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1 Introduction 1

1 Introduction

Fluids, which correspond to suspensions of various solid and deformable particles, have
long become part of our daily life. Examples include different foods, biofluids, cosmetics
and hygiene products, and liquids used in a variety of technological devices and processes.
Such liquids are very attractive because their properties (e.g., fluidity, lubrication, bio-
functionality) are very versatile and can be tuned and controlled over a very wide range
of material characteristics. In addition, the properties of such suspensions are often very
sensitive to the surrounding conditions such as temperature, pressure, and external con-
finement. This motivates considerable research efforts directed to understand and control
the structure and rheology of various particle suspensions.

One of the first theoretical investigations of the rheological properties of colloidal suspen-
sions [1] has been performed by Albert Einstein more than a hundred years ago. In that
classical paper [1], the dependence of the viscosity η of a hard-sphere suspension on the
volume fraction φ has been predicted as

η = ηs
[
1 + 2.5φ+O(φ2)

]
, (1)

where ηs is the solvent viscosity. This result describes the suspension viscosity to leading
order in φ or equivalently in the regime φ . 0.1. Furthermore, this approximation appears
to be useful not only in case of rigid particles, but also for flexible particles such as linear-
and star-polymers [2, 3, 4, 5] in the regime of small deformations or when the polymers
remain in a near-spherical coiled configuration. In this case, an effective particle size
through the so-called ”hydrodynamic radius” can be defined in order to determine the
volume fraction [4, 5].

The example above demonstrates that there exist some similarities between suspensions of
rigid colloids and of deformable particles. However, it is clear that particle deformability
introduces another important characteristic, making the behavior of such particles and the
rheological properties of their suspensions to be much richer than their hard counterparts
[6]. This creates additional challenges for the elucidation of their behavior in various
suspensions; however, it also provides new opportunities and directions for the application
of such materials, since their properties can be tuned over a wide range.

Soft-colloid suspensions with different rheological properties are utilized more and more in
a wide range of applications. Perhaps, the most prominent example is polymer suspensions,
which are part of many technological processes in rubber, plastic, textile, and automobile
industries. There exist suspensions of linear and branched polymers, melts, and other
complex compositions. This class of materials has been receiving considerable attention
experimentally [7, 8, 9] and theoretically [10, 11, 12, 5] with a number of interesting
developments in recent years. Suspensions of linear polymers have been investigated in
great detail [10, 11, 5]. For instance, the macroscopic rheological properties of a suspension
have been shown to directly correlate with the orientation and elongation of single polymer
chains [13, 14, 15]. Currently, polymers with a more complex architecture such as star
polymers, dendrimers, and hyperbranched polymers receive significant attention [3, 5]. In
particular, their dynamics and deformation in flow is of interest in order to associate their
behavior with the rheological properties of a suspension.

Another class of soft objects includes suspensions of vesicles, capsules, and cells. Vesicles
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and capsules are very interesting for a number of technological applications such as, for
instance, carriers for drug delivery. On the other hand, such systems often serve as good
model systems for suspensions of cells with the advantage that their properties can be
rather well controlled, which can be challenging for biological cells. Vesicles and capsules
consist of a membrane, which encloses a certain volume of fluid or fluid mixture. Hence,
the properties of a membrane (e.g., elasticity, bending, viscosity) and the enclosed fluid
are very important for determining the dynamics and deformation of vesicles and capsules.
Suspensions of cells are mainly part of the biophysical and biomedical fields with a number
of useful applications. One of the examples of such suspensions is blood, which consists
primarily of deformable red blood cells (RBCs). The deformability of RBCs enables them
to pass through the tiny vessels of the microvascular network, which might be impaired
in several diseases such as malaria and sickle-cell anemia due to the stiffening of RBCs
[16, 17]. Apart from RBCs, there also exist many other cells subjected to fluid flow
with the examples of white blood cells (WBCs), platelets, and circulating tumor cells.
In addition to the membrane properties, these cells also possess an inner cytoskeleton,
making such cells viscoelastic. Different cells have distinct shapes, types of membrane
and/or cytoskeletal elasticity, and therefore yield different rheological properties.

