for visual clarity. Blue particles are added as tracers
during post-processing to show membrane dynamics.

crawls on the wall in contrast to the flipping dynamics found in the case of a high Young’s

modulus. The physics of this transition has the same basis as the tumbling-to-tank-treading

transition in shear flow discussed in section 3.5. In order for a RBC to undergo a tank-

treading motion in shear flow a certain energy barrier has to be exceeded. Hence, RBC

tumbling in shear flow is observed if shear forces exerted by hydrodynamic flow are not

strong enough to overcome the tank-treading energy barrier which depends roughly linearly

on the membrane Young’s modulus. By analogy, an adherent RBC crawls along the wall

in a tank-treading like motion if the tank-treading energy barrier is exceeded by near-

wall shear forces as seen in figure 4.40. However, a sufficient increase in the membrane

Young’s modulus hinders RBC tank-treading which forces the cell to peel off the surface

with a consequent flipping from one side to the other. Thus, the flipping dynamics of Pf-

parasitized RBCs is mediated by the increased membrane stiffness. In addition, it can be

affected by the presence of a rigid parasite inside the cell which will be discussed in the next

section.

Figure 4.41 shows the average rolling velocity (left) and the average contact area (right)

with respect to the membrane Young’s modulus normalized by its value for healthy RBCs.

Stiffer RBCs roll with faster velocity, since their contact area is smaller than that of softer

RBCs resulting in weaker adhesive interactions with the wall. A similar conclusion was
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Figure 4.41: Average rolling velocity (left) and average contact area (right) for different
Young’s moduli normalized by the value Y = 18.9 × 10−6 N/m.

drawn in simulations of leukocyte adhesive dynamics for varying membrane stiffness [108,

156]. Note that the transition from crawling dynamics to flipping behavior occurs at a

Young’s modulus of approximately three times larger than that of healthy RBCs. This

confirms that Pf-parasitized RBCs at the trophozoite stage of parasite development are

subject to flipping dynamics.

4.4.4.4 Influence of a rigid parasite on adhesive dynamics

Up to this point, Pf-parasitized RBCs were modeled as thin stiff membranes filled with a

Newtonian fluid. Under realistic conditions Pf-parasitized RBCs contain a “rigid” parasite

undergoing growth. Recent experiments [158] suggest that the volume of cytosol may be

reduced three-fold in the later stages of intra-cell parasite development in comparison with

that of healthy RBCs indicating that the parasite can take up a considerable volume inside

a RBC. A sufficiently large parasite can provide a rigid backbone inside a RBC which may

strongly affect RBC adhesive dynamics and contribute to the flipping behavior described

above.

The parasite is modeled by a collection of DPD particles uniformly distributed within

the cylindrical volume with a radius of 3.3 µm and a height of 0.2 µm. This set of particles

is placed inside the modeled RBC and constrained to undergo rigid motion. In order

to prevent the parasite body from crossing the RBC membrane, we introduce Lennard-

Jones interactions between the parasite body particles and membrane vertices with the

parameters ε = 1.0 and σMD = 0.5 (see section 2.2.1 for details). However, the parasite
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swims freely in the RBC cytosol. The number of DPD particles that represents the RBC

cytosol is reduced according to the volume occupied by the parasite body. The simulation

parameters for the membrane and adhesive interactions are the same as in table 4.8. Figure

4.42 presents successive snapshots of a rolling RBC with a rigid parasite inside the cell.

The plot confirms that the parasite body serves as a rigid backbone that contributes to

Figure 4.42: Top and side views of several snapshots of a rolling RBC with a parasite body
inside the cell drawn in green. Coordinates along the wall for different snapshots are shifted
in order to separate them for visual clarity. The RBC membrane is partially transparent.

RBC flipping dynamics. The RBC membrane displays local buckling due to its low bending

rigidity, which is consistent with the RBC visualizations in figure 4.33. However, the RBC

does not experience such a severe flexural deformation during cell peeling off the wall as

observed in figures 4.33 and 4.38. Here, the parasite body constrains the RBC membrane

by supplying a rigid support, which forces RBC flipping without a substantial bending.

Figure 4.43 shows the corresponding RBC displacement (left) and instantaneous velocity

(right). RBC displacement and velocity display a more erratic pattern than that in figure

4.34. For example, the curves in figure 4.43 indicate that there are several time segments

where the Pf-parasitized RBC shows firm adhesion for several seconds. Furthermore, firm

adhesion may be followed by several fast flips of the RBC along the surface characterized by

two closely located peaks of velocity around the time of 20 s. Visualizations of cell dynamics

also revealed that the smaller peaks in cell velocity in figure 4.43 (right) correspond to a

tank-treading like motion facilitated by the parasite body. This occurs due to the parasite
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Figure 4.43: Infected RBC displacement (left) and velocity (right) along the wall for the
case of explicit modeling of the rigid parasite body inside the cell.

being freely suspended in the RBC cytosol. A proper positioning of the parasite body

inside the RBC may result in a stress on the front part of the membrane forcing the RBC

into a crawling like motion. Figure 4.44 presents RBC displacement across the flow in

z direction (left) and instantaneous contact area (right). These plots also display more
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Figure 4.44: RBC displacement across the wall (left) and the cell contact area (right) for
the case of explicit parasite modeling.

irregular patterns of the displacement across the flow and contact area than those in figure

4.35 consistent with the RBC displacement and velocity shown in the previous figure.

The presence of a rigid body inside a RBC significantly affects the RBC adhesive dy-

namics resulting in a more erratic behavior in comparison with the more regular adhesive

dynamics of RBCs with no parasites. A thin disk to represent the parasite body was con-

sidered; however, a different geometrical form or size of the parasite may have a different

effect on RBC adhesive dynamics. Therefore, an experimental characterization of the par-
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asite geometry for different stages of parasite development would be of great interest. In

addition, the modeled parasite body was freely suspended in the RBC cytosol, while under

realistic conditions it is likely that the parasite has some attachments to the membrane,

since it exposes adhesive proteins on the membrane surface to mediate binding to the wall.

These unresolved issues require further experimental and numerical investigation.

4.4.4.5 Adhesion of Pf-parasitized RBCs in microchannel flow

A flow of a RBC suspension is simulated in a rectangular microchannel with the dimensions

100 × 30 × 50 µm and periodicity in the x direction. This geometry is similar to a flow

chamber employed in experiments [11]. The RBC suspension is characterized by Ht = 0.1

and a parasitemia level of 10% where the infected cells correspond to the schizont stage of

intra-RBC parasite development with the parameters given in table 4.8. Ligand sites are

placed on a square lattice on the lower wall in the y direction with the lattice constant

d = 0.5 µm. The flow is driven by a uniform constant force applied to all particles to mimic

the pressure gradient. In addition, RBCs are subject to the buoyant force which is set to

be five times larger than that used in the previous simulations. This forces a faster contact

between RBCs and the lower wall and facilitates a faster binding of Pf-parasitized RBCs

to the wall to overcome the difficulty of a limited total time for which simulations can be

advanced. The total physical time in simulations is limited by approximately one minute

due to the computational expense, while the corresponding flow in experiments [11] was

observed over 10 − 20 minutes.

Figure 4.45 shows the velocity (Vx) contour of the flow of RBC suspension in a rectan-

gular microchannel. The flow is nearly symmetric in y and z with the maximum velocity

of approximately 150 µm/s in the center of the microchannel. The maximum shear rate

measured at the lower wall is equal to 27 s−1 which is close to the value in table 4.8 used

previously for the default case. This yields a maximum wall shear stress of approximately

0.26 Pa.

After several seconds some Pf-parasitized RBCs may closely approach the lower wall

where cell binding can occur. Figure 4.46 presents snapshots of three examples of binding

of Pf-parasitized RBCs to the wall. The example “A” shows RBC binding when the cell

is oriented nearly perpendicular to the wall. The RBC continues rolling along the wall for

several seconds with a relatively small contact area. In “B”, RBC binding starts with a
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Figure 4.45: Vx velocity contour of the flow in a rectangular microchannel.

A

B

C

Figure 4.46: Snapshots of RBC binding to the lower wall of a microchannel. A - Pf-
parasitized RBC binding with small contact area, B and C - binding with large contact
area. Coordinates along the wall for different snapshots are shifted in order to separate
them for visual clarity.

small contact area formed. Subsequently, the fluid flow forces the cell to flip from its one

side to the other resulting in a binding with a large contact area. Example “C” illustrates
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Pf-parasitized RBC binding to the wall where a large contact area is instantly formed.

Figure 4.47 shows the corresponding displacements and instantaneous velocities for the

three cases. In “A”, after initial binding to the wall a RBC continues rolling on its side
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Figure 4.47: Pf-parasitized RBC displacements and instantaneous velocities for the three
examples shown in figure 4.46.

for several seconds as confirmed by its displacement and velocity plots. Eventually, the

infected RBC forms a larger contact area with the wall displayed by a substantial drop

in its velocity at t = 14 s in figure 4.47 (A), since rolling on the side is not stable and

is expected to be a transient behavior. Afterwards, the RBC exhibits flipping dynamics

similar to that discussed in section 4.4.4.2. In contrast, adhesive dynamics of an infected

RBC in example “B” shows a rapid strong binding with the wall followed by several seconds

of cell arrest. Then, at t = 9 s the RBC flips from its one side to the other after which a

repeated period of firm adhesion is observed. The z coordinate of the RBC initial binding

site is equal to approximately 45 µm which is close to the channel corner. The local shear
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rate at z = 45 µm is equal to approximately 18 s−1 in comparison with the maximum wall

shear rate of 27 s−1 resulting in a substantial decrease of local shear stresses on the RBC

exerted by the hydrodynamic flow. The local shear stresses are likely to be too small to

enforce persistent flipping dynamics, and hence, relatively long periods of firm adhesion are

observed. The RBC adhesive dynamics in example “C” confirms this idea. The infected

RBC shows a consistent flipping dynamics as seen in figure 4.47 (C). However, its position

in the z coordinate is close to the middle of the microchannel, where the wall shear stress

attains its maximum. The average rolling velocity after adhesion is equal to 6.1 µm/s in

agreement with that found in section 4.4.4.2. Note that all Pf-parasitized RBCs which

formed binding with the wall remained bound for the rest of the simulation time. Similar

observations were reported in experiments [11] of Pf-parasitized RBCs rolling on ICAM-1

in a flow chamber.

Simulation results on adhesive dynamics of Pf-parasitized RBCs in the microchannel il-

lustrate complexity of cell behavior. Adhesive dynamics strongly depends on local microflow

conditions due to varying shear stresses. Initial binding of infected RBCs may show a great

variability in cell transient dynamics; however a strong binding with the wall is eventually

formed yielding predictable flipping behavior or firm adhesion. In addition, freely flowing

RBCs may collide with adhered cells affecting their adhesive dynamics.

4.5 Summary

In this chapter blood flow is simulated for healthy conditions and in malaria disease. Blood

is modeled as a suspension of RBCs in a Newtonian fluid. Blood flow in microtubes under

healthy conditions is simulated for different Ht values and tube diameters. Velocity profiles

for different Ht values show an increase in blood flow resistance with an increase in Ht.

RBC center-of-mass distributions indicate cell migration away from the wall to the tube

center. This results in the formation of a CFL next to the tube wall and is related to the

experimentally observed Fahraeus and Fahraeus-Lindquist effects.

The Fahraeus effect is characterized by a decrease in the discharge hematocrit when the

tube diameter is increased, while the Fahraeus-Lindquist effect describes a decrease in the

blood apparent viscosity with decreasing tube diameter. The developed blood flow model

is able to closely capture changes in the discharge hematocrit and the relative apparent
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viscosity for Ht values in the range 0.15 − 0.45 and tube diameters between 10 µm and 40

µm in comparison with those found in in vitro experiments.

Fahraeus and Fahraeus-Lindquist effects are directly related to the CFL next to the wall

by providing an effective lubrication for the viscous RBC core to flow at much less friction.

Simulated CFLs are in agreement with those found in in vitro and in vivo experiments;

however, experimental CFL values show a considerable scatter which does not allow exact

quantitative comparison. Discrepancies between the simulated CFLs and in vitro data are

likely to be related to a potential RBC sedimentation, RBC aggregability, and differences in

flow rates employed, while blood flow conditions in vivo are far more complex. In particular,

CFLs in vivo are additionally affected by the presence of the glycocalyx layer, variations in

vessel diameter, upstream flow conditions such as vessel bifurcations, and the length of a

straight vessel segment where measurements are taken.

Blood flow in malaria is simulated for a range of parasitemia levels between 25% and

100%. Pf-parasitized RBCs are considerably stiffer than healthy RBCs resulting in an

increase of blood flow resistance. The maximum increase in flow resistance by approximately

50% is found for the tube diameter D = 10 µm, Ht = 0.45, and parasitemia level of 100%.

For larger tube diameters, lower Ht values, and lower parasitemia levels the increase in

blood flow resistance is below 50%. In addition, the effect of RBC geometry is examined,

since Pf-parasitized RBCs at the latest stage of intra-cell parasite development are found to

have a near-spherical shape. Near-spherical geometry results in an additional increase in the

blood flow resistance by approximately 10%. Based on the obtained simulation results, we

estimate the increase in blood flow resistance in malaria to be below 25% because realistic

parasitemia levels are below 10% for the most of the malaria cases. These results are based

on the assumption of no adhesion of Pf-parasitized RBCs at the wall.

Blood flow through a constriction of a microfluidic channel shows the focusing effect

described by an enhanced CFL downstream. This effect appears to be due to RBC cross-

stream migration within the constriction to its center. The focusing effect is studied for

different constriction widths and lengths, viscosities of the suspending medium, Ht values,

and RBC membrane rigidities. More pronounced RBC focusing is achieved for narrower and

longer constrictions, larger solvent viscosities, lower Ht values, and softer RBCs, since RBC

migration to the constriction center is stronger for these conditions. The simulation results

are in qualitative agreement with the corresponding experiments; however, quantitative
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comparison requires precise control of upstream flow conditions and RBC distribution which

strongly affect RBC focusing. In addition, our results suggest that the focusing effect is

likely to become negligible at high Ht values such as 0.45.

Adhesive dynamics of leukocytes and Pf-parasitized RBCs is simulated based on the

stochastic bond formation/dissociation model. Freely circulating WBCs are spherical in

shape, while adhered WBCs resemble a “tear-drop” like shape and show different adhesive

dynamics depending on flow conditions and adhesive interactions. Four principal states of

WBC adhesion in shear flow are defined based the average pause time and cell velocity:

firm adhesion, stop-and-go rolling, stable rolling, and free motion. The on-off state diagram

of WBC adhesion dynamics is calculated to identify regions of the defined states for various

unstressed on and off rates. Firm adhesion occurs if the off-rate is below a critical value

under which bond dissociation is an extremely rare event. Stop-and-go rolling is found in

a narrow range of the off rates above the critical value for firm adhesion, where infrequent

bond dissociations can occur resulting in an abrupt WBC motion. In contrast to the stop-

and-go rolling, stable WBC rolling is characterized by a relatively continuous WBC motion

along the wall and is achieved when the on and off rates are in a proper balance. Finally,

free WBC motion is found when the rate of bond dissociation is more significant than

the on-rate such that adhesive cell-wall interactions are not sufficiently strong to resist the

hydrodynamic lift exerted by fluid flow. Available experimental data show good agreement

with the simulation results and allow us to identify regions in the on-off state diagram that

correspond to realistic conditions.

Pf-parasitized RBCs adhering to vascular endothelium in a flow show “flipping” dynam-

ics. RBC flipping is characterized by the cell peeling off the wall due to forces exerted by the

hydrodynamic flow with a subsequent flip from its one side to the other. This behavior ap-

pears to be due to an increased membrane stiffness of Pf-parasitized RBCs. Healthy RBCs

under the same conditions of adhesive interactions crawl along the wall in a tank-treading

motion. If the membrane Young’s modulus is larger than approximately three times that of

healthy RBCs, transition to flipping dynamics is observed because the tank-treading mo-

tion is hindered by a proportional increase in the tank-treading energy barrier. In addition,

the adhesive dynamics of Pf-parasitized RBCs depends on the membrane bending rigidity.

More compliant RBCs show stronger membrane deformations during adhesion. Also, they

are able to form a larger contact area with the wall which slows down their rolling velocity
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in comparison to RBCs with higher membrane bending rigidity.

The simulated adhesive dynamics of infected RBCs is in agreement with experiments

of Pf-parasitized RBCs rolling on ICAM-1 where flipping dynamics was observed for a

wide range of wall shear stresses. Adhesive dynamics on mammalian CHO cells found in

experiments shows prolonged firm adhesion of Pf-parasitized RBCs with a slight slipping

on the wall and rare detachments. The firm adhesion is found to be exceptionally stable in

simulations with no RBC detachments observed. Thus, our simulations suggest that this

behavior is likely to be caused by an irregular distribution of ligands on the wall. Firmly

adhered RBCs may slip into a region with a small number of ligands available for binding

which would cause their detachment from the wall. In addition, several simulations are

performed with explicit modeling of a rigid parasite inside infected RBCs. The presence of

a rigid body inside RBCs strongly affects the simulated adhesive dynamics characterized

by more irregular RBC flipping with short periods of intermittent firm adhesion. Adhesive

dynamics of Pf-parasitized RBCs in a rectangular microchannel is further complicated by

variations in local wall shear stresses and the presence of other healthy and infected RBCs

in the flow.

In conclusion, the developed model is able to capture blood flow properties under healthy

conditions and in malaria. It accurately reproduces blood flow properties and incorporates

realistic adhesive interactions of WBCs and Pf-parasitized RBCs. The developed model

may aid to make realistic predictions of the possible course of the malaria disease, and

enhance current malaria treatments.



Chapter 5

Depletion layer and polymer

migration in micro- and

nano-channels for dilute polymer

solutions

5.1 Introduction

Polymer depletion and cross-stream migration phenomena in micro- and nano-channels are

important in microfluidic devices and a variety of biological systems. These effects might

be relevant in physical processes such as adsorption, lubrication, wall-slip, and polymer

transport. Depletion layers arise from steric wall repulsion [43, 13], when a polymer solution

is placed in confined geometries. Depletion was observed in the region next to the fluid-

solid interface in several experiments [72, 29], and was simulated using various methods

including: Monte Carlo (MC) [138, 21, 18], Lattice Boltzmann (LBM) [199, 30], Brownian

Dynamics (BD) [30, 112], and Dissipative Particle Dynamics (DPD) [139]. An asymptotic

analytical solution [58] of the depletion layer for an ideal chain in the presence of purely

repulsive wall predicts depletion to be effective at about of one radius of gyration from the

confining surface. Therefore, in micro- and nano-channels the layer is often of the same

order as the channel width, and greatly affects the polymer distribution across the channel.

In presence of flow (e.g. Poiseuille, Couette) the polymer migration phenomena changes

166
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the polymer distribution across the channel. Several experimental observations [72, 29] show

polymer migration from the walls towards the channel centerline. However, simulations

[199, 112, 139, 200] showed that polymer migration might proceed towards the walls as

well as to the channel centerline. Two models of polymer migration which emphasize the

importance of polymer hydrodynamic interactions were recently proposed by Graham et

al. [130] and by Usta et al. [200]. The former predicts polymer migration away from the

walls and attributes this effect to wall-polymer hydrodynamic interactions and a gradient in

chain mobility. The latter states that polymer migration can proceed both away from and

to the wall, and is determined by the balance of several effects: hydrodynamic lift, rotation,

and drift of the polymer. Recent simulations [199, 30, 112, 139] of polymer migration in

Poiseuille flow showed a development of two symmetric off-center peaks (local maxima)

in the polymer distribution between the wall and the centerline. These peaks become

more pronounced with increasing Peclet or Reynolds number. In contrast, the polymer

distribution in Couette flow yielded a single local maximum at the channel centerline. Thus,

the presence of two symmetric off-center peaks in pressure-driven Poiseuille flow appears to

be related to variable shear rates. The above unresolved issues suggest further investigation.

Here we employ DPD [105, 92] to simulate the depletion layer and polymer migration.

We systematically investigate the dependence of wall-polymer depletion on: the polymer

model, level of chain representation, solvent quality and relative wall-polymer-solvent inter-

actions. By means of suitable scaling of simulated depletion layers we compare our results

to the asymptotic lattice theory solution [58] of depletion near a repulsive wall. Also, we

investigate polymer migration in Poiseuille flow, and we offer an argument which attributes

polymer migration to wall-polymer hydrodynamic interactions and to the well-known Segre-

Silberberg effect [176, 177].

In the next section some details of the polymer models and the boundary conditions

in DPD are presented. Section 5.3 contains simulation results for a polymer solution in

a channel in the static case (no net flow), while section 5.4 presents migration results for

dilute-solution Poiseuille flow at different Peclet and Reynolds numbers. We conclude in

section 5.5 with a brief discussion.
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5.2 Modeling details

5.2.1 Polymer models

The polymer model in our simulations is based on the well-known linear bead-spring poly-

mer chain representation. Each bead in a polymer chain is subject to three DPD forces

mentioned in section 2.2.2 and intra-polymer forces arising from neighboring bead-to-bead

interactions. Here we consider flexible chains, so two consecutive segments of a chain have

no preferred angle between them. Below we outline two spring laws which define force

contributions of bead-to-bead interactions.

1) FENE spring: Each pair of particles connected by the Finitely Extensible Non-linear

Elastic (FENE) spring is subject to the non-linear potential.

UFENE = −ks

2
r2maxlog

[

1 − |ri − rj |2
r2max

]

, (5.1)

where rmax is the maximum spring extension and ks is the spring constant. When the

distance between two connected beads approaches rmax, the spring attractive force goes to

infinity, and therefore the length greater than rmax is not allowed.

2) Fraenkel spring: Two connected beads interact through the quadratic potential with

a fixed equilibrium length req.

UFraenkel =
ks

2
(|ri − rj | − req)

2 , (5.2)

where ks is the spring constant. In contrast to the FENE model, this type of spring virtually

has no limit on the maximum allowed distance between two beads. However, the minimum

of potential energy corresponds to the length req which is preferred equilibrium inter-bead

distance. Sometimes this model is also called the harmonic spring.

5.2.2 Wall boundary conditions

In order to enforce no-slip boundary condition (BC) at the fluid-solid interface we employ the

equilibrium BC model with adaptive shear correction (EBC-S) [74]. At the pre-processing

stage, the computational domain covers both fluid and solid wall regions and is assumed to

be periodic in all directions. The hydrostatic simulation is run until the equilibrium state

is reached. In the solid region the particles are then frozen at some instant of time, and
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later are used to model solid walls in combination with bounce-back reflection at the fluid-

solid interface. In addition, we use an adaptive shear procedure illustrated in the figure 5.1.

Subregions of the computational domain of width L = rc adjacent to the fluid-solid interface
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Figure 5.1: The equilibrium boundary condition with shear procedure (EBC-S).

in both fluid and wall regions are considered. We divide the fluid and wall subregions into

bins of height h, whose value determines the accuracy of the near-wall velocity profile. If the

velocity profile changes in the direction parallel to the wall these subregions can be divided

into bins along the wall. During the simulation, in each bin in the fluid subregion the

time-averaged velocity vav is collected over a specified number of time-steps. The velocities

of the particles inside each bin in the wall subregion are set to be opposite, i.e. −vav,

to the average velocity in the corresponding fluid subregion bin, which is symmetric with

respect to the fluid-solid interface. The wall particles (shown as open circles) do not move

in the simulations, and carry only the velocity information needed for the calculation of the

dissipative force. A complete description of the BC model can be found in [74].

5.3 Confined hydrostatics of dilute polymer solutions

In this section we present results of DPD simulations for the static case of dilute polymer

solutions confined between parallel plates separated by gap H in the absence of any imposed

flow. Dilute solutions are composed as a single polymer chain immersed in a Newtonian-like

fluid solvent. Numerical measurements are taken of the polymer center-of-mass distribution,
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the bead distribution and the stresses across the channel.

Table 5.1 presents the parameters used in DPD simulations. The number density n of

n rc γ σ kBT

3 1 4.5 3 1

Table 5.1: DPD simulation parameters. Confined hydrostatics of dilute polymer solutions.

a solution includes solvent and polymer particles. The conservative force coefficients will

be specified in text corresponding to a particular simulation. All simulations employed the

modified velocity-Verlet integration scheme with λ = 0.5 [92], which corresponds to the

standard velocity-Verlet scheme widely used in Molecular Dynamics simulations. The time

step was set to 0.01. Solid walls were placed at y = 0 and y = H, and modeled by freezing

DPD particles at equilibrium in combination with bounce-back reflection at the fluid-solid

interface. The number density of the walls was that of fluid. In addition, adaptive shear

procedure (EBC-S type) [74] was used in order to enhance dissipative interactions and

ensure no-slip condition at the fluid-solid interface. For EBC-S we used a 1× 5× 1 bin grid

for all walls in order to compute the near-wall velocity profile and mimic a counter flow in

the wall region.

5.3.1 Simulations with several bead-spring models

Employing two different spring models we performed several DPD simulations of a chain

in a static solvent in the channel described above. The polymer chain consists of 16 beads.

Three sets of simulation parameters are shown in table 5.2, where ass is the repulsive force

spring ks rmax req ass app aps awp Rg

FENE 10 2 N/A 25 25 17.5 17.5 1.6264

FENE 20 2.5 N/A 25 25 17.5 17.5 1.4437

Fraenkel 10 N/A 0.7 25 25 17.5 17.5 1.9207

Table 5.2: Simulation parameter sets for different bead-spring models.

coefficient between solvent-solvent particles, app - polymer-polymer (beads), aps - polymer-

solvent, and awp - wall-polymer particles respectively. Rg is the polymer radius of gyration

obtained from equilibrium simulations of dilute solution in large enough periodic domain.
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The choice of repulsive interactions defines a polymer solution with good quality solvent,

which was pointed out in [117]. The exponent k in equation (2.11) was set to 0.25 that

corresponds to the kinematic viscosity of a fluid 0.54, which was obtained using the periodic

Poiseuille flow method of [14]. The height of the channel H was set to 3Rg. In the other

two dimensions system is periodic and has a length more than 2H in order to ensure no

dependence of the results from the domain size. The simulation times were set to allow

the chain diffusion distance to be at least 40H. Furthermore, 32 statistically independent

copies (trajectories) of each simulation were run simultaneously on a Blue Gene TACC

supercomputer. The combination of trajectories and long enough run times provided us

with smooth chain center-of-mass results even though only one polymer chain is present in

the simulation domain.

The results revealed that the polymer center-of-mass and the bead distributions across

the channel collapse onto one curve for all three simulations. Figure 5.2 shows the center-

of-mass distribution (left) and polymer bead distribution (right) for three polymer chains

with the distance from the wall normalized by Rg. These and all subsequent distributions

are shown over the half channel because of symmetry with respect to the centerline, and

hence they have been normalized with area of one half. Thus, it appears that polymer
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Figure 5.2: Center-of-mass (left) and bead (right) distributions for three N = 16 bead
chains.

distribution in dilute solution is independent of polymer model used, and is correlated

only by a mesoscopic polymer characteristic length such as the radius of gyration or the

end-to-end distance.
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5.3.2 Effect of the solvent quality

Polymers and macromolecules can have dissimilar properties and behavior in different sol-

vents. In fact, polymer characteristics can drastically change depending on the solvent

quality. It is well-known that the quality of the solvent exhibits different scaling laws for

static and dynamic polymer properties (e.g. Rg, D). Here we performed DPD simulations

to identify the effect of solvent quality on the polymer distribution in the channel. We com-

pare ideal chains to FENE chains in both poor and good solvents respectively. For a good

solvent, polymer-solvent interactions are energetically favorable resulting in an expansion

of polymer chains. For a poor solvent, polymer-polymer interactions are preferred yielding

a contraction of polymer chains. Each chain consists of N = 100 beads and is placed in

a channel of gap H = 3Rg. The simulation parameters are summarized in table 5.3. The

spring solvent ks rmax req ass app aps awp Rg

FENE good 20 2 N/A 25 25 17.5 17.5 4.7373

FENE poor 20 2 N/A 25 25 25 25 3.9235

Fraenkel ideal 10 N/A 0.7 0 0 0 0 3.5691

Table 5.3: DPD parameter sets for solvent quality calculations.

different spring model for the ideal chain is required due to the absence of DPD repul-

sive interactions, which for a FENE spring would yield zero equilibrium distance between

connected beads because it exerts only attractive force. However, Fraenkel spring exhibits

a non-zero equilibrium length explicitly. Furthermore, the results shown in figure 5.2 ex-

hibited no dependence on the spring model. The above parameters are chosen to match

the solvent quality as in [117]. The exponent k (eq. 2.11) is set to 1.0, so that kinematic

viscosity of the fluid is 0.2854.

Figure 5.3 shows the center-of-mass distribution (left) and the polymer bead distribution

(right) for the ideal (Fraenkel) polymer and FENE chains in poor and good solvents. In

contrast to the insensitivity of the distributions to different polymer models (fig. 5.2),

solvent quality has an effect on the polymer distribution. The ideal chain exhibits larger

wall depletion (more confined distribution around the center) compared to chains in good

and poor solvents. A good solvent yields the smallest wall depletion and poor solvent

curve falls in-between good solvent and ideal chain. The wall depletion force on a chain is
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Figure 5.3: Effect of the solvent quality on the center-of-mass (left) and bead (right) distri-
butions for N = 100 chains.

expected to be repulsive due to the cost in free energy for the loss of the available polymer

configurations near the wall. Furthermore, the depletion potential and resulting wall force

are weaker for chains with excluded volume (EV) interactions (good solvent) than for ideal

chains as theoretically predicted by Schlesener et al. [170], where they concluded that

EV interactions effectively reduce the depletion effect. As a result we observe larger wall

depletion for ideal chains. This is illustrated by the pressure distribution across the slit.

Figure 5.4 shows the excess pressure distribution in the channel with the virial contribution

of pair interactions and without the inter-bead spring forces. Hence, only wall-polymer

and solvent-polymer interactions contribute to the wall depletion. The excess pressure is

obtained by subtraction of the equilibrium pressure in a large box. The pressure gradient

for the ideal chain as we approach the wall from the centerline is larger than that of poor

and good solvent. The larger pressure difference drives the polymer further away from the

wall and contributes to larger wall depletion. The least pressure gradient and thus the

smallest wall depletion was found for the good solvent case.

For complete analysis of the results we compute average polymer lengths in all three

directions (x, y and z) across the channel which characterize relative polymer shapes in the

slit. We define local radius of gyration depending on the distance from the wall y as

Rg(y) =
[

(Rx
g (y))2 + (Ry

g(y))
2 + (Rz

g(y))
2
]

1

2 , (5.3)

where Rx
g (y) =

〈

1
N

∑N
i=1(xi − xcm(y))2

〉

, 〈·〉 denotes time averaging, xi are bead coordi-
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Figure 5.4: Excess pressure across the channel forN = 100 bead chain in solvents of different
quality.

nates in the x-direction, and xcm(y) is the center of mass at y. Ry
g(y) and Rz

g(y) are defined

analogously. Figure 5.5 presents the local radius of gyration normalized by the unconfined

Rg (left) and the ratio of Rx
g (y) and Ry

g(y) (right) which identifies the relative polymer shape

across the channel. The left-hand plot in the figure 5.5 shows that when confined in a slit
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Figure 5.5: Local radius of gyration (left) and relative shape of the polymer (right) for
N = 100 bead chain in solvents of different quality.

the polymer occupies a volume slightly smaller than it would in the unconfined state, and

that the chain takes on a more compact volume as it approaches the wall. The right-hand

plot of figure 5.5 shows that during the approach to the wall the chain elongates in the
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x- and z-directions relative to the y-direction, and that its shape is nearly independent of

solvent quality. As expected by symmetry Rz
g(y) was found to be statistically identical to

Rx
g (y).

5.3.3 Wall-polymer-solvent interactions

In the simulations presented above wall-polymer and solvent-polymer interactions were

identical. These are neutral walls for which no explicit adsorption or repulsion is expected.

However, real walls are known to induce adsorption or repulsion (electrostatic) of poly-

mers. A manipulation of relative wall-polymer-solvent interactions enables us to explicitly

introduce net-attractive or repulsive wall forces on the polymer. This might correspond to

adsorption and repulsion respectively, but it requires further investigation. To this end, a

polymer of N = 25 beads in a good solvent was placed in a slit of gap H = 3Rg . The simu-

lation parameters are summarized in table 5.4. Figure 5.6 presents the center-of-mass (left)

spring wall ks rmax ass app aps awp Rg

FENE neutral 10 2 25 25 17.5 17.5 2.1903

FENE repulsive 10 2 25 25 17.5 25 2.1903

Table 5.4: DPD parameter sets used in wall-polymer-solvent interaction calculations.

and the bead (right) distributions for both neutral and repulsive walls. These results are

compared to the center-of-mass distribution obtained by Usta et al. in [199] using the LBM

method for an N = 16 bead chain in a channel also of gap H = 3Rg. The repulsive wall

exhibits larger depletion compared to neutral wall. Since the results of Usta et al. [199]

fall between the neutral and the repulsive curves they correspond to a slightly repulsive

wall. To verify that the boundary condition model (EBC-S) does not introduce extraneous

effects, we have run analogous simulations using periodic BC’s. Here, the computational

domain is doubled in y-direction to give a gap of 2H = 6Rg. The left half contains polymer

solution confined between two parallel reflective walls at y = 0 and y = H, and the right

half is filled with the solvent. The system is set to be periodic in y-direction. Such a setup

corresponds to a perfectly neutral wall with no extraneous effects. The results were found

to differ by no more than the statistical error.
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Figure 5.6: Effect of wall-polymer-solvent interactions on the center-of-mass (left) and bead
(right) distributions for a N = 25 bead chain.

5.3.4 Effect of the channel width

To this point we have presented results for channels of fixed gap H = 3Rg. In this section

the effect of channel width on the wall depletion layer is investigated with simulations of a

N = 16 bead chain confined in slits having gaps of H = 3Rg, 4Rg, 5Rg, and 8Rg, and with

the parameters shown in table 5.5. Figure 5.7 presents the center-of-mass distribution of the

spring ks req ass app aps awp Rg

Fraenkel 10 0.7 25 25 17.5 17.5 1.9207

Table 5.5: Simulation parameters for the channels of various gaps.

simulated polymer confined in channels with gaps listed above. It also includes center-of-

mass distributions normalized by their maximum magnitude cmax (correspondence is shown

by arrows). For all channel widths the normalized distributions collapse onto a single curve

which clearly demonstrates that the wall-polymer depletion region reaches no further than

about 2.5Rg. Consistency of this conclusion is tested by plotting the local radius of gyration

normalized by the unconfined Rg and the ratio of components Rx
g (y) and Ry

g(y) . Figure

5.8 shows that beyond a distance of about 2.5Rg both the local size (left) and the shape

(right) of the polymer are unaffected by the wall.



177

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

y/R
g

ce
nt

er
−

of
−

m
as

s 
di

st
rib

ut
io

n

 

 

3R
g

4R
g

5R
g

8R
g

Figure 5.7: Influence of gap size on the center-of-mass distribution for a chain of N = 16
beads.
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Figure 5.8: Local radius of gyration (left) and relative shape (right) for a chain of N = 16
beads for various gaps.

5.3.5 Effect of the number of monomers N

Many theoretical results in polymer physics are asymptotic in the limit of large bead number

N . Examples are the scaling laws for the radius of gyration and for the diffusion coefficient.