From the rheological point of view it is interesting to understand the relation between
the macroscopic properties of a suspension and its micro-structure and the behavior of
single soft particles. The suspension’s micro-structure is governed by the dynamics and
deformation of suspended particles in flow and their interactions. For example, changes
in the viscosity of a suspension in response to shear flow (e.g., shear-thinning) can be
associated with a change in the conformation or orientation of soft particles. Another large
area, where the behavior of soft particles in flow is of great interest, is in the biomedical
field and related to the sorting and detection of various particles within a suspension. The
applications include the analysis of biosamples, detection of rare components, and their
purification. The ability to sort and detect certain components based on their mechanical
properties has a strong potential, because the mechanics of many cells is strongly correlated
with their physical properties in the healthy or diseased state [16, 18].

The short overview of soft-particle suspensions above suggests a number of questions about
the importance of shape and deformability of soft particles for their behavior in fluid flow
and for the rheological response of their suspensions. Such questions can be for instance:

• Under what conditions does a simple theoretical description for hard spheres to
describe soft-particle suspensions remain appropriate?

• Is such a description useful for high concentrations and when does it break down?

• Which similarities exist between different soft-colloid classes and when does the
physical origin of their softness become important?

• How can the dependence of viscosity on the elastic moduli of the soft colloids, their
viscous properties, and inter-colloid interactions be described?

• What is the role of shape, and how does the interplay between shape and deforma-
bility determine the rheological properties of a suspension?

• Can we devise an accurate enough description of certain systems in order to create
a knowledge-based design for the applications of interest?
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• How will mixtures of various soft colloids behave?

• ...

In order to establish a relation between the behavior of soft colloids in flow and their
macroscopic rheological properties, an understanding of their non-equilibrium properties
on the level of single particles is required. This task is often very difficult to achieve
in experiments, and therefore, computer simulations provide a promising tool for insight
into the dynamics of soft particles within artificial and biological fluids. The behavior
of soft materials is not always governed by their atomic or molecular structure, and can
emerge from physical arrangements at the mesoscopic level. Therefore, simulations of soft
materials often require a multiscale resolution of physical phenomena which occur at the
mesoscale. Moreover, a detailed atomistic representation becomes intractable due to the
computational cost, since the investigation of many soft matter systems requires modeling
on the scale of micrometers with the time scale of several seconds or even minutes. On
the other hand, continuum methods may not capture important physical structures at the
mesoscale due to the continuum assumption, and therefore, are often not suitable for the
description of such systems. This has motivated the development of novel mesoscale simu-
lation approaches in the recent years, which can capture relevant physics at the mesoscale
and provide a detailed understanding of the behavior and interactions of soft particles in
flow.

In this thesis, we review several mesoscopic approaches, which will be primarily applied
to polymer solutions and blood flow. We will show how these methods can be applied to
devise new scaling concepts for star-polymer solutions and to understand certain processes
in microvascular blood flow. In particular, we will focus on the several specific problems
including:

• Rheology of star-polymer solutions

Star polymers can be thought of as soft colloids whose softness can be tuned by the
number of arms attached to a common center. Thus, a star polymer with two arms
corresponds to a linear polymer, while as the number of arms increases we approach
a rigid colloidal particle. Star-polymer rheological properties are investigated for
different functionalities, concentrations, and shear rates of flow. The rheological
properties, characterized by the shear viscosity and the normal-stress coefficients,
exhibit a universal behavior as function of a concentration-dependent Weissenberg
number for various concentrations at a given arm length. In dilute solution, the
zero-shear viscosity follows the Einstein relation (Eq. (1)) with an effective radius
given by the hydrodynamic radius of a star polymer.

Related publications: P10, P11, and P4.

• Dense brushes of stiff polymers in fluid flow

Dense filamentous brush-like structures are common for many biological interfacial
systems (e.g., glycocalyx layer in blood vessels) regulating the surface softness. We
have developed a theoretical model which captures flow-induced deformation of a
dense brush of stiff polymers and is validated by detailed mesoscopic simulations.
Different contributions to brush deformation including hydrodynamic friction due to
flow and steric excluded-volume interactions between grafted filaments are identified.
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Related publications: P2.

• Motion of single RBCs in tube flow

The motion of RBCs in the microvasculature is important for blood flow resistance
and the cell partitioning within a microcirculation. We use mesoscale simulations
to predict the phase diagram of shapes and dynamics of RBCs in cylindrical micro-
channels. The effect of different RBC states on the flow resistance, and the influence
of RBC properties on the shape diagram are identified and discussed.

Related publications: P6 and P9.