To test the level of chain representation on the depletion layer we performed simulations for

a set of chains having bead numbers N = 16, 25, 100, and 500 in a channel of gap H = 3Rg,
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and with the parameters shown in table 5.6.

spring ks rmax ass app aps awp

FENE 10 2 25 25 25 25

Table 5.6: DPD parameters used in bead number effect simulations.

Figure 5.9 shows the calculated center-of-mass distributions for this set of chains, and

also the LBM results for N = 16 in a channel of the same gap by Usta et al. [199]. The
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Figure 5.9: Effect of bead number N on the center-of-mass distribution in a slit of H = 3Rg.

gap dimensions for the simulations discussed above assumed the appropriate characteristic

length to be the unconfined Rg. An alternative length scale, independent of molecular

concepts, is derivable from concentration distributions such as those of figure 5.9. This

depletion layer thickness δ is defined as,

δ

Rg
=

∫ ∞

0
(1 − c(z)

cmax
)dz, (5.4)

where z = y
Rg

, c(z) is the center-of-mass distribution and cmax = maxz≥0[c(z)]. From the

distributions of figure 5.6 equation (5.4) yields δ
Rg

= 0.837 for the neutral wall, δ
Rg

= 0.954

for the repulsive wall, and for Usta et al. [199] δ
Rg

= 0.868.

Longer chains are subject to a stronger depletion effect measured as a larger depletion
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layer thickness. Thus, it appears that when the allowable configuration space is restricted to

be a half-space the longer chains suffer a larger loss in free energy and are subject to larger

steric depletion forces. However, the analytical solution of [58] for ideal chains assumes the

center-of-mass distribution will converge to an asymptotic curve as N becomes very large.

In the figure 5.10 the center-of-mass distributions, normalized by their maximum values

cmax, for different bead numbers are compared with the asymptotic analytical solution. In

the left-hand plot the distance from the wall is normalized by the equilibrium value of the

radius of gyration Rg, and in the right-hand plot by the depletion layer thickness δ. The

LBM results [199] are for an N = 16 bead polymer in a channel of width H = 5Rg. The
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Figure 5.10: Normalized center-of-mass distributions for different bead numbers compared
with the analytical solution. The wall distance y is normalized by the unconfined Rg (left)
and depletion layer thickness δ (right).

curves in figure 5.10 show that, with lateral shifting, the numerical models closely capture

the functional forms of the analytic solution, and that the depletion layer thickness provides

the means for shifting the numerical distributions onto the analytic solution to produce an

almost common curve. The agreement is remarkable since the numerical model features

solvent explicitly represented by DPD particles whereas in the lattice model the solvent is

implicit. Figure 5.10 (left) shows that, as expected, the shorter chains have distributions

closer to the wall, and that as N goes from 100 to 500 the discrepancy between the numerical

and the analytic distribution becomes vanishingly small. For the latter the small discrepancy

may be due to the solution having been carried out with a poor solvent condition, which as

previously noted slightly weakens the depletion. The LBM curve has the largest discrepancy

probably due to the relative wall-polymer-solvent interactions mentioned in section 5.3.3
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and its small bead number N . In addition, our results agree well with the depletion layers

calculated from Monte Carlo simulations by Berkenbos et al. [18] for tubes. They also

investigated the limit of very small tubes, where the confinement greatly restricts the chain

configurations. These distributions no longer resemble those in Figures 5.7 and 5.10.

For the same simulations figure 5.11 presents the local Rg(y) normalized by its uncon-

fined value (left) and the ratio of Rx
g (y) and Ry

g(y) (right). That the longest chains have
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Figure 5.11: Local radius of gyration (left) and relative shape (right) of the polymer for
various N .

the smallest normalized local Rg(y) suggests that in the slit they adopt a more close-packed

form than their smaller counterparts even though their relative shapes are about the same.

5.4 Polymer dynamics in Poiseuille flow

This section results are presented for the Poiseuille flow of dilute polymer solutions confined

between parallel plates separated by gap H. The Poiseuille flow is driven by a uniform

pressure gradient as a force applied equally to both polymer and solvent DPD particles.

Following [199] dynamic effects of the flow will be interpreted primarily with the Peclet

number (Pe) defined as

Pe = γ̇
R2

g

D
= 4ScRe

R2
g

H2
, (5.5)

where γ̇ = 2Vc/H is the mean shear rate, Vc is the centerline velocity, and D is the polymer

center-of-mass diffusion coefficient measured in equilibrium. The Schmidt number ( Sc)
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and the channel Reynolds number (Re) are defined respectively by

Sc =
ν

D
, Re =

VcH

2ν
=
γ̇H2

4ν
. (5.6)

The discussion below invokes other Reynolds numbers based on the radius of gyration

(Reg) and Stokes-Einstein radius rb [193] of a polymer bead (Reb) which can be defined

respectively as

Reg =
γ̇R2

g

ν
, Reb =

γ̇r2b
ν
. (5.7)

In some works [30, 112], Poiseuille flow results are interpreted in terms of the Weissenberg

number Wi = τ γ̇ , where τ is derived from the long-time relaxation of the stretched polymer

chain in a stagnant solvent. Since both D and τ are derived from equilibrium data they

differ by at most a constant for a given chain. Furthermore, Wi can be expressed as a

product similar to equation 5.5 with Sc replaced by τν/R2
g, which is also a purely material

property.

5.4.1 Velocity profile

The Poiseuille velocity profile between walls placed at y = 0, H for a Non-Newtonian fluid

with a power-law shear-viscosity is given by

V (y) = Vc

[

1 −
(

y −H/2

H/2

)1+ 1

p

]

, Vc =
p

1 + p

(

ρf

κ

) 1

p
(

H

2

)1+ 1

p

, (5.8)

where p is the power-law index, f the uniform driving force per unit mass, κ the power-law

shear-stress coefficient and ρ the mass density.

Figure 5.12 shows velocity profiles for an N = 100 bead-chain solution in a gap of 3Rg at

Pe = 50, 100, and 200. The calculated velocity profiles of the suspension are well-described

by the power law (eq. 5.8) with p = 0.88. The dashed curves are the corresponding

Newtonian profiles for p = 1. The average velocity of the particles within a slice ∆y of the

gap is assigned to be the local continuum velocity at the slice center. Hence continuum wall-

velocities cannot be calculated directly. However, as expected from the particle boundary

conditions, there appears to be no slip at the wall since nearby velocities extrapolate to zero

within statistical error. The Re, Reg and Reb numbers scale linearly with Pe, and for the

flow of Pe = 200 they are Re = 39.49, Reg = 17.55, and Reb = 0.055 respectively, where
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Figure 5.12: Poiseuille velocity profiles for several Pe’s, N = 100.

Rg = 3.9235, rb = 0.22, and ν = 0.2854.

5.4.2 Polymer migration

In addition to the hydrostatic depletion already presented, Poiseuille flow gives rise to

further cross-flow migration of the polymer. This dynamic migration was investigated with

a chain of N = 16 beads with the parameters shown in table 5.7. The solvent viscosity for

spring ks rmax ass app aps awp Rg

FENE 10 2 25 25 25 25 1.36205

Table 5.7: Simulation parameters used in polymer migration calculations.

all cases is ν = 0.54.

The simulations were performed at Pe numbers of 50, 100, and 200 for several channels.

Figures 5.13, 5.14, and 5.15 correspond to the gap widths H = 3Rg, 5Rg, and 8Rg respec-

tively, and display the effect of the Pe and the Re numbers on the the results for: i) the

center-of-mass distributions, ii) chain conformation distributions imaged by computation

of the three components of the local radius of gyration Rx
g (y), Ry

g(y), Rz
g(y) normalized

by their equilibrium components Rg/
√

3. In the figures the mean of the distribution is
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displayed as a horizontal line.
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Figure 5.13: Polymer center-of-mass (upper left) and conformation distributions of Rx
g

(upper right), Ry
g (lower left) and Rz

g (lower right) in Poiseuille flow, N = 16, H = 3Rg.

The center-of-mass distributions of figures 5.13, 5.14, and 5.15 respectively show the

dynamic depletion layer to be steadily reduced relative to the hydrostatic case as Pe is

increased, and that the effect is strongest for the smallest gap. In contrast, migration of

polymer from the centerline towards the walls becomes more pronounced as the gap size

increases, and between Pe = 100 and 200 the significant development is a distribution

with two off-center peaks, which is consistent with previous work [199], and similar results

obtained by various other methods were reported in [30, 112, 139, 200]. Factors contributing

to cross-stream migration are listed by Usta et al. [200] as lift, rotation, stretching and drift

of the polymer from the wall. Graham et al. [112] attribute migration to two effects: chain-

wall hydrodynamics, and chain mobility gradients due to different conformations such as a

stretched chain. The Rg-distributions show the chain to be strongly stretched in the flow
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Figure 5.14: Polymer center-of-mass (upper left) and conformation distributions of Rx
g

(upper right), Ry
g (lower left) and Rz

g (lower right) in Poiseuille flow, N = 16, H = 5Rg.

direction x when subjected to high shear rates. In view of the hydrostatic preference for the

centerline region it seems counter-intuitive that a chain prefers to occupy the region of higher

shear rates away from the centerline with its vanishing shear rate. It is plausible to attribute

the forces which drive the chain away from the center to be similar to those that control the

effect of Segre&Silberberg in which [176, 177] a neutrally-buoyant rigid sphere or ellipsoid

[168] in a channel will migrate to an equilibrium position between wall and centerline due to

the combined hydrodynamic effects of wall-particle interactions, velocity profile curvature

and shear forces. The components of Rg show that, on average, the confined chain resembles

an ellipsoid when viewed as an entity. However, flexibility and elasticity are not included

explicitly in the Segre-Silberberg analysis although these factors are implicit in the definition

(5.5) of the Peclet number. An alternative view is the chain as an ensemble of connected

point-particles where each behaves as a sphere with a Stokes-Einstein radius [193], and
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Figure 5.15: Polymer center-of-mass (upper left) and conformation distributions of Rx
g

(upper right), Ry
g (lower left) and Rz

g (lower right) in Poiseuille flow, N = 16, H = 8Rg.

therefore is subject to the Segre-Silberberg forces. As reported in [201, 75] the Segre-

Silberberg effect for a suspension of particles strongly depends on the ratio of particle size

to the channel width and Reynolds number of the flow based on the particle size. For the

case of Pe = 200 we have Re number in the range 28.4− 201.2 for the gaps 3Rg − 8Rg, and

Reg = 12.6, Reb = 0.33 respectively. In our simulations the Re numbers are in the range

of those given in [75], where results for Poiseuille flow predict particle migration to a stable

position in-between the wall and the centerline. This appears to support our interpretation

of the above results as the Segre-Silberberg effect. The results are qualitatively similar for

the three channels. However, wall-molecule interactions appear to be a determining factor

for the polymer distribution in small channels (H ' 3Rg). Wall-polymer repulsive forces

are dominant within a layer of about 2.5Rg, and therefore in small slits the development
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of the off-center peaks in the distributions is observed only for relatively high Pe number

when Segre-Silberberg forces are able to overwhelm wall steric repulsion. In contrast, for

larger channels (H & 5Rg) the off-center peaks in the polymer distributions appear at

lower Pe, because wall-polymer forces act only within a near-wall layer and may not be

present in the centerline region where shear forces have a migration effect. In addition, the

distribution peaks coincide approximately with the maximum stretch (max{Rx
g}, min{Rz

g}
) of the chain in the streamwise direction. The scatter in the distribution data clearly

increases with channel size. This statistical defect for wider channels is a consequence of

more expensive calculations for larger particle systems and longer times required for a chain

to migrate a number of times across the slit.

The above argument suggests that polymer migration is characterized by at least three

numbers: Pe, Re and Rg/H. In the presence of inertia (Re > 0) the Segre-Silberberg

effect is to be expected, and this is in accord with the relatively high Re number cases

presented above. Graham et al. [30] used the Brownian dynamics (BD) method to show

ever increasing polymer migration towards the channel centerline with increasing Pe or Wi,

where hydrodynamic inertia effects are excluded by use of only Stokes interactions for which

the Segre-Silberberg effect vanishes. In particular, Stokes hydrodynamics accounts for very

strong wall-polymer interactions. However as Wi increases, the channel Reynolds number

must also increase. Analysis with linearized inertia, (time dependent [98] (p. 354), Oseen

[22]) suggests that as inertia increases from zero the typical leading Stokes-interaction in

the reciprocal distance is continuously replaced by the first-order inertial term typical of the

unbounded case. This transition would appear to mark the inception of the Segre-Silberberg

effect. The complexity of bead-spring suspensions does not permit ’a priori’ estimates of

this Re range, but the Re values actually realized are germane to an assessment of the

effect in [30]. To this end we have performed a number of DPD simulations with greatly

reduced Re number. A 16-bead polymer solution having viscosity ν = 14.019 confined in

the channel of H = 3Rg is subject to Poiseuille flow at Pe = 50, 100 and 200. For Pe = 200

we have Re = 0.041, Reg = 0.018, and Reb = 4.66 × 10−4, respectively. Figure 5.16 shows

the center-of-mass distribution and chain conformations. The center-of-mass distributions

of figure 5.16 differ only slightly from the hydrostatic case, in accord with the often-used

description of low Re flow as ’quasi-static’. In contrast, the chain conformations resem-

ble those at high Re shown in figure 5.13 for the same H/Rg rather than the hydrostatic



187

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y/R
g

ce
nt

er
−

of
−

m
as

s 
di

st
rib

ut
io

n

 

 

Pe = 0
Pe = 50
Pe = 100
Pe = 200

0 0.5 1 1.5
0

1

2

3

4

5

y/R
g

R
x g(y

)*
30.

5 /R
g

 

 

Pe = 0
Pe = 50
Pe = 100
Pe = 200

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

y/R
g

R
y g(y

)*
30.

5 /R
g

 

 

Pe = 0
Pe = 50
Pe = 100
Pe = 200

0 0.5 1 1.5
0.5

0.7

0.9

1.1

1.3

1.4

y/R
g

R
z g(y

)*
30.

5 /R
g

 

 

Pe = 0
Pe = 50
Pe = 100
Pe = 200

Figure 5.16: Polymer center-of-mass (upper left) and conformation distributions of Rx
g

(upper right), Ry
g (lower left) and Rz

g (lower right) in Poiseuille flow, N = 16, H = 3Rg.
Low Re number.

conformations of figure 5.8. Unfortunately, the BD results of Graham et al. [30] do not

include the hydrostatic case which would provide a critical comparison with our results. For

Pe < 100 polymer migration proceeds towards the channel centerline which suggests the

dominance of wall-polymer interactions. However, as Pe→ 200 the center-of-mass distribu-

tion indicates a slight polymer migration away from the centerline which suggests that the

Segre-Silberberg forces have become comparable with wall-polymer interactions. Moreover,

evidence for the Segre-Silberberg effect at low Re number is provided by the perturbation

theory of [201], the simulations of [75] and the experiments of [52]. In conclusion, the results

of this work indicate that polymer migration is governed by the Pe, Re and Rg/H num-

bers which characterize wall-polymer interactions and the Segre-Silberberg effect. However,

when Re→ 0 (approximately O(10−3)) the Segre-Silberberg effect is negligible and polymer
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migration is then governed only by Pe and Rg/H, in accord with [30, 112].

Other results, not included here, indicate that polymer migration in Poiseuille flow

is independent of the segment spring model (FENE and Fraenkel), and is governed almost

entirely by the three numbers mentioned above which incorporate the characteristic polymer

length and time scales (eq. 5.5 and 5.6). However, we expect that increasing the number

of beads in a chain will alter chain-wall interactions which this work has shown to affect

migration. The hydrostatic results (fig. 5.10) suggest that for large enough N the migration

effect should be independent of the chain representation. However, even in the static case

500-bead chains were subject to the statistical difficulties mentioned above, and reliable

results will be even more expensive to attain in the dynamic case.

The effect of solvent quality on migration is investigated with the 16-bead chain em-

ployed above in the channels with gaps of H = 3Rg and 4Rg for Pe = 50 and 100. Figure

5.17 shows the center-of-mass distribution for solvents of different quality. Results predict
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Figure 5.17: Influence of solvent quality on center-of-mass distributions for Pe = 50, 100,
H = 3Rg (left) and H = 4Rg (right).

stronger migration away from the centerline for good solvents than poor solvents. We at-

tribute this to weaker wall depletion of polymers in good solvents as was pointed out in

section 5.3.2 for the static case, and potentially stronger Segre-Silberberg effect due to the

larger volume taken up by chains in good solvents compared to the more compact, less

swollen, shape in poor solvents. As in the results of figures 5.13, 5.14, 5.15 and 5.16 the

migration effect in smaller channels is attenuated by the stronger chain-wall interactions.
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5.5 Summary

For dilute polymer solutions in narrow channels we have investigated the hydrostatic de-

pletion near walls for several bead-spring models, channel widths, number of beads, solvent

quality and wall-polymer-solvent interactions. The channel width was varied from 3 to 8

times Rg, the unconfined polymer radius of gyration. The center-of-mass and bead dis-

tributions and polymer shape measured by the components of the local radius of gyration

were found to be independent of the bead-spring model used in the simulations. Wall de-

pletion and polymer shapes were found to be similar for channel gaps H & 3Rg, and indeed

distributions for all channel gaps collapse onto a single curve by normalization with the

maximum concentration cmax, when other variables are fixed. The chain length specified

with bead number N in the chain representation affects the depletion layer with short chains

having narrower depletion layers than longer ones. However, as N becomes large (N & 500)

the depletion layer is independent of N , and the polymer distribution across the channel

converges to the lattice-theory solution for ideal chains near a purely repulsive wall. By

scaling the distance from the wall with δ, an integral measure of depletion layer thickness

(eq. 5.4), the center-of-mass distributions for all N can be collapsed onto the lattice-theory

asymptotic solution. Thus with appropriate scaling distributions for N ∼ O(10) adopt the

shape of that of the very long, flexible chains of the lattice theory.