• Development of blood flow in idealized vessels

Blood flow resistance in microcirculation has a strong impact on tissue perfusion.
The flow resistance in a microvasculature is determined by the flow behavior of blood
through the complex network of vessels. We investigate the development of blood
flow and its resistance starting from a dispersed configuration of RBCs. We find
the development of a cell-free layer, which forms near the vessel wall, to be nearly
universal when scaled with a characteristic shear rate of the flow. The universality
allows an estimation of the length of a vessel required for full flow development.
We also develop a simple theoretical model which is able to describe the converged
cell-free-layer thickness through the balance between a lift force on RBCs due to cell-
wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell
interactions in flow.

Related publications: P1, P8, and P9.

• Blood rheology

The viscosity of blood serves as an indicator in the understanding and treatment
of disease. We simulate blood rheology and analyze its non-Newtonian behavior
relating it to the suspension’s microstructure, deformation and dynamics of single
RBCs. We also provide the first quantitative estimates of the magnitude of adhesive
forces between RBCs. The models can easily be adapted to tune the properties of a
much wider class of complex fluids including capsule and vesicle suspensions.

Related publications: P13, P8, P9, and P4.

• Margination of WBCs and micro- and nano-carriers in blood flow

Proper functioning of WBCs and drug carriers is not possible without their abil-
ity to adhere to vessel walls. In order to facilitate the adhesion, WBCs or micro-
and nano-particles have to migrate toward the vessel walls in blood flow through a
process called margination. We employ mesoscopic hydrodynamics simulations to
better understand the margination process and to elucidate its dependence on vari-
ous properties including hematocrit, flow rate, particle size and deformability. This
study provides a comprehensive picture of particle margination in blood flow.

Related publications: P5, P7, and P12.

Even though we discuss a limited number of different examples of soft particles under flow,
such models are general enough and can be used to model not only the suspensions we
illustrate, but also suspensions of polymers with much more complex structures, capsules,
vesicles, and their various mixtures. Such mesoscopic models establish an indispensable
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tool for the investigation of various soft-particle suspensions leading to new insights into
their behavior and rheology. These are often the first steps towards an understanding of
the dynamics of single suspended components in relation to the macroscopic properties of
such a suspension, leading to the theoretical basis for these types of soft systems.

This thesis is cumulative and organized as follows. Next, the basics of blood flow and
polymer solutions are reviewed. In Sec. 2, we review the methodology, including several
mesoscopic simulation techniques and models for RBCs and polymers. Section 3 presents
shortly the results for the specific topics outlined above. In Sec. 4, we briefly summarize
the results for soft particles in fluid flow and outline a number of future directions and
ongoing projects. After that a number of published papers related to the presented results
are included. Finally, we include a comprehensive list of references which can be useful
for a scientist working in similar and related research fields.

1.1 Polymer architecture, dynamics, and rheology

Polymers are molecules consisting of a large number of repeating units or monomers. When
the units are connected into a single sequence, the polymer is called linear. The number
of subunits can range from several monomers to millions of repeating units. There exist a
number of synthetic polymers such as polystyrene and polyethylene as well as biopolymers
such as DNA and various proteins. Polymer suspensions and melts play an important role
in different technologies, and are used, for instance, in various liquid products, plastics, and
rubbers. Different polymer materials possess distinct properties in their tensile strength,
melting point, mixing behavior, and chemical and optical characteristics. Therefore, there
exist numerous examples of polymeric materials whose rheological properties are extremely
versatile.

From the physical point of view, there is often no need to know the chemical details of
single monomers, because the emerging material properties on large enough length scales
are governed solely by the length of polymers and the size of their monomers. This
is the main assumption in polymer physics, where various polymer models have been
developed [19, 20, 12]. These include various scaling concepts for polymer structural and
dynamical properties (e.g., Rouse and Zimm models) [19, 20, 12]. A simple polymer model
in statistical physics is a random walk or a self-avoiding random walk, while in simulations
a linear-polymer model is represented by a bead-spring chain. There are efforts to develop
more sophisticated theoretical models; however, their advantage over the classical models
is not very significant so far.

The new developments in chemistry allow to create much more sophisticated polymer
structures. As an example, star polymers correspond to polymer structures, where a
number of linear chains are connected to a common center. Thus, by changing the arm
length (or the length of attached linear polymers) and the functionality (i.e., the number
of attached polymers), star-polymer properties can be varied between linear polymers
(for the functionality 2) to nearly hard-sphere colloids (large functionality, short arms)
and ultra-soft colloids (intermediate functionality, long arms) [21, 22, 23]. Other examples
include branched, ring, and dendrimer-like polymers [3]. Such polymers can be constructed
from similar linear chains as well as from a number of distinct chains leading to very
complex compositions. Theoretical models for polymers with complex structures have yet
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to be developed, and currently such systems are mainly investigated experimentally and
in simulations.