However, when a chain is immersed in a solvent of different quality its depletion layer

properties change. A good solvent yields a thinner depletion layer than does a poor solvent,

and by comparison the ideal chain has the strongest wall depletion. Finally, relative wall-

polymer-solvent interactions or simply polymer boundary conditions also have a strong

effect on the depletion layer. Potentially these interactions could be combined to control

the depletion layer thickness and to model a wall adsorption.

In the dynamic case of Poiseuille flow we found that dilute polymer solutions exhibit

slightly Non-Newtonian behavior with velocity profiles corresponding to a power law index

of p = 0.88 (eq. 5.8). The hydrostatic depletion layer is affected by the flow, but beyond

about a distance of δ ∼ O(1) the center-of-mass distributions exhibit with increasing Pe

and Re numbers ever stronger indications of migration toward an intermediate position

between wall and centerline. At high enough Pe number Poiseuille flow induces in the

distributions the new feature of two off-center peaks which correspond to the most probable
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channel positions. Simultaneously the chains tend to stretch out in the direction of the shear

planes. Thus, chains prefer an intermediate position between wall and centerline and not the

middle of the channel where the shear rate vanishes. We attribute this to the hydrodynamic

Segre-Silberberg effect which forces spheres and ellipsoids away from the centerline due to

the shear gradient in Poiseuille flow. At high enough Re when hydrodynamic forces prevail

over Brownian fluctuations the quasi-stable polymer position in the channel appears to be

determined by the balance of the wall-polymer hydrodynamic interactions and forces arising

from Segre-Silberberg effect. In case of low enough Re number when the Segre-Silberberg

effect becomes negligible polymer migration is governed by Pe number and proceeds mostly

to the channel centerline due to wall-polymer interactions. We have shown that polymer

migration is independent of the bead-spring model. However, the quality of the solvent,

polymer boundary conditions, and the number of beads in the chain, all affect polymer

migration in the slit. We expect no dependence on number of monomers for large enough

N . Finally, two off-center peaks in the distribution develop at lower Pe in the larger

channels which is consistent with the known interaction length of several Rg for wall-polymer

depletion. Hence the migration effect is more pronounced in the channels of larger widths.



Chapter 6

Reverse Poiseuille flow - a virtual

rheometer for complex fluids

6.1 Introduction

Particle models of complex fluids create the need for methods to calculate the simulated

equivalents of the physical properties commonly measured in rheometers. The simulated

and the measured properties can then be matched to calibrate the model’s parameters.

This operation is of great importance especially in mesoscopic simulations, where coarse-

graining in space and time replaces known atomistic interactions with soft-type interactions

among coarse entities each of which contains a possibly large number of atoms or molecules.

For models of Newtonian fluids various methods have been employed for the calculation of

viscosity and other transport coefficients, but for complex fluids not all of these methods

are suitable or sufficiently accurate. Therefore, an efficient virtual rheometer is required to

calculate macroscopic rheological properties of simulated complex fluids in a form suitable

for convenient matching to the measured properties of experimental rheometry.

There are several virtual rheometers used in particle simulations to obtain shear prop-

erties, e.g, the plane Couette flow with Lees-Edwards periodic boundary conditions (LEC)

[124], the Green-Kubo (G-K) relations [178, 102]. The periodic boundary conditions of LEC

eliminate the need for explicit modeling of solid wall boundary conditions. This has the sig-

nificant advantage of excluding unknown wall-effects, such as slip and density fluctuations,

which seem to be endemic to all particle-wall models as they are currently known. How-
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ever, since one LEC simulation yields data for only a single shear rate, it is computationally

expensive, and therefore inefficient, because rheological properties are needed over a wide

range of shear rates. On the other hand, the G-K relations require calculation of the stress

autocorrelation function, which is very noisy and becomes computationally expensive when

the characteristic relaxation time of a solution is large. In this chapter we investigate the

use of reverse Poiseuille flow (RPF) as an alternative virtual rheometer for the calculation

of the material functions of steady-state shearing from simulated velocity profiles. RPF was

first applied to measure the viscosity of Newtonian fluids [14]. It consists of two parallel

Poiseuille flows driven by uniform body forces, equal in magnitude but opposite in direction.

Figure 6.1 shows the resulting velocity profiles (left) and shear stresses (right), where f is the

imposed body force per unit mass and n is the number density. This arrangement, as with

f f

0 H 2H

0

velocity

f f

τ

0 H 2H

=fn(H/2-x) =fn(x-3H/2)
fnH/2

-fnH/2

τ

shear stress

Figure 6.1: Typical velocity profile (left), and imposed shear stress (right) for the RPF
arrangement. The wall shear-stress is fnH/2, where f is the imposed body force per unit
mass and n is the number density.

LEC, accommodates periodic boundary conditions, and again has the significant advantage

of excluding unknown wall-effects, such as slip and density fluctuations. RPF has been

applied successfully to Dissipative Particle Dynamics (DPD) simulations of dilute polymer

solutions [73] and of colloidal suspensions [155]. These applications and examples in the

chapter demonstrate RPF to be a general purpose virtual rheometer for the calculation of

steady-state shear properties of a variety of non-Newtonian complex fluid models.

We employ the Dissipative Particle Dynamics method (see section 2.2.2 for details) for

the simulations that follow. However, it will be seen below that the only data required
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for the extraction of the material functions of steady shear flow are particle positions and

velocities as functions of time. Hence the output from any particle based method that

delivers those data can be similarly treated. For a system of free DPD particles, after

the startup from rest following the sudden imposition of the driving force, the calculated

velocity profiles at various times were found to be in good agreement with those predicted

by the Navier-Stokes equation. Once the DPD-simulated velocity profiles become parabolic,

the integrated bulk velocity or the maximum velocity yields calculated viscosities in good

agreement with values calculated from Couette flow by LEC. With the viscosity and the

elapsed time from startup in hand the Navier-Stokes solution can be used to check that the

profile is indeed closely parabolic. For bead-chain systems or other complex structures no

simple theoretical guide exists to determine the time to establish the steady-state since their

rheology is unknown ’a priori’, and they are taken to be unspecified non-Newtonian fluids.

The steady velocity profiles are calculated for each prescribed linear shear-stress distribution

determined by the imposed driving force. The shear rates across the profile must then be

derived by numerical differentiation since the velocity profile has no simple mathematical

representation. Simultaneously with the velocity profiles the complete stress system is

calculated from the Irving-Kirkwood equation [107] in the form of stress-component profiles.

At very high shear rates DPD simulations fail when the mean velocities become much

greater than the thermal fluctuating velocities. At low shear rates the fluctuations are

overwhelming, and consequently the mean velocities become too small to be statistically

significant. For Newtonian fluids, after the startup from rest following the sudden imposition

of the driving force convergence to steady flow begins near the wall and moves gradually

toward the centerline; thus long integration times are needed. This is analogous to the

development of the velocity profile in turbulent flow in pipes where experience has shown

that very long entrance lengths are required to complete the development near the centerline.

The smoothness of the RPF velocity profiles tends to compensate for the errors due to

numerical differentiation, and usually yields smoother rheograms when compared to the ones

derived from the statistically measured stresses of Couette flow, in spite of its prescribed

shear rate.

The chapter is organized as follows. In the next section we present the basic continuum

equations and concepts of steady shear-rate rheology to be used to derive shear-dependent

viscosities and normal stress differences of our non-Newtonian fluids. Section 6.3 demon-
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strates the use of the RPF virtual rheometer for monodisperse “melts” represented as iden-

tical chains, while section 6.4 presents results for mixtures of identical bead-spring chains in

“good” solvents of free beads. In section 6.5 the time-temperature superposition is presented

for melts at different temperatures. We conclude in section 6.6 with a brief discussion.

6.2 Rheological measurements and properties

For a given force f the RPF configuration shown in figure 6.1 of the introduction yields

for the half-channel one steady-state velocity field calculated by the combination of time

and ensemble averages. Shear rates γ̇(x) are then extracted from the measured velocity

profile by numerical differentiation of fitted even-order polynomials for the central region,

and cubic splines for the wall region. At cross-stream position x and time t elementary

continuum analysis for any fluid in any shear flow requires the shear stress τxy(x, t) and the

streamwise velocity u(x, t) to satisfy the equation of motion

ρ
∂u

∂t
=
∂τxy

∂x
− fn. (6.1)

At the steady state (τxy(x, t) = τxy(x)) this momentum balance yields the linear shear

stress profile shown in figure 6.1 (right) with the maximum absolute value of fnH/2 at the

virtual walls (interfaces). This will be referred to as the imposed shear stress. In addition,

the complete stress profile in the form of components (τxy, τxx, τyy, τzz) can be calculated

from simulations using the virial theorem [39]. The calculated shear stress profile τxy(x) can

be compared to the corresponding imposed profile to verify that the stresses calculated as

statistical averages satisfy the continuum equation of motion, and that steady flow has been

attained. With the shear rate γ̇(x) = du(x)/dx in hand the non-Newtonian shear viscosity

η(x), and the first and second normal stress coefficients Ψ1(x) and Ψ2(x) are derived from

the stress components using the following definitions

τxy(x) = η(x)γ̇(x), τyy(x) − τxx(x) = Ψ1(x)γ̇
2(x), τxx(x) − τzz(x) = Ψ2(x)γ̇

2(x). (6.2)

The non-Newtonian viscosity η(x) will be calculated from the imposed shear stress so

that its main source of error will be the shear rate γ̇(x) derived from the velocity profile by

numerical differentiation. The calculated normal stress coefficients will be intrinsically more
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noisy since they are derived from the noisy calculated normal stresses and the square of the

shear rate. For polymeric fluids the shear viscosity and normal stress coefficients typically

approach constant values at low shear rates, and are called zero-shear-rate values. Very

often this low-shear-rate Newtonian regime is experimentally inaccessible due to rheometer

limitations. For the simulations of this work the zero-shear-rate values have to be extracted

from the low shear rate region near the channel centerline where the velocity profile tends to

flatten, and also it is the last region to converge to the steady state. Thus, larger errors in

numerical differentiation should be anticipated in this region where the thermal fluctuations

for both RPF and LEC dominate over the average shear rate.

6.3 Mono-disperse “melts”

The quotation marks applied in the title of this section serve to emphasize that while the

construction of our simulation system appears to model a mono-disperse polymer melt it

may not entirely represent the physical properties of real melts. The “melt” system here

consists solely of flexible, mono-disperse bead-spring chains of N = 2, 5 and 25 beads

connected by FENE springs (see section 5.2.1). There are no solvent particles. Table 6.1

outlines the parameters used in our DPD simulations, where n is the bead number-density.

n rc a γ σ kBT k eq.(2.11) ks rmax

3 2.0 25.0 4.5 3.0 1.0 0.25 50.0 1.0

Table 6.1: DPD simulation parameters. Mono-disperse “melts”.

The computational domain was set to 50 × 20 × 10 in DPD units, which corresponds to

a channel gap of H = 25 (see fig. 6.1). Initial chain configurations were assigned in the

simulation domain by means of a three-dimensional random walk with the fixed step length

of 0.6. RPF is driven by specification of f , a uniform constant force per DPD particle

in the y-direction, positive on the left half and negative on the right half of the domain,

respectively. The time step for all simulations was set to ∆t = 0.005.

Several models exist to approximate the shear stress for non-Newtonian fluids in terms

of the shear rate such as the power-law (eq. (5.8)) and the Ellis model [16]. Figure 6.2 shows

velocity profiles (left) and normalized bead density (right) across the channel for chains of

N = 2, 5 and 25 beads driven by f = 0.25. It also depicts the corresponding power-law
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Figure 6.2: Velocity (left) and normalized bead density (right) profiles for three melts of
N = 2, 5 and 25 bead chains. Power-law indices p are 0.898, 0.831, and 0.703 respectively.

fits (dots) and Ellis model fits (crosses) with indices p = 0.898 for N = 2, p = 0.831 for

N = 5, and p = 0.703 for N = 25 bead chains. The power-law and Ellis model curves fit

the simulated profiles extremely well. The parabolic Newtonian profiles with p = 1 (dashed

lines) are plotted for contrast with the non-Newtonian curves of these “melts”. The velocity

profiles corresponding to the longer chains have smaller velocity maxima Vc and are flatter

because these melts are more viscous and more strongly shear thinning (smaller p). In

addition, figure 6.2 (right) shows that the bead density distribution is essentially uniform

for all mono-disperse melts. The largest density deviations, within 1 − 2% of the bulk

density, were observed for the longest chains of N = 25 near the centerline. Absent for

the system of pure mono-disperse chains is the cross-stream migration found for dilute and

semi-dilute solutions [73, 199, 30, 112].

Figure 6.3 compares the imposed and the calculated shear stress for the melt of N = 25

beads as a consistency test. The overall excellent agreement between the assigned and the

calculated shear stress distributions and the uniform density across the channel show that

within the attainable statistical convergence the system of mono-disperse chains behaves as

a homogeneous continuum. The negligible discrepancy in the near-wall region of thickness

less than 1% of the channel width H appears to be a consequence of the the abrupt reversal

of the driving force just beyond the wall. Comparison of calculated and imposed stress

profiles for different driving forces showed that the discrepancy in the near-wall region

vanishes as the driving force gets smaller. The periodicity of RPF suggests that as the ratio
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Figure 6.3: The calculated and imposed shear stress distribution (left) for the melt of
N = 25 beads, and the near-wall region (right, expanded scale).

of particle size over H diminishes, this stress discrepancy will grow, and this will signal the

breakdown of the continuum assumption. For the beads of this model, the Stokes-Einstein

radius has been shown elsewhere [155] to be a plausible measure of particle size.

The regularity assumptions of continuum theory allow for the expansion of V (x) in

powers of x2, and for the low shear rates near the centerline the leading terms are

V (x) = Vc −
nf

2η0
x2 +O(x4). (6.3)

This suggests that the central region of the velocity profile can be fitted well with even-

order polynomials in x measured from the centerline, with the coefficient of x2 furnishing

the zero-shear rate viscosity η0. The calculation of the non-Newtonian viscosity and the

normal-stress coefficients (eq. (6.2)) requires the distribution of the shear rate γ̇(x) and the

stress components τxy(x), τxx(x), τyy(x), and τzz(x) across the channel. For the viscosity

the noise-free imposed shear-stress, τxy(x) = fn(H/2 − x) for x ∈ [0, H] and τxy(x) =

fn(x− 3H/2) for x ∈ [H, 2H], is preferred (see fig. 6.1). For the normal-stress coefficients

the only option is the computed stresses, and hence they are necessarily noisier than the

viscosity. The required shear rates are extracted from the calculated velocity profiles by

numerical differentiation for which the straightforward approach is to use finite-difference

approximation based on a uniform grid of spacing ∆x, defined as xi = i∆x, i = 0, ...,M ,
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where M = b0.5H/∆xc. Constructed from the four halves of the reverse Poiseuille flow, an

ensemble-average velocity profile is then interpolated with cubic splines and projected onto

the grid {xi}. This is appropriate for the near-wall region since polynomial interpolation is

known to perform rather poorly for power-law functions (eq. (5.8)). Shear rates at points

xi+0.5 are then calculated from the second-order central difference (V (xi+1) − V (xi))/∆x.

Figure 6.4 presents the shear dependent viscosity (left) and the first and second normal-

stress coefficients (right) for chains of N = 25. The curves denoted by crosses and circles
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Figure 6.4: The shear dependent viscosity (left) and the first and second normal-stress
coefficients (right) for 25-bead chains by direct numerical differentiation (symbols), and by
curve filtering and fitting (solid and dashed lines).

in figure 6.4 (left) display the shear-dependent viscosity obtained by the numerical differen-

tiation described above. The plot shows clearly how direct numerical differentiation works

very well except at the very low shear rates of the central region where large errors in

the central-difference estimate of the derivative appear as scatter in the viscosity and the

normal-stress coefficients (symbols in figure 6.4 (right)). This scatter was reduced by two

methods: firstly by filtering (smoothing) the original velocity data, and secondly by fits

with low even-order polynomials. The solid line in figure 6.4 (left) is the result of applying

the Savitzky-Golay filter [152] two to three times to the velocity data followed by the direct

numerical differentiation. While filtering substantially reduces the low shear-rate scatter of

the viscosity, it tends to smooth out data peaks such as the centerline maximum velocity Vc.

Consequently, the flattened profile leads to under-prediction of the viscosity near the low

shear-rate plateau, as can be seen in figure 6.4 (left). Smoothness for improved accuracy
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of differentiation in the low shear-rate neighborhood of the Poiseuille flow centerline was

achieved with fits of low-order polynomials in the small neighborhood where the velocity

profile should be nearly parabolic (eq. (6.3)). The curves in figure 6.4 labeled “polyfit”

employed a fourth-order polynomial fitted near the centerline by careful limitation of the

region so that the term x4 is not dominant. For the higher driving-force, f = 0.25, the

zero-shear rate plateau cannot be obtained because the central region of the velocity profile

is very narrow, and not resolvable by fitting with low-order polynomials. Hence, full curves

of viscosity and normal-stress coefficients for a particular system require at least two simu-

lations: the first with a low driving force f to resolve the zero-shear viscosity plateau, and

subsequently one or more with higher f ′s sufficient to provide overlapping resolution of the

power-law region and possibly the high shear-rate plateau.

Figure 6.5 shows the shear dependent viscosity (left) and the first and second normal-

stress coefficients (right) for chains of N = 2, 5, and 25 beads obtained by applying a com-

bination of low-order polynomial fitting, filtering and numerical differentiation as described

above. For each melt the solid and dashed curves are the results from two simulations of
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Figure 6.5: The shear dependent viscosity (left) and the first and second normal-stress
coefficients (right) for chains of N = 2, 5, 25 beads.