Polymer suspensions are generally divided into several classes including dilute and semi-
dilute solutions and melts. Dilute solutions correspond to the suspensions where inter-
polymer interactions are not very significant. This condition is usually defined by an
overlap concentration corresponding to a critical polymer concentration at which polymers
start to overlap. Thus, a polymer solution is considered to be dilute below the overlap
concentration, while above this concentration the polymer solution is in a semi-dilute
regime. In contrast to polymer solutions, polymer melts have little or no suspending fluid
and are almost entirely formed by polymer molecules.

Rheological properties of polymer suspensions and melts have been studied in a large num-
ber of investigations including experiments [7, 9, 8], theory [10, 11, 12], and simulations
[12, 24, 25]. The rheology of polymer systems can be considered for a number of different
flow conditions such as steady and oscillatory shear flows and extensional flow. For exam-
ple, in a steady shear setup, the viscosity of a suspension as a function of applied shear
rate is measured, while in the oscillatory shear flow, viscoelastic properties of polymer
suspensions characterized by the complex modulus are obtained. Polymer suspensions
under steady-shear flow often show a shear-thinning behavior such that their viscosity
decreases as the shear rate of flow is increased. At low shear rates, such suspensions also
yield a constant viscosity plateau, which is called the Newtonian plateau. The change in
suspension’s viscosity can be correlated with the changes in polymer confirmation and dy-
namics in flow. Thus, the polymers stretch along the shear-flow direction, get compressed
along the orthogonal directions, and exhibit a preferred orientation with respect to the
flow [26, 15, 27]. In addition, the polymers in shear flow exhibit tumbling dynamics char-
acterized by their periodic stretching and collapse [26, 15, 27]. These changes in polymer
confirmation and dynamics lead to a reduction of internal friction in polymeric systems
and to the shear-thinning behavior.

1.2 Blood cells and blood flow

The cardiovascular system is a closed circuit which can be divided into three major sec-
tions: the heart, large vessels, and the microcirculation. The main function of the heart
and large vessels is to maintain continuous blood flow within the vessel network, while
blood flow in the microcirculation plays a profound role in various physiological processes
[28, 29, 30, 31] and pathologies [32, 33, 34] in the organism. Main functions of blood
are the transport of oxygen and nutrients to cells of the body, removal of waste products
such as carbon dioxide and urea, and circulation of molecules and cells which mediate the
organism’s defense and immune response and play a fundamental role in the tissue repair
process. The microcirculation (or microvascular network) [28, 30, 31] is comprised of the
smallest vessels (e.g., arterioles, capillaries, venules) with diameters up to about 100 µm.
Typically, the microcirculation geometry resembles a tree-like structure following the route
of blood passing through arterioles, capillaries, and venules. Blood flow in microcircula-
tion is extremely complex and diverse with dramatic changes in flow rates and patterns.
This complexity is attributed to non-trivial vessel geometries and blood rheological prop-
erties [28, 29, 35, 36] which depend on blood-cell mechanical characteristics, aggregation
interactions, local hematocrit (RBC volume fraction), and flow conditions.
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Abnormal blood flow is often correlated with a broad range of disorders and diseases which
include hypertension, anemia, atherosclerosis, malaria, and thrombosis [16, 17]. Under-
standing the rheological properties and dynamics of blood cells and blood flow is crucial
for many biomedical and bioengineering applications. Examples include the development
of blood substitutes, the design of blood flow assisting devices, and drug delivery. In ad-
dition, understanding the vital blood related processes in health and disease may aid in
the development of new effective treatments.

Figure 1: A scanning electron micrograph of blood cells. From left to right:
human erythrocyte, thrombocyte (platelet), leukocyte. Source: Electron Mi-
croscopy Facility at The National Cancer Institute at Frederick (NCI-Frederick).

Blood consists of erythrocytes or RBCs, leukocytes or WBCs, thrombocytes or platelets,
and plasma containing various proteins, molecules, and ions. Figure 1 shows a scanning
electron micrograph of blood cells. RBCs constitute approximately 45% of the total blood
volume, WBCs around 0.7%, and the rest is taken up by blood plasma and its substances.
One microliter of blood contains about 5 million RBCs, roughly 5 thousand WBCs, and
approximately a quarter million platelets.

Human RBCs have a relatively simple structure in comparison to other eukaryotic cells