RPF carried out with non-dimensional forces f = 0.025 and 0.25 respectfully. The sym-

bols in figure 6.5 denote analogous results obtained from simulations of plane Couette flow

with Lees-Edwards boundary conditions (LEC). The excellent agreement over most of the

shear-rate range between the RPF and the LEC results suggests that the steady shear-rate

properties of these mono-disperse chains are material functions of the shear rate for any
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steady shear flow. Hence, these fluids appear to behave macroscopically as homogeneous

simple fluids in the sense of Noll [34]. The noticeable disagreement of the normal-stress

coefficients for low shear rates, especially for 2-bead chains, is associated with the errors

of the small calculated normal-stress differences as they approach zero. For LEC these

coefficients exhibit increasing scatter at shear rates below the points shown in figure 6.5

(right), while for RPF the same coefficients at low shear rates can be successfully extracted

by use of local, low-order polynomial fits of the calculated normal-stress difference data.

This procedure is similar to the fits of velocity profiles near the centerline described above.

Since the normal-stress differences in that region have nearly flat distributions it is essential

to test the sensitivity of their coefficient plateaus to the chosen range of the fits.

An unexpected feature observed only for simulations by LEC for 2 and 5-bead chains

at high-shear rates, and not for comparable ones by RPF, is that the first normal-stress

coefficient becomes negative at high shear rates. Negative first normal stress coefficients are

not observed in any experiments with such systems, and appear to be LEC model artifacts.

It is not clear why the sign should switch only for short chains in constant-stress Couette

flow, or why the Poiseuille flow stress-gradient is not subject to this artifact. Equation (5.8)

is the integral of the equation of motion with the assumption of a power-law shear-stress

shear-rate relation for the entire channel. The viscosity functions exhibited in figure 6.5

clearly show the power law region lies between the upper and lower viscosity plateaus. The

best estimate of the power p is then the slope of the viscosity function taken to be 1 − 1/p

at the inflection point. Table 6.2 shows that values of p derived from the viscosity function

(p2) agree fairly well with those obtained from the velocity profile fits (p1). The table also

N p1 p2 η0 λ0 −ψ2/ψ1

2 0.898 0.89 62.7 0.636 0.003

5 0.831 0.81 138.4 8.564 0.281

25 0.703 0.68 830.9 536.73 0.3

Table 6.2: Power-law index p1 from velocity (fig. 6.2) and p2 from viscosity (fig. 6.5), the
zero shear-rate viscosity η0, the mean relaxation time λ0, and the normal stress coefficients
ratio.

shows asymptotic values of the mean relaxation time λ0 = 0.5ψ1/η0 and the ratio −ψ2/ψ1

as γ̇ → 0.
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Note that in figure 6.5 (left) all viscosity curves converge to the same value (labeled

“monomer”) at high shear rates which defines the high-shear rate plateau. Remarkably this

value corresponds to the viscosity of the Newtonian DPD fluid having the same density of

unchained or free beads (monomers) with the same interparticle forces. Figure 6.6 shows

snapshots from visualizations of single, marked chains moving within ‘melts’ of unmarked

chains at low shear rates (left) and high shear rates (right). At low shear rates the chains
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Figure 6.6: Collage of snapshots of a single 25-bead chain within a ’melt’ of unmarked
chains at low shear rates (left) and at high shear rates (right) plotted on the same scale.
Constant x defines the shear planes.

are entangled across the shear planes whereas at high shear rates they tend to completely

disentangle, and are drawn out along, and are convected within the unstretchable shear

planes. This implies a passive role for the spring connectors at high shear rates, and

suggests why the monomer viscosity is the common plateau value for all N . Thus, in steady

shear flow a typical chain behaves as follows: it stretches along the shear planes, and then

tumbles. At high shear rates the tumble is constrained mostly within the shear planes, so

that the chain ends are reversed within the same shear plane. Whereas at low shear rates,

where fluctuations are dominant, the chain ends are frequently impelled across the shear

planes, and so become entangled with chains in neighboring planes with different average

velocities. The residence time for the stretching stage depends on the shear rate, bead

interactions, and most importantly the chain length.

Note that each symbol in figure 6.5 corresponds to one LEC simulation for each pre-

scribed shear rate. Even though the computational domain for all LEC simulations was
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10 × 10 × 10 in DPD units or 10 times smaller by volume than the RPF domain, the to-

tal computational expense for the full material functions of comparable accuracy is several

times larger for LEC than for RPF. In addition, statistical averaging of LEC stresses requires

longer running times than those for RPF which combine both time and ensemble averages.

Thus, the apparent advantage of an imposed shear rate in LEC is offset by the higher noise

levels of the stresses. Whereas in RPF the shear stress distribution is prescribed, and the

shear rate must be determined by numerical differentiation of the velocity profile. The

latter operation turns out to be less noisy than the stress calculation because the statistical

convergence of the velocity is more accurate and smoother than that of the stresses. This

implies greater accuracy for the RPF viscosity function than for its normal-stress coeffi-

cients. A further advantage of RPF over LEC is its capability to extract the low shear-rate

plateaus of the material functions. As a rheometer RPF performs similarly to experimental

real steady-shear rheometers for which it is generally true that the viscosity function is more

accurately measured than the normal-stress functions. Likewise the measurement of the low

shear-rate plateaus is nearly always restricted by the limits of instrumental detection.

When the model fluids of mono-disperse chains were introduced above as “melts” the

simulated properties can be compared with the corresponding properties of real melts. The

viscosity data of a homologous series of undiluted polystyrenes with narrow molecular-

weight distributions [89] exhibit a common power law over a five-fold range of molecular

weights even though η0 varies by several orders of magnitude. Hence the power-law ex-

ponents in table 6.2 suggest that if the models of this work are taken to represent whole

polymers the bead number N alone is not a satisfactory proxy for molecular weight. In

preliminary simulations the fluids of bead-spring chains were investigated with the cutoff

radius rc set to one, and the resulting viscosity functions were found to be only slightly

non-Newtonian. Since the number of neighbor interactions increases as rc
3 this shows the

sensitivity of non-Newtonian response for such models. Thus, it should be possible to ad-

just model parameters to yield a series of fluids of mono-disperse bead-spring chains with

power-law indices independent of N in agreement with experiment. This amounts to varying

the viscosity of the “monomer” fluids, which in this study were held constant. However,

the untangling visualized in figure 6.6 at high shear rates is not thought to occur for real

polymers. Eventhough the data of [89], typical for whole polymers, do not extend beyond

the power law regime it is usually accepted that at high shear rates these materials will
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exhibit a glassy response. Clearly the simplistic models employed in this work describe at

best the rubbery regime. In spite of these limitations the ratios −ψ2/ψ1 as γ̇ → 0 in table

6.2 are very close to the reptation theory prediction of 2/7 [120], except for N=2. The

second normal-stress difference for 2-bead chains is very small at low shear rates, and the

discrepancy of the ratio suggests that either the limit of detection has been reached or that

dumbbells are a poor representation of a polymer.

Finally, it is necessary to relate DPD time scales to those of real polymer fluids. For

both the mono-disperse undiluted polystyrenes of [89] and for poly-disperse melts, such

as the polyethylenes of [120], the transition from the low shear-rate viscosity plateaus to

the power-law regime occurs at shear rates O(λ−1
0 ). This is also true for the simulated

viscosity functions of this work, and so the matching of λ0 provides the means to relate real

and DPD time scales. Normal-stress data for mono-disperse melts are difficult to obtain

[134, 174], and then the alternative is to derive λ0 from low-frequency dynamic modulus

measurements.

6.4 Semi-dilute solutions

In this section the RPF method is tested on several solutions of bead-spring chains in

solvents of free DPD particles. Two chain-bead concentrations 25% and 50% were simulated

for mono-disperse chains of 5- and 25-beads, respectively. Since chain beads and solvent

particles have the same mass the chain-bead number density n or concentration corresponds

to the chain-mass concentration. The computational domain is identical to the one described

in section 6.3, and the simulation parameters are outlined in table 6.1. The solvent particles

have the same interaction parameters as those of the polymer bead particles. For RPF two

simulations for each solution were carried out corresponding to the imposed non-dimensional

body forces of f = 0.03 and 0.3 for the 25% solutions, and f = 0.05 and 0.5 for the 50%

solutions, respectively. Corresponding LEC simulations were also carried out over the same

range of shear rates.

Figure 6.7 shows the shear dependent viscosity (left) and the first and second normal-

stress coefficients (right) for the solution of N = 25 bead chains and concentrations 25%

and 50%. The symbols in figure 6.7 correspond to LEC simulations of the same solutions,

and the curves denoted by “direct” are extracted from the RPF simulations using local
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Figure 6.7: The shear dependent viscosity (left) and the first and second normal-stress
coefficients (right) for the solution of N = 25 bead chains and mass concentrations 25% and
50%. For the 50% concentration in the right figure, all curves have been “shifted up” two
orders of magnitude for visual clarity.

low-order interpolation, filtering and numerical differentiation as described above in section

6.3. Here, disagreement between RPF and LEC results is noticeable with different zero-

shear rate viscosities and distinctive slopes in the power-law region. Macroscopically the

shear stress for a mixture is constant in plane Couette, and the absence of a stress gradient

is then compatible with uniform chain-bead concentration. The latter was found to hold

at all shear rates for LEC, whereas in RPF the chain-bead concentration was found to be

non-uniform. This behavior is attributed to the stress gradient across the channel.

Figure 6.8 presents the chain-bead densities across the channel normalized by their

bulk values, for 25-bead solutions (left) and for 5-bead solutions (right) for two driving

forces at each concentration. The effect of the Poiseuille stress gradient is a steeper and

more confined concentration distribution in the central region for longer chains (N = 25),

higher body forces and smaller chain-bead concentrations (25%). Figure 6.7 indicates higher

viscosities relative to the LEC values in the lower shear-rate central region where the local

concentration exceeds the bulk value, and vice versa in the high shear-rate wall region where

the local concentration is depleted relative to the bulk value. The rheological properties

of real polymer solutions at different concentrations are known to correlate by means of

the empirical principle of time-concentration superposition. Here, we examine whether this

principle applies to the DPD solutions described above, and in particular whether the solid

“direct” curves of figure 6.7, which are discontinuous in the transition from the smaller to
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Figure 6.8: Normalized chain-bead number density distributions for 25-bead (left) and 5-
bead solutions (right) for different bulk concentrations n0 and body forces f .

the larger f , can be reconciled to lie on a single curve in agreement with the LEC points.

The zero-shear rate viscosity η0 for concentrated solutions is assumed to be expressible

as follows [19]

η0 − ηs = ηsn[η]0e
k′n[η]0 , (6.4)

where ηs is the solvent viscosity, n is the mass concentration (chain-bead number density

here), [η]0 is the intrinsic zero-shear rate viscosity, and k′ is an arbitrary constant. It is

assumed that [η]0 ∼ Ma, where M is the molecular weight and a is a power depending on

the critical molecular weight. Thus, [η]0 is constant for a given polymer chain, in this case

chains of 5 and 25 beads, respectively. The superposition shift factor is formed as

an =
ηn0

0 − ηs

ηn
0 − ηs

=
ηsn0[η]0e

k′n0[η]0

ηsn[η]0ek
′n[η]0

=
n0

n
eα(n0−n), (6.5)

where α = k′[η]0. Note that an is the shift factor only for η − ηs, and hence the total

shifted viscosity is (η − ηs)an + ηs, whereas the normal-stress coefficients are shifted as

ψ1a
2
n and ψ2a

2
n, and the shear rate as γ̇/an. Returning to figure 6.7 the curves denoted

as “superposition” were obtained from the local concentration and the superposition shift

factor an with α = 1.5. The α value was found by superposition of LEC curves at the two

concentrations (not shown). In the absence of LEC results α can be found by imposition of

continuity on the shifted RPF results for different driving forces to yield the “superposition”

curves in figure 6.7. The superposed RPF curves are continuous and agree well with the
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LEC points, and thus, the principle of time-concentration superposition applies to the model

solutions of 25-bead chains. Although large concentration gradients would appear to negate

the use of the RPF configuration as a rheometer, useful measurements of bulk properties

can be obtained for solutions where concentration superposition is applicable.

For the 5-bead chain solutions figure 6.9 shows that the time-concentration superposition

as implemented above yields satisfactory results for the viscosity, and the second normal

stress coefficient, but inconsistency between LEC and RPF results for the first normal

stress coefficient. As expected the smaller concentration gradients (figure 6.8) relative to
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Figure 6.9: The shear dependent viscosity (left) and the first and second normal-stress
coefficients (right) for solutions of 5-bead chains at concentrations of 25% and 50%. For
the 50% concentration in the right figure, all curves have been “shifted up” two orders of
magnitude for visual clarity.

N = 25 reduce the deviations of the “direct” viscosity curves from the LEC points and

their discontinuities are smaller than their N = 25 counterparts of figure 6.7 (left). Here,

the time-concentration superposition, as described above, was applied with α = 0.75 to

yield excellent agreement between the LEC points and the RPF viscosity “superposition”

curves. The scatter in the LEC normal-stress coefficient points indicates large errors as the

shear rate is decreased to its lowest values. The surprising result is the behavior of the first

normal-stress coefficient for which the LEC points decay faster with shear rate relative to

the superposed RPF curves, and that the disagreement is worse for the more dilute 25%

solution. Eventually ψ1 by LEC becomes negative (not shown), while agreement between

the second normal-stress coefficients remains very close. This artifact of the Couette flow

appears to be a short-chain phenomenon, having been found above for the 2 and 5-bead
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melts and here for 25% solution of 5-bead chains. At the macroscopic level this suggests

that bead-chain fluids may not always behave as simple fluids in the sense of Noll [34]. The

large concentration changes across the channel indicate that the simulated solutions do not

capture the diffusion behavior of real polymer solutions. Cross-stream migration effects

of this magnitude are not known for polymer solutions flowing in channels of laboratory

length scales. However, these results do suggest that concentration gradients will eventually

appear for long enough channels due to the action of stress gradients.

Finally, table 6.3 outlines the power-law indices and zero shear-rate properties for the

solutions of chains N = 5 and 25 beads at different concentrations. Here again, the mean

N concentration p η0 λ0 −ψ2/ψ1

5 25% 0.95 53.2 0.924 0.39

5 50% 0.9 76.5 2.26 0.43

25 25% 0.89 75.8 34.7 0.63

25 50% 0.78 194.5 50.7 0.49

Table 6.3: The power-law indices and zero shear-rate properties for the solutions of chains
N = 5 and 25 beads at different concentrations.

relaxation time λ0 defines the characteristic time scale in DPD solutions which is much

smaller for short chains. The ratio −ψ2/ψ1 for all solutions appears to be larger than the

value of 2/7 predicted by the reptation theory [120]. We attribute these differences due

to errors in the second normal-stress coefficient, because its magnitude is comparable with

statistical averaging errors as γ̇ → 0.

6.5 Time-temperature superposition

Here we present the analysis of temperature dependence of the steady shear-rate prop-

erties of mono-disperse bead-chain melts. We employ time-temperature superposition, a

well-established procedure [76] for real polymers, and the temperature analog of time-

concentration superposition already described above. Although the method is mainly empir-

ical, the scaling of both dependent and independent variables can be motivated by polymer

theories at the mesoscopic level, such as the Rouse theory [120, 76]. In these theories,

including the theory of rubber elasticity, the equilibrium Helmoltz free energy is generally
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athermal, i.e. linear in kBT . This means that the entropy is entirely configurational (in-

dependent of kBT ), and thus the equation of state for the equilibrium pressure p is of the

form
p

kBT
= f(n) = n+

∑

i>1

bin
i. (6.6)

Here, the second equality follows from the additional assumption that f(n) has a virial

expansion, and then its coefficients bi must be constant. For molecules with spherical

symmetry constant virial coefficients are a consequence of temperature-independent radial-

distribution functions (RDF) [136]. The best-known example of the virial expansion for an

athermal fluid is the hard sphere gas.

For the DPD fluids of this work the contribution to the excess pressure is calculated

from the virial theorem as

pvir =
1

6V





∑

i6=j

rijF
C
ij + 2

∑

s∈{springs}
rsF

S



 =

=
1

6V



a
∑

i6=j

rij(1 − rij
rc

)r̂ij + 2ks

∑

s

rs
rs

1 − r2s/r
2
max

r̂s



 ,

(6.7)

where the forces were defined above in sections 2.2.2 and 5.2.1. For a fluid of free DPD

particles at densities well beyond the ideal gas regime Groot & Warren [92] found from

simulations the equation of state to be approximately p = nkBT + b2n
2, where b2 is a

constant proportional to the conservative force coefficient a. Pagonabarraga & Frenkel [153,

154] derived this result with multibody DPD (an enhanced version of the standard 2-body

DPD employed here). However, Groot & Warren’s simulations covered only one isotherm,

and hence the temperature dependence of a was not considered. Statistical mechanics

provides examples of mesoscopic forces whose expressions carry the prefix kBT . The relevant

one here is the Langevin force on a tethered chain, of which the FENE force [19] is an

approximation. Since DPD beads are point particles which represent loose aggregates of

many molecules it is plausible to assume their soft potentials also have the kBT hallmark of

mesoscopic forces. Hence, both the conservative force coefficient a and the spring constant

ks are assumed to be of the form

a = kBTa0, ks = kBTks0, (6.8)
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where a0 and ks0 are the reference parameters corresponding to temperature kBT = 1.

Equation (6.7) suggests the equation of state will have the athermal form of equation (6.6).

This was verified with equilibrium simulations of 5-bead chain melts for several bead densi-

ties n at three temperatures kBT = 0.5, 1.0 and 1.5. The temperature was set by adjustment

of the dissipative force coefficient according to γ = γ0/kBT , which from equation (2.10)

means that σ was held constant. Table 6.4 summarizes the constant DPD parameters spec-

ified for simulations. Figure 6.10 shows the excess equilibrium pressure versus bead density

rc a0 γ0 σ k eq.(2.11) ks0 rmax

2.0 50.0 4.5 3.0 0.25 100.0 2.0

Table 6.4: DPD parameters for RPF simulations. Time-temperature superposition.

at several temperatures simulated with the parameter scaling of equation (6.8). Clearly
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Figure 6.10: Log-log plot of the excess equilibrium pressure for different bead density at
several temperatures. Melts of 5-bead chains.

the curves for different temperatures plot as parallel lines on bi-logarithmic coordinates,

which shift onto a single line by scaling the excess pressure with temperature. It is eas-

ily verified that the excess pressures at n = 2 satisfy 487.14/1.5 ≈ 324.73 ≈ 162.33/0.5.

In figure 6.10 the dashed reference line has slope 2 to show that the form of Warren &

Groot [92] also holds for the bead-chain models provided the conservative force coefficient
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scales according to equation 6.8. Although not shown here, the radial distribution func-

tion for these melts was verified to be independent of temperature which demonstrates the

temperature-independent structure requirement of the athermal fluid.

For a melt of 5-bead chains with the bead density n = 3 RPF simulations were car-

ried out at three temperatures, kBT = 0.5, 1.0 and 1.5 in a 50 × 20 × 10 box, with the

constant simulation parameters given in table 6.4. To capture both the low and the high

shear-rate plateaus of the viscosity function at each temperature runs were carried out for

three non-dimensional body forces f = 0.025, 0.25 and 1.0. Figure 6.11 shows the re-

sulting shear dependent viscosity (left) and the first and second normal-stress coefficients

(right) at the three temperatures. Visual inspection of the shapes of these bi-logarithmic
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Figure 6.11: The viscosity function (left) and the first and second normal-stress coefficients
(right) at three temperatures for 5-bead chains.

plots suggests that the curves can be superposed. Indeed, when the ordinates are nor-

malized by their zero shear-rate values, and the shear rates are multiplied by the factor

aT = γ(T )/γ(T0)η0(T0)/η0(T ), then all the curves shift onto the kBT = 1.0 curve. The

superpositions are not shown since the deviations from the common curves are not visi-

ble on the scale of figure 6.11. For real polymers the shift factor is generally taken to be

aT = η0(T0)/η0(T ). No rigorous argument can be given for including the dissipative force

coefficient in the shear-rate shift factor. However, γ (dimension time−1) is proportional to

a time scale of the DPD system, and therefore this empiricism is not entirely surprising.

The shear rate rendered dimensionless with the mean relaxation time λ0 was demonstrated

by Graessley [134] to be an alternative scaling for narrow distribution polystyrenes. Fig-
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ure 6.12 shows the time-temperature superposition of the three viscosity curves. Here, the

10-5 10-4 10-3 10-2 10-1 100 101 102 103
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λ
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γ

η/
η
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Figure 6.12: The time-temperature superposition of the shear-dependent viscosity for 5-
bead chain melts at three temperatures.

viscosity curves are normalized by its zero shear-rate value η0, and the shear rate is scaled

with the mean relaxation time λ0 from table 6.5 analogously to the Graessley’s scaling for

polystyrenes [134]. This superposition suggests why the dissipative force coefficient γ ap-

pears in the shift factor aT . Table 6.5 gives the power-law indices and the low shear-rate

properties at the three temperatures. Compared to the 5-bead melt of figure 6.5, section

kBT p η0 λ0 −ψ2/ψ1

0.5 0.665 2015.2 128 0.7

1.0 0.665 1082.4 44.5 0.7

1.5 0.665 757.8 25.4 0.5

Table 6.5: The power-law indices and zero shear-rate properties for three temperatures.

6.3, the 5-bead melt at kBT = 1.0 of figure 6.11 exhibits much stronger shear-thinning. The

difference between these chains is the doubling here of rmax, and hence the fully-extended

contour length. This points to contour length rather than bead number as the chain prop-
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erty that mainly determines the steepness of the viscosity function.

6.6 Summary

The virtual rheometer is a designation for the set of particle-based numerical methods

which exist and are being further developed to simulate the many complex material systems

studied in the laboratory by experimental rheologists. Such methods have matured to the

point where today they can be considered useful adjuncts to experimental rheology, and

with further development have the potential to transform theoretical rheology into a reliably

predictive science. This will result in significant economies to enterprises engaged in dealing

with complex fluids who now must rely on extensive and costly physical testing in order to

utilize these materials. The concept of the Virtual Rheometer as a ‘useful adjunct’ is best

appreciated by analogy to the role of the ‘virtual wind tunnel’ or ‘virtual towing tank’ in

which simulation of aerodynamics and hydrodynamics has become an essential tool for the

fluid mechanical design aspects of aircraft, ships and land vehicles.

Specifically, in this work we have demonstrated the use of reverse Poiseuille flow (RPF),

illustrated in figure 6.1, as a virtual rheometer for the calculation of the steady shear-rate

material functions from simulations of fluids based on particle models. Here the RPF virtual

rheometer has been demonstrated with DPD simulations, but the concept is applicable

to any particle based method, including MD, SPH or LBM. The reversal of the driving

force over half the computational domain combined with periodic boundary conditions

guarantees zero mean velocity on channel walls without imposition of real-wall boundary

conditions with their known pitfalls. Hence, properties measured in RPF are bulk values.

This was confirmed for a fluid of monodisperse chains in figure 6.2 which shows the bead

density distribution to be uniform across the channel section, and in figure 6.3 which shows

the shear stress calculated from the simulation data by the Irving-Kirkwood equation to

be consistent with the imposed shear stress distribution determined from the continuum

equation of motion. Further confirmation was provided by comparison of material functions

derived from RPF simulations with those derived from simulations of plane Couette flow

with Lees-Edwards boundary conditions (LEC), figure 6.5. This comparison is apt since

the periodic boundary conditions of LEC imply that it also measures bulk values without

the problems of real walls.
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The purpose of this work has been to demonstrate how the shear-rate dependent prop-

erties of modeled complex fluids can be accurately and economically determined with the

RPF rheometer. In doing so it was found that RPF has certain advantages over the conven-

tional LEC configuration. Firstly, the latter determines material-function values for only

one shear rate per simulation, whereas a single RPF simulation yields the same data for a

wide range of shear rates from zero at the centerline to the wall value. Thus, even though

the computational domain for the RPF configuration is several times larger than the LEC’s,

RPF yields the full rheogram at reduced computational cost compared to LEC. In practice,

for shear thinning fluids driven by large body forces the flatness of velocity profiles near the

centerline requires at least one simulation at the lowest possible force in order to resolve the

low shear-rate viscosity plateau. One or two higher driving forces may be required to span

the power law region and the approach to the high shear-rate plateau. Secondly, RPF values

near the zero-shear rate plateaus appear to be more reliable than those derived from LEC.

At very low shear rates stresses computed from the Irving-Kirkwood equation, required for

LEC, are inevitably noisier due to the dominance of thermal fluctuations. The unexpected

conclusion of this work is that shear rates derived by numerical differentiation of the RPF

velocity distribution combined with prescribed shear stress is a less noisy operation than

the prescribed shear rate of LEC combined with calculated shear stress. The computed

normal-stress differences of RPF are more accurate than their LEC counterparts, since

they are amenable to smoothing techniques as they are delivered as distributions across the

cross-section.

The fluids composed of mono-disperse chains, referred to as melts, were shown to have

steady shear-rate material functions of forms typical of polymer fluids. Furthermore, the

material functions of the melts satisfy the principle of time-temperature superposition and

their solutions the principle of time-concentration, which is typical of such fluids. However,

in their present form these models only partially capture the behavior of real mono-disperse

polymer melts and solutions. In particular, the tendency to complete disentangling of

chains at high shear rates does not correspond to what little is known for real polymers;

data are rare at shear rates approaching the upper viscosity plateau. Further understanding

of coarse-graining of bead-chain models should allow the regime of shear rates up to the

power law response can be brought into quantitative correspondence with the response of

real polymer fluids. Although RPF yields only the steady shear response of a fluid, the
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examples of this work demonstrate it can quickly and economically yield insights into the

adequacy of a particle model without the need for a complete rheological characterization.

Hence, RPF will be a favored tool in the assessment of new and improved models.



Chapter 7

Summary and future work

The research described in this thesis is focused on multiscale modeling of blood flow and

various polymeric systems which are part of soft matter. This work is driven by a rising

importance of numerical simulations in such fields as biology, material science, and medicine

and by a growing demand in multiscale approaches since many problems in systems biology

and soft matter require modeling of a wide range of spatiotemporal scales. The main novel

contributions of this work are as follows

• The Triple-Decker algorithm which interfaces atomistic, mesoscopic, and continuum

flow regimes corresponding to MD, DPD, and NS methods. Distinct descriptions are

formulated in different overlapping subdomains and are coupled through boundary

conditions. The algorithm allows for a flexible and efficient decoupling of space and

time scales which arise in different descriptions.

• A three-dimensional multiscale RBC model which incorporates realistic RBC mem-

brane properties. The RBC membrane is constructed as a network of springs whose

macroscopic properties are related to the network parameters through the developed

theoretical analysis. This permits analytical calculation of the model parameters for

targeted macroscopic membrane properties and therefore, no parameter adjustment is

required. The RBC model includes a viscous contribution in the membrane to deliver

its viscoelastic properties. In addition, it accounts for the separation of blood plasma

and RBC cytosol by the membrane to allow the use of internal/external fluids with

different viscosities which strongly affects RBC dynamics.

• A stress-free RBC model which eliminates artifacts of local non-vanishing membrane
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stresses due to a selected triangulation. This model permits to set a realistic mem-

brane bending rigidity which is much lower than the in-plane membrane elasticity,

while most of the existing models of similar type utilize very high bending rigidities

to compensate for artifacts of local non-vanishing membrane stresses due to trian-

gulation. The RBC model is able to adequately reproduce realistic RBC mechanics,

rheology, and dynamics.

• Rheological measurements of RBC membrane properties by twisting torque cytome-

try and through the monitoring of membrane thermal fluctuations. The rheology of

the modeled membrane is in agreement with available experiments. These measure-

ments along with experimental data can also aid in the determination of some RBC

membrane properties such as bending rigidity and membrane viscosity.

• Modeling of RBCs in malaria at different stages of intra-erythrocytic parasite devel-

opment. RBC mechanics at different stages is accurately captured by the RBC model

in comparison with experiments. The modeled RBC rheology shows a partial agree-

ment with experiments indicating insufficient data provided by them. Thus, the RBC

model can assist in the quantification of relative contributions to membrane rheology

in malaria such as shear modulus, bending rigidity, membrane viscosity, presence of a

rigid parasite inside RBCs, and potential metabolic activities.

• Modeling of blood flow under healthy conditions and in malaria. The simulated

blood flow in microtubes is able to reproduce the well-known Fahraeus and Fahraeus-

Lindquist effects and cell-free layers found in experiments. In addition, an increase

in blood flow resistance in malaria in comparison with that under healthy conditions

is quantified. Blood flow is simulated in a microfluidic channel with a constriction.

The developed model can be used to simulate blood flow in microcirculation and in

various microfluidic devices.

• Adhesive dynamics of Pf-parasitized RBCs in malaria. Adhesive dynamics of infected

RBCs is found in agreement with that on ICAM-1 and on mammalian CHO cells in

experiments. The effect of membrane properties on adhesive behavior is examined

for different membrane Young’s moduli and bending rigidities. In conclusion, flipping

behavior observed for infected RBCs appears to be due to the increased stiffness of
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the RBC membrane in malaria. The influence of a rigid parasite inside RBCs on the

RBC’s adhesive dynamics in shear flow is investigated showing more erratic adhesive

behavior than that of RBCs absent of rigid parasites. The adhesion of Pf-parasitized

RBCs in blood flow is simulated in a rectangular flow chamber showing significant

effects of a microflow environment on the adhesive dynamics of infected RBCs.

• Polymer depletion and migration in micro- and nano-channels. The depletion of poly-

mers is studied for various polymer models, solvent qualities, wall-polymer interac-

tions, numbers of beads in polymer representation, and channel sizes. The simulated

depletion layers are in agreement with the theoretical prediction of the depletion layer

for ideal chains. Polymer migration in Poiseuille flow yields two off-center peaks in

polymer bead distributions across the channel. The Serge-Silberberg effect is identified

as one of the contributions to polymer migration.

• Reverse Poiseuille flow (RPF) - A numerical rheometer. The RPF method is pro-

posed to be used for measurements of steady state rheological properties of complex

fluids. The method is successfully applied to semi-dilute polymer solutions and melts.

Time-concentration and time-temperature superposition principles are successfully

applied to the simulated DPD systems. RPF can be used as an alternative numerical

rheometer which allows to expand the range of flow conditions at which rheological

measurements can be taken.

Despite the results in the thesis, multiscale modeling in blood flow and soft matter

requires further tremendous developments and improvements in order to enable its practical

use in medicine, material science, and biology. As an example, the Triple-Decker algorithm

was applied to several cases of steady Newtonian flows. Further research is required to enable

its application to unsteady flows and flows of complex fluids such as blood and polymeric

suspensions. Moreover, blood flow modeling did not include numerous biological details

and processes such as elastic vessel walls, glycocalyx layer, RBC aggregability, metabolic

activities, etc. Blood flow in malaria exhibits an even higher level of complexity due to

changes in RBC membrane properties and RBC adhesion to the vascular endothelium.

Thus, the research in this thesis is one of the first steps towards realistic multiscale modeling

of blood flow under healthy conditions and in malaria and modeling of polymeric systems.



218

Lastly, we propose several projects which should follow the research described in this

thesis. The potential projects of interest include

• A further development of the Triple-Decker algorithm to enable its applicability to

unsteady flows and flows of complex fluids. To simulate unsteady flows with the

Triple-Decker method, an algorithm for modeling unsteady flow boundary conditions

for particle methods such as DPD and MD is required. Similarly, BCs for flows of

complex fluids are yet to be developed, requiring efficient algorithms for the insertion

and deletion of simulated molecules or cells at inflow and outflow, respectively.

• The effect of RBC aggregability on blood flow and its resistance. Aggregation among

RBCs can be incorporated into the blood flow model using, for example, the Morse

potential for cell-cell interactions.

• Blood flow in complex geometries such as microfluidic devices and vessel bifurcations.

Such simulations are likely to provide valuable insights for understanding blood flow

resistance and CFL variations in the microcirculation.

• The effect of vessel elasticity and the glycocalyx layer on blood flow. This is another

step towards more realistic simulations of blood flow in the microcirculation. Analo-

gously to the RBC membrane, an elastic vessel can be modeled as a spring network

with a large Young’s modulus. The glycocalyx layer could be represented as a brush

of semiflexible filaments attached to the vessel wall.

• Adhesion interactions among Pf-parasitized and healthy RBCs in malaria. Small cell

aggregates are found in blood flow in malaria due to rosetting and autoagglutination.

Rosetting is the attachment of healthy RBCs to Pf-parasitized erythrocytes, while

autoagglutination is the adhesion among infected RBCs. These interactions can be

potentially simulated using the adhesion model described in section 4.4. Alternatively,

sufficiently strong attractive interactions among RBCs (e.g., Morse potential) may

yield a good approximation of the adhesion of Pf-parasitized and healthy RBCs.

• Blood flow resistance in the microcirculation in malaria under realistic conditions

which include the adhesion of Pf-parasitized and healthy RBCs as well as adhesive

interactions of infected RBCs with the vessel wall. Here, complex vessel geometries

can be considered and flow conditions for microvessel blockages could be identified.
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• Bulk rheological properties of blood in health and in malaria. These include shear-

dependent viscosity, normal-stress differencies, and the complex modulus.

• Possible segregation of healthy and Pf-parasitized RBCs in blood flow due to the

difference in their membrane rigidities. The migration of Pf-parasitized RBCs towards

the vessel walls in blood flow may facilitate their efficient adhesion to the wall.



Appendix A

RBC nodal forces from the defined

energies

The modeled membrane is described by the potential energy V ({xi}) (eq. (3.1)) with the

contributions defined in equations (3.2, 3.3, 3.5, 3.6, and 3.7). Derivation of the exact nodal

forces corresponding to the outlined energies is performed according to equation (3.8) and

is divided into several parts:

i) two-point interactions (e.g., springs),

ii) three-point interactions (e.g., hydrostatic elastic energy, area and volume conservation

constraints),

iii) four-point interactions (e.g., bending between two adjacent faces).

The two-point or spring interactions defined in equations (3.3 and 3.5) yield the following

forces

fWLC(l) = −kBT

p

(

1

4(1 − x)2
− 1

4
+ x

)

l̂ij ,

fFENE(l) = − ksl

1 − x2
l̂ij ,

fPOW (l) =
kp

lm
l̂ij ,

(A.1)

where x = l/lm and l̂ij = ~lij/l is the vector of unit length between the spring ends i and j.

The three-point interactions may represent hydrostatic elastic energy (eq. (3.2)), area

and volume conservation constraints (eq. (3.7)). Figure A.1 shows a sample triangular
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element of the membrane network. Here ~aij = pi − pj and i, j take the values 1, 2, or 3.

a21
p =(x , y , z )1 1 1 (x , y , z )=p2 2 2

(x , y , z )=p3 3 3ξ

a

kA

a13

3

2
1

32

Figure A.1: Sketch of a triangular element of the network.

The normal ~ξ is equal to ~a21 × ~a31, where ”×” defines the cross product. The area of the

triangle is given by Ak = |~ξ|/2 = 1
2

√

ξ2x + ξ2y + ξ2z . Then, the hydrostatic elastic energy for

a single triangle results in the force given by

fsi
= −∂

(

Cq/A
q
k

)

∂si
=

q2qCq

(ξ2x + ξ2y + ξ2z )q/2+1

(

ξx
∂ξx
∂si

+ ξy
∂ξy
∂si

+ ξz
∂ξz
∂si

)

, (A.2)

where s can be x, y, or z and i = 1, 2, or 3. Let us denote the coefficient in front of the

parenthesis as follows

α =
q2qCq

(ξ2x + ξ2y + ξ2z )q/2+1
=

qCq

4Aq+2
k

. (A.3)

Thus, the nodal forces for the hydrostatic elastic energy term (eq. (3.2)) are given by the

following expressions

(fx1
, fy1

, fz1
) = α

(

~ξ × ~a32

)

,

(fx2
, fy2

, fz2
) = α

(

~ξ × ~a13

)

,

(fx3
, fy3

, fz3
) = α

(

~ξ × ~a21

)

.

(A.4)
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In case of the global area conservation constraint (the first term of Varea in equation

(3.7)) we obtain

fsi
= −∂

[

ka(A−Atot
0 )2/(2Atot

0 )
]

∂si
= −ka(A−Atot

0 )

Atot
0

∂A

∂si
= βa

∑

k∈1...Nt

∂Ak

∂si
=

= βa

∑

k∈1...Nt

1

4Ak

(

ξk
x

∂ξk
x

∂si
+ ξk

y

∂ξk
y

∂si
+ ξk

z

∂ξk
z

∂si

)

,

(A.5)

where βa = −ka(A − Atot
0 )/Atot

0 , the superscript k denotes the k-th triangle, and i ∈
{1, ..., Nv}. However, for a single triangle the nodal forces appear to have the same functional

form as that in equation (A.4) with α = βa/(4Ak). Similar to the global area constraint, the

local area conservation constraint (the second term of Varea in equation (3.7)) results in the

nodal forces for a single triangle as those in equation (A.4) with α = −kd(Ak−A0)/(4A0Ak).

The global volume conservation constraint (eq. (3.7)) yields the following equation

fsi
= −∂

[

kv(V − V tot
0 )2/(2V tot

0 )
]

∂si
= −kv(V − V tot

0 )

V tot
0

∂V

∂si
= βv

∑

k∈1...Nt

∂Vk

∂si
, (A.6)

where Vk = 1
6( ~ξk · ~tkc ), (∗ · ∗) denotes the dot-product, and ~tkc = (pk

1 + pk
2 + pk

3)/3 is the

center-of-mass of the k-th triangle (see fig. A.1). The nodal forces for a single triangle

derived for the volume constraint are as follows

(fx1
, fy1

, fz1
) =

βv

6

(

~ξ/3 + ~tc × ~a32

)

,

(fx2
, fy2

, fz2
) =

βv

6

(

~ξ/3 + ~tc × ~a13

)

,

(fx3
, fy3

, fz3
) =

βv

6

(

~ξ/3 + ~tc × ~a21

)

.

(A.7)

Finally, the four-point interactions are encountered in the bending energy between two

adjacent faces (eq. 3.6). Figure A.1 shows a sample geometry of two adjacent triangular

elements of the membrane network. The triangle normals are defined as ~ξ = ~a21 × ~a31,

~ζ = ~a34 × ~a24 and the corresponding areas as A1 = |~ξ|/2, A2 = |~ζ|/2. The bending energy

results in the following expression

fsi
= −∂ [kb(1 − cos(θ − θ0))]

∂si
= −kb sin(θ − θ0)

∂θ

∂si
, (A.8)
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Figure A.2: A sketch of two adjacent triangular elements of the network.

where θ is the angle between the normals ~ξ and ~ζ. Here sin(θ − θ0) can be expanded as

sin θ cos θ0 − cos θ sin θ0, where cos θ = (
~ξ

|~ξ| ·
~ζ

|~ζ|) and sin θ = ±
√

1 − cos2 θ taken with ”+” if

([~ξ − ~ζ] · [~t1c − ~t2c ]) ≥ 0 and with ”−” otherwise; ~t1c and ~t2c are the center of mass vectors of

triangles 1 and 2, respectively. Further, we find the derivative of θ with respect to si given

by

∂θ

∂si
=
∂
[

arccos(
~ξ

|~ξ| ·
~ζ

|~ζ|)
]

∂si
= − 1√

1 − cos2 θ

∂
[

~ξ

|~ξ| ·
~ζ

|~ζ|

]

∂si
. (A.9)

Analytical calculation of the derivatives above results in the nodal forces for the four-point

interactions (see fig. A.2) as follows

(fx1
, fy1

, fz1
) = b11

(

~ξ × ~a32

)

+ b12

(
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,

(A.10)

where b11 = −βb cos θ/|~ξ|2, b12 = βb/(|~ξ||~ζ|), and b22 = −βb cos θ/|~ζ|2 with βb = kb(sin θ cos θ0−
cos θ sin θ0)/

√
1 − cos2 θ.
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Analysis of the macroscopic

properties of a hexagonal network

The derivation of shear and area-compression moduli for a regular hexagonal network is

presented below. The Cauchy stress of an element of the hexagonal network shown in

figure 3.2 is given by equation (3.9). The linear shear modulus is derived from a network

deformation by applying a small shear strain γ as follows

~r′ = ~rE = (rx + ry
γ

2
; rx

γ

2
+ ry), E =









1 γ/2

γ/2 1









, (B.1)

and hence, ~a′ = (ax + ay
γ
2 ; ax

γ
2 + ay) and ~b′ = (bx + by

γ
2 ; bx

γ
2 + by) in figure 3.2. The shear

deformation is area-preserving, and therefore only spring forces in equation (3.9) contribute

to the network shear modulus. Expansion of the shear stress τ ′xy in Taylor series provides

the linear shear modulus of the network as follows

τ ′xy = τxy +
∂τ ′xy

∂γ

∣

∣

∣

∣

γ=0

γ +O(γ2), µ0 =
∂τ ′xy
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∣

∣

∣

∣

γ=0

, (B.2)

and thus,
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We differentiate the first spring term to obtain

∂
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since a′|γ=0 = a, ∂a′

∂γ

∣

∣

∣

γ=0
=

axay

a , and
∂a′

xa′

y

∂γ

∣

∣

∣

γ=0
= a2/2. Note that a = b = c = l0 and

f(a) = f(b) = f(c). In addition, using a geometrical argument, it can be shown that

(axay)
2 + (bxby)

2 + (cxcy)
2 = 2A2

0. Hence, the network shear modulus can be calculated as

µ0 = −A0

l0

∂ f(r)
r
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∣

∣

∣

∣

∣

r=l0

− 3f(l0)l0
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, (B.5)

where A0 =
√

3l20/4. Substitution of different spring forces into the equation above yields

relations between corresponding spring parameters of the network and its macroscopic shear

modulus outlined in equation (3.10).

The linear area-compression modulus K can be calculated from a small area expansion

of the network element shown in figure 3.2. The in-plane pressure of the element is given in

equation (3.11) including several contributions such as springs, hydrostatic elastic energy,

and local and global area constraints. The corresponding area-compression modulus K is

defined as

K = −A0
∂P

∂A

∣

∣

∣

∣

A=A0

= − l0
2

∂P

∂l

∣

∣

∣

∣

l=l0

. (B.6)

Thus, the springs’ contribution to the area-compression modulus is given by

KS = −
√

3l0
2

∂ f(l)
l

∂l

∣

∣

∣

∣

∣

l=l0

, (B.7)

while contributions from hydrostatic elastic energy, and local and global area constraints

are as follows

KA =
q(q + 1)Cq

Aq+1
0

+ ka + kd. (B.8)

The sum of KS and KA for different network models (see section 3.2) yields the area-

compression moduli outlined in equation (3.13).



Appendix C

Reflections of moving particles at

moving triangular faces on the

RBC surface

In order to prevent fluid particles to cross the RBC membrane, we perform reflections of

them at the RBC surface. In addition, this allows us to have non-mixing external and

internal fluids with different viscosities. The particle reflections are done at the triangular

plaquettes that form the RBC membrane. Figure C.1 shows a moving particle p and

a triangular element with vertices {s1, s2, s3}. The reflections are performed every time

s3

vp

s2

s1v1

n

a2

p

v2

a1

v3

Figure C.1: Sketch of a moving particle p and a triangular element {s1, s2, s3}.

step of temporal integration since in DPD each particle moves ballistically (with constant

velocity) within a single time step ∆t. Hence, figure C.1 depicts a single time step, where
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each vertex si = (xi, yi, zi), i = 1, 2, 3 of the triangle is moving with its constant velocity

~vi, while the particle p = (xp, yp, zp) has the velocity ~vp. Motion of the vertices and the

particle is given by

si = so
i + ~vit, i = 1, 2, 3,

p = po + ~vpt,

(C.1)

where t ∈ [0,∆t] is time and the superscript “o“ denotes a position at the beginning of

the time step or at t = 0. The edge vectors ~a1, ~a2 and the triangle normal are defined as

follows

~a1 = s2 − s1 = so
2 − so

1 + (~v2 − ~v1)t = ~ao
1 + ~d1t,

~a2 = s3 − s1 = so
3 − so

1 + (~v3 − ~v1)t = ~ao
2 + ~d2t,

~n = ~a1 × ~a2 = ~ao
1 × ~ao

2 +
(

~ao
1 × ~d2 + ~d1 × ~ao

2

)

t+
(

~d1 × ~d2

)

t2.

(C.2)

As the initial check for a possible reflection within one time step, we verify that the

particle trajectory has crossed the moving plane defined by the triangle vertices. The

equation of the plane is given by

(~n · s) + nd = nxx+ nyy + nzz + nd = 0, (C.3)

where nd can be found as −(~n · si) for any i = 1, 2, 3. To determine if the particle is on the

positive or negative side of the plane normal, we define the following dot-products

bo = (~no · (po − so
1)) , b∆t =

(

~n∆t · (p∆t − s∆t
1 )
)

, (C.4)

where the superscript “∆t“ denotes that the positions are at the time t = ∆t. Thus, if the

product bob∆t is positive, the particle did not cross the moving plane and no reflection is

needed. Otherwise, if bob∆t ≤ 0, we find the intersection between the particle trajectory

and the plane by solving the following equation with respect to t

(~n · (p − s1)) = 0. (C.5)

Note that the equation above is cubic in t, and its roots are found using the Newton-

Raphson method (see e.g., [163]). After the time t′ of the intersection is obtained, the point

of intersection can be calculated as p′ = po + ~vpt
′.
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The point p′ corresponds to the intersection of the particle path and the moving plane.

An additional check, that p′ is in the triangle, is necessary. For this we represent the vector

~g′ = p′ − s′1 in the coordinate system defined by ~a′1 and ~a′2 as follows

~g′ = ξ~a′1 + ζ~a′2, (C.6)

where ξ and ζ are some scalars. Taking the dot-product of the equation above with ~a′1 and

~a′2, respectively, gives us the system of two equations from which ξ and ζ can be found as

follows

ξ =
(~g′ · ~a′1) |~a′2|2 − (~g′ · ~a′2) (~a′1 · ~a′2)

|~a′1|2 |~a′2|2 − (~a′1 · ~a′2)2
, ζ =

(~g′ · ~a′2) |~a′1|2 − (~g′ · ~a′1) (~a′1 · ~a′2)
|~a′1|2 |~a′2|2 − (~a′1 · ~a′2)2

. (C.7)

Then, if ξ ≥ 0, ζ ≥ 0, and ξ + ζ ≤ 1, the point p′ lies within the triangle and the particle

reflection has to be made.

The bounce-back reflection of the particle is performed as follows

~vnew
p = 2~v′ − ~vp, ~v′ = (1 − ξ − ζ)~v1 + ξ~v2 + ζ~v3,

pnew = p′ + (∆t− t′)~vnew
p ,

(C.8)

where the superscript “new“ denotes the new position and velocity of the particle after

reflection. The described procedure is implemented in a loop to account for multiple reflec-

tions within one time step. In addition, for each fluid particle a linked-list of the triangles

in a neighborhood of the particle is built to exclude unnecessary reflection checks and to

substantially reduce computational cost.



Appendix D

Manual for creating initial

conditions to be used in

simulations

The code data domain.cpp generates the initial conditions for DPD simulations. It reads

the input file domain.dat where a configuration for the initial conditions has to be specified.

The initial conditions are written to the file data.out. The input file domain.dat consists

of the following

==================================================

1: 589980 224100 149400 224100

2: 2 2 1 1

3: 1.0

4: 1.0

5: 0.0 100.0 -1.6 31.6 -1.6 51.6

6: 1 (number of lattice subdomains)

7: 1 0.25 99.75 0.0 0.0 0.0 50.0 200 1 101 0.0

8: 1 (number of random subdomains)

9: 1 0.01 99.99 0.01 29.99 0.01 49.99 420000 0.0

10: 1 (number of polymer subdomains)

11: 2 1 0.2 9.8 0.2 9.8 0.2 9.8 1 100 0.7 0 0.0

12: 1 (number of cell subdomains)

229
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13: 2 2 1 1 0.0 0.0 0.0 0.0 0.0 0.0 1 1.0 0.0 rbc.dat

14: 1 (number of lattice cell subdomains)

15: 2 2 1 1 5.0 45.0 5.0 25.0 5.0 45.0 5 3 5 1.0 0.0 rbc.dat

16: 1 (number of template cell subdomains)

17: 1 1 2 2 1 1 1.3 23.2 0.0 0.0 0.0 0.0 10 1 1 0.8 0.0 rbc.dat template.dat

18: 1 (number of border subdomains)

19: 1 0 0.0 100.0 0.0 1.5 -26.5 26.5 0.0 -1.5 25.0 1 0 0 0.0

20: box.dat

==================================================

The very left column denotes the line numbers of the file.

Line 1: 589980 224100 149400 224100 - the total number of atoms, bonds, angles,

and dihedrals in a DPD simulation.

Remarks: These numbers are read and written to the output file data.out. However,

data domain.cpp calculates and prints to the command window the correct number of

atoms, bonds, angles, and dihedrals defined by a user. Therefore, if the values in do-

main.dat differ from the ones data domain.cpp prints out, they need to be corrected either

manually in data.out or by changing them in domain.dat and rerunning data domain.cpp.

Line 2: 2 2 1 1 - the number of atom, bond, angle, and dihedral types used in a

simulation, e.g., two atom types are numbered as type 1 and type 2.

Lines 3 and 4: 1.0 - the particle masses defined for each atom type.

Remarks: Note that the number of lines for particle masses has to match the total number

of atom types in line 2. Therefore, if the number of atom types is 3, three lines have to be

included in domain.dat to define all particle masses.

Line 5: 0.0 100.0 -1.6 31.6 -1.6 51.6 - xmin, xmax, ymin, ymax, zmin, zmax are the

dimensions of the global computational domain defined as a rectangular cuboid.

Line 6: 1 (number of lattice subdomains) - the number of subdomains of single

DPD particles placed on a lattice which are defined in the subsequent lines.

Line 7: 1 0.25 99.75 0.0 0.0 0.0 50.0 200 1 101 0.0 - atom type, xmin, xmax, ymin,

ymax, zmin, zmax, Nx, Ny, Nz, and atom charge which define a lattice subdomain of single

DPD particles. As an example, Nx DPD particles are placed equidistantly between xmin

and xmax with the first one placed at xmin and the last one at xmax for the fixed y and z.

Thus, this subdomain creates the total number of particles equal to NxNyNz.
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Remarks: The subdomains have to be fully inside the global domain defined in line 5. The

number of subdomains in line 6 has to match the number of subsequent lines which define

different subdomains. If the number of subdomains in line 6 is set to zero, line 7 has to be

deleted.

Line 8: 1 (number of random subdomains) - the number of subdomains of

single DPD particles placed randomly within the defined rectangular cuboid regions.

Line 9: 1 0.01 99.99 0.01 29.99 0.01 49.99 420000 0.0 - atom type, xmin, xmax,

ymin, ymax, zmin, zmax, N , and atom charge. N DPD particles are placed randomly within

the defined rectangular cuboid.

Remarks: The same restrictions as in line 7 are applied.

Line 10: 1 (number of polymer subdomains) - the number of subdomains of

linear bead-spring polymers.

Line 11: 2 1 0.2 9.8 0.2 9.8 0.2 9.8 1 100 0.7 0 0.0 - atom type, bond type, xmin,

xmax, ymin, ymax, zmin, zmax, Np, Nb, l0, index, and atom charge, where Np is the number

of polymers, Nb is the number of beads in a single polymer, and l0 is the distance between

any two connected beads. Np polymers are placed in the defined rectangular cuboid. If

index=0 each polymer is generated as a three-dimensional random walk with the step size

l0. If index=1, 2, or 3 each polymer is aligned with the x, y, or z directions, respectively.

Remarks: The same restrictions as in line 7 are applied. Also, note that for index=1, 2,

3 the starting bead for each polymer is placed randomly within the defined rectangular

cuboid, while the other beads can be potentially placed outside the cuboid depending on

Nb and l0 since xi+1 = xi + l0 for i = 1...Nb − 1.

Line 12: 1 (number of cell subdomains) - the number of subdomains of cells

placed randomly within the defined rectangular cuboid regions.

Line 13: 2 2 1 1 0.0 0.0 0.0 0.0 0.0 0.0 1 1.0 0.0 rbc.dat - atom type, bond type,

angle type, dihedral type, xmin, xmax, ymin, ymax, zmin, zmax, Nc, scale, atom charge, and

cell file, where Nc is the number of cells whose center-of-masses are placed randomly within

the defined rectangular cuboid. The file rbc.dat contains the topology of a cell and will

be provided. The parameter “scale” defines cell scaling such that the coordinates of cell

vertices with respect to its center-of-mass are multiplied by the scale.

Remarks: The same restrictions as in line 7 are applied. In addition, the cell center-of-mass

is placed within the defined rectangular cuboid, not the whole cell. The code will check for
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overlapping cells within a subdomain, but not for overlapping cells belonging to different

subdomains. Thus, the dimensions of separate subdomains have to be chosen carefully.

Also, note that if many cells have to be placed within a small subdomain, the code may be

running an infinite loop since at some point there may be no free space left to insert a new

cell due to the non-overlapping constraint. In this case, the code has to be stopped and the

scale parameter needs to be set to a lower value.

Line 14: 1 (number of lattice cell subdomains) - the number of subdomains of

cells whose center-of-masses are placed on a lattice.

Line 15: 2 2 1 1 5.0 45.0 5.0 25.0 5.0 45.0 5 3 5 1.0 0.0 rbc.dat - atom type, bond

type, angle type, dihedral type, xmin, xmax, ymin, ymax, zmin, zmax, N c
x, N c

y , N c
z , scale,

atom charge, and cell file, where N c
x, N c

y , and N c
z are the cell numbers for the lattice in each

direction (see description for line 7). The “scale” and cell file are the same as in line 13.

Remarks: The same restrictions as in line 7 are applied. In addition, cell overlapping is

not checked by the code. Therefore, the lattice dimensions have to be carefully chosen to

guarantee no overlap among cells.

Line 16: 1 (number of template cell subdomains) - the number of subdomains

of cell templates whose center-of-masses are placed on a lattice. The template file describes

a cell filled and surrounded by different solvents and will be provided.

Line 17: 1 1 2 2 1 1 1.3 23.2 0.0 0.0 0.0 0.0 10 1 1 0.8 0.0 rbc.dat template.dat -

atom type of the external solvent, atom type of the internal solvent, atom type of the cell

vertices, bond type, angle type, dihedral type, xmin, xmax, ymin, ymax, zmin, zmax, N c
x, N c

y ,

N c
z , scale, atom charge, cell file, and template file, where N c

x, N c
y , and N c

z are the numbers

for the lattice in each direction (see description for line 7). The “scale” here scales the

whole template including the cell and the solvents.

Remarks: The same restrictions as in line 7 are applied. In addition, template overlapping

is not checked by the code. Therefore, the lattice dimensions have to be carefully chosen to

guarantee no overlap among templates.

Line 18: 1 (number of boundary subdomains) - the number of subdomains

of boundary particles which are used to create solid boundaries constructed of frozen DPD

particles.

Line 19: 1 0 0.0 100.0 0.0 1.5 -26.5 26.5 0.0 -1.5 25.0 1 0 0 0.0 - definition of a

boundary subdomain which can be a rectangular cuboid or a cylindrical annulus region.
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Note that the defined region is extracted from the boundary file box.dat defined in line 20.

Rectangular cuboid: atom type, 0, xmin, xmax, ymin, ymax, zmin, zmax, displacement in

x, displacement in y, displacement in z, dummy, dummy, dummy, and atom charge. The

particles within the defined cuboid are extracted from the boundary file box.dat defined in

line 20 and are shifted in x, y, and z by the defined displacements.

Cylindrical annulus: atom type, 1, xmin, xmax, rmin, rmax, dummy, dummy, displacement

in x, displacement in y, displacement in z, orientation, dummy, dummy, and atom charge,

where rmin and rmax are the inner and outer radii of the annulus. Note that the central

axis of the cylindrical annulus is always defined by two points {xmin, 0, 0} and {xmax, 0, 0}.
The particles within the defined cylindrical annulus are extracted from the boundary file

box.dat defined in line 20 and are shifted in x, y, and z by the defined displacements. The

orientation parameter allows to change the annulus alignment by swapping the order of

writing x, y, and z into the output file. Thus, if orientation=1, 2, or 3 the cylindrical

annulus is aligned with x, y, or z, respectively.

Remarks: The same restrictions as in line 7 are applied.

Line 20: box.dat - the boundary file from which all defined boundary regions are

extracted. This file needs to be created separately.

Remarks: The coordinates of particles written in box.dat have to be in agreement with the

proposed regions to be extracted. Otherwise, no boundary particles may be created.

The file data domain.cpp can be compiled as “g++ data domain.cpp -o data domain”

and be run as “./data domain”.
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Manual for the developed code

The developed code is based on LAMMPS Molecular Dynamics Simulator [2] distributed

by Sandia National Laboratories as an open source code under the terms of the GPL li-

cense. The DPD code was built up on top of LAMMPS. Therefore, this manual describes

only new implemented commands which are not included in the standard LAMMPS dis-

tribution. For the commands which are implemented in the standard LAMMPS distri-

bution we will refer the reader to the on-line LAMMPS manual which can be found at

“http://lammps.sandia.gov”.

An input file required for running LAMMPS is called in.cell here; however, any name

can be chosen. A sample input file in.cell is given below

==================================================

1: dimension 3

2: units lj

3: boundary p f f

4: atom style full 1

5: neighbor 0.3 bin

6: neigh modify every 10 check no exclude type 3 3

7: special bonds 0.0 0.0 0.0

8: lattice sc 1.0

9: read data data.cell

10: group cells molecule > 0

11: group wall type 3

234
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12: group sol subtract all cells wall

13: group move join sol cells

14: group inner subtract cells cells

15: bond style wlc/pow/all/visc

16: bond coeff 1 0.094523620928369 2.2 100 2.0 30.0 90.0

17: angle style rbc

18: angle coeff 1 0.0 1 4900.0 132.868 5000.0 92.452 100.0 0.14

19: dihedral style bend

20: dihedral coeff 1 6.117379786975386 0.0

21: pair style dpd/verlet 1.5 1548482

22: pair coeff 1 1 4.0 30.0 2.381473757088688 1.5 0.25

23: pair coeff 1 2 2.0 45.0 2.916697770348037 1.5 0.25

24: pair coeff 1 3 4.0 30.0 2.381473757088688 1.5 0.25

25: pair coeff 2 2 2.0 30.0 2.381473757088688 0.5 0.25

26: pair coeff 2 3 2.0 45.0 2.916697770348037 1.5 0.25

27: pair coeff 3 3 0.0 0.0 0.0 1.0 1.0

28: fix 1 move dpd/verlet 0.5

29: fix 2 outer bound/rbc inner cells 0 1.0 1.7

30: fix 3 move solid/bound plane.dat

31: fix 4 move addforce 0 1.5 0.0 0.0

32: timestep 0.00125

33: restart 500000 restart

34: velocity cyl out move 1 25 1 20000 1 50000 0 50.304 0 5.155 0 5 vel

35: density cyl out move 1 25 1 20000 1 50000 0 50.304 0 5.155 0 5 dens

36: temperature fl move partial 0 1 1

37: thermo modify temp fl lost warn flush yes

38: thermo 1000

39: dump 1 cells atom 5000 cell.dump

40: dump modify 1 scale no image do flush yes

41: run 3000000

==================================================

Note that the very left column denotes the line numbers of the file. The lines in bold corre-
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spond to the newly implemented commands and will be explained below. The descriptions

for other commands can be found in the LAMMPS manual [2]. This example file allows a

simulation run of blood flow in a microtube with an appropriate input file data.cell (line 9)

which has to be created separately (see appendix D for details).

The first word in each line is a command name which is followed by several parameters

or options. Thus, each explanation describes a command first and after that identifies its

parameters.

Line 4: atom style full 1 - the atom style used in simulations.

Syntax: atom style style index

The atom style command is a part of the original LAMMPS, but it was changed. In

simulations with RBCs “style”=full, while a description for other atom styles can be found

in the LAMMPS manual. In DPD simulations “index”=1 indicating that the code has to

communicate particle’s velocity information among neighboring processors.

Line 15: bond style wlc/pow/all/visc - the bond style used in simulations.

Syntax: bond style style

The bond style command is a part of the original LAMMPS, but new additional bond styles

were implemented. “Style”=wlc/pow/all/visc corresponds to the WLC-POW spring model

defined in equations (3.3) and (3.5) with the viscous contribution in equations (3.24) and

(3.25).

Line 16: bond coeff 1 0.094523620928369 2.2 100 2.0 30.0 90.0 - the bond

parameters for the previously defined bond style.

Syntax: bond coeff bond type kBT x0 µ0 m γC γT

Parameters for the WLC-POW spring model with viscous contribution which are defined

in equations (3.3), (3.5), (3.24), and (3.25). µ0 is the macroscopic shear modulus of the

RBC membrane defined in equation (3.10). Note that the parameters p and kp in equations

(3.3), (3.5) are automatically calculated inside the code for the targeted µ0.

Line 17: angle style rbc - the angle style used in simulations.

Syntax: angle style style

The angle style command is a part of the original LAMMPS, but new additional angle

styles were implemented. “Style”=rbc is related to the last term in equation (3.2) and the

area and volume constraints in equation (3.7).

Line 18: angle coeff 1 0.0 1 4900.0 132.868 5000.0 92.452 100.0 0.14 - the



237

angle parameters for the previously defined angle style.

Syntax: angle coeff angle type Cq q ka A
tot
0 kv V

tot
0 kd A0

Parameters for the last term in equation (3.2) and the area and volume constraints in

equation (3.7). Note that for the stress-free RBC model Cq = 0.0 and A0 is a dummy

parameter which is ignored.

Line 19: dihedral style bend - the dihedral style used in simulations.

Syntax: dihedral style style

The dihedral style command is a part of the original LAMMPS, but new additional dihedral

styles were implemented. “Style”=bend corresponds to the RBC energy defined in equation

(3.6).

Line 20: dihedral coeff 1 6.117379786975386 0.0 - the dihedral parameters

for the previously defined dihedral style.

Syntax: dihedral coeff dihedral type kb θ0

Parameters for the RBC bending energy defined in equation (3.6).

Line 21: pair style dpd/verlet 1.5 1548482 - the style of pair interactions

used in simulations.

Syntax: pair style dpd/verlet rc seed

The pair style command is a part of the original LAMMPS, but new additional pair styles

were implemented. “Style”=dpd/verlet corresponds to the three DPD forces defined in

equation (2.8). rc is the DPD cutoff radius (see section 2.2.2), and “seed” is used to set

different seeds for the random number generator on distinct processors.

Lines 22-27: pair coeff 1 1 4.0 30.0 2.381473757088688 1.5 0.25 - the pair

interaction parameters for the previously defined pair style.

Syntax: pair coeff i j a γ σ rc k

Parameters for DPD pair interactions between particles of atom type i and particles of atom

type j. Other parameters define DPD forces which are described in section 2.2.2.

Lines 28-31: fix 1 move dpd/verlet 0.5 - the fix command describes various

manipulations of the simulated system by a user.

Syntax: fix fixID group name parameters

“fixID” is the unique fix number, “group” is a group of particles to which this fix is applied,

“name” is the fix unique name, and “parameters” is a list of the fix parameters.

fix 1 move dpd/verlet 0.5 - the modified velocity-Verlet algorithm with λ = 0.5 [92].
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fix 2 outer bound/rbc inner cells 0 1.0 1.7 - implements dynamic bounce-back re-

flections of particles on the RBC membrane. “Outer” is the group of particles which are

reflected on the outside of the RBC membrane, “inner” is the group of particles which are

reflected from the inside of the RBC membrane, and “cells” is the group of RBCs. “0” in-

dicates bounce-back reflections. “1.0” is the maximum distance of particles from the RBCs

membrane within which particle reflections are considered. “1.7” is the cutoff radius for

communications of RBC vertices among neighboring processors.

fix 3 move solid/bound plane.dat - implements particle reflections and solid boundary

conditions (BCs) which are described in the file “plane.dat” with the following syntax

==================================================

5 - number of boundary shapes

1.5 0.5 0 - distance and reflection specifications

1 1.0 1.0 4.0 2 250 0 group - adaptive shear force

1 100 1.0 0 force.dat group - pressure force

“five lines that describe boundary shapes“

==================================================

Distance and reflection specifications: rnorm rtang refl - First two numbers are the normal

and tangential maximum distances of particles from boundary shapes within which parti-

cle reflections and BCs are considered. “refl”=0 defines bounce-back reflections, while

“refl”=1 corresponds to specular reflections.

Adaptive shear force: on/off rs α exponent Nd iter side group - see section 2.2.1 for de-

tails. “exponent” is the exponent of the weight function and Nd is the number of statistical

cells in the normal direction to a boundary, where flow velocities are sampled. “iter” is the

number of time steps between the adaptive shear force updates and “group” is the group of

particles to which shear force is applied. “side”=0, 1, and 2 means that the adaptive shear

force is applied on both sides, on the side of the shape normal, and on the opposite side of

the shape normal, respectively.

Pressure force: on/off Np rp side force.dat group - applies the pressure force defined in

equation (2.7) and written into the file force.dat with Np entries. “side” and “group” are

the same as for the adaptive shear force.

Boundary shapes: The possible boundary shapes are triangular plaquette (index 1), par-

allelogram (index 2), cylinder (index 3), and sphere (index 4). Note that the number of
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lines describing boundary shapes has to match the number of shapes defined in line 1 of

the plane.dat file.

1) Triangular plaquette: 1 x0 y0 z0 x1 y1 z1 x2 y2 z2 vx vy vz side - {x0,y0,z0}, {x1,y1,z1},
{x2,y2,z2} are the vertices of a triangle and {vx,vy,vz} is the velocity at the boundary de-

fined by the triangle. “side”=0, 1, 2, and 3 defines no particle reflections, reflections on the

side of the triangle normal, reflections on the opposite side of the triangle normal, and on

both sides, respectively. The triangle normal is defined as ~n = (( ~x1 − ~x0) × ( ~x2 − ~x0)).

2) Parallelogram: 2 x0 y0 z0 x1 y1 z1 x2 y2 z2 vx vy vz N1 N2 side - {x0,y0,z0}, {x1,y1,z1},
{x2,y2,z2} are the three vertices of a triangle which corresponds to a half of the parallelo-

gram and {vx,vy,vz} is the velocity at the boundary defined by the parallelogram. N1 and

N2 define a regular mesh on the parallelogram to apply adaptive shear force in each cell of

the mesh separately. The “side” parameter is the same as for triangular plaquette.

3) Cylinder: 3 x0 y0 z0 x1 y1 z1 r vx vy vz Nz Nθ side - {x0,y0,z0} and {x1,y1,z1} define

cylinder axes and r is the cylinder radius. Nz and Nθ define a regular mesh on the cylinder.

The “side” parameter: 0 - none, 1 - outside, 2 - inside, and 3 - both sides.

4) Sphere: 4 x0 y0 z0 r vx vy vz Nφ Nθ side - {x0,y0,z0} is the sphere center and r is the

sphere radius. The “side” parameter is the same as for cylinder.

fix 4 move addforce 0 1.5 0.0 0.0 - exerts force on each particle in the defined group.

Syntax: fixID group addforce 0 fx fy fz.

Lines 34-35: velocity cyl out move 1 25 1 20000 1 50000 0 50.304 0 5.155

0 5 vel - defines a mesh for statistics accumulation.

Syntax: velocity cyl out group Nx Nr Nθ start each every xmin xmax y0 r z0 dummy name

The mesh is defined in the cylindrical coordinates, where the cylinder has to be aligned

with the x direction. Nx, Nr, and Nθ are the divisions along the x, radial, and angle co-

ordinates. “start” is the time step of the sampling start, “each” is the sampling frequency

(for example, sampling every time step if each=1), and “every” is the total number of time

steps in the sample. “name” corresponds to the beginning of the written output file. The

ending of the file is automatically added as “.Nt.plt” where Nt is the current time step.

The above command samples flow velocity. In addition, particle density can be sampled

as density cyl out with the same syntax. The sampling mesh can be also defined in the

Cartesian coordinates as follows

Syntax: velocity out group Nx Ny Nz start each every xmin xmax ymin ymax zmin zmax
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name

Here, a rectangular cuboid is defined with the number of cells Nx, Ny, and Nz in each

direction. Many other flow parameters can be sampled with this command: density (den-

sity out), temperature (temperature out), stress (stress out), etc.

In addition, we include several commands that were implemented to simulate adhesion

of WBCs and Pf-parasitized RBCs.

1) bond style break/visc - defines bond dissociation rules described in section 4.4.1.

2) bond coeff bondID parameters - the bond parameters for the previously defined

bond style. The choice of parameters is as follows

i) rbc kBT x0 µ0 m γC γT

ii) ligand ks l0 k
0
off σoff kBT doff

where the first option defines bond parameters of a RBC described in line 16: above. The

second option describes bond parameters of adhesive interactions which can be found in

section 4.4.1.

3) pair style dpd/create lt bt each rc - defines bond formation rules described

in section 4.4.1. lt is the atom type of ligand particles, bt is the bond type of adhesion

bonds, and rc is the DPD cutoff radius. “each” characterizes active receptors (available for

binding) on the RBC. Thus, if the atom ID of a RBC vertex is divisible by “each”, this

vertex represents an active receptor site.

4) pair coeff i j parameters - the pair interaction parameters for the previously

defined pair style. The choice of parameters is as follows

i) dpd a γ σ rc k

ii) create ks l0 k
0
on σon kBT don

iii) stick De r0 β rc

iv) lj ε σlj γ σ rc k

where i) defines standard DPD interactions described in lines 22-27: above. ii) describes

bond parameters of adhesive interactions which can be found in section 4.4.1. iii) defines

Morse interactions given by the Morse force

F (r) = 2Deβ [exp (2β(r0 − r)) − exp (β(r0 − r))] , (E.1)

whereDe is the well depth of the potential, r0 is the equilibrium distance, and β characterizes
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the range of attractive interactions. Finally, iv) defines Lennard-Jones interactions with the

DPD thermostat which are described in section 2.2.1.

More detailed information on how to compile, use, and run LAMMPS we refer the reader

to the on-line LAMMPS manual which can be found at “http://lammps.sandia.gov”. In

addition, a more detailed manual for the developed code is maintained by the CRUNCH

group at Brown University and is available upon request.
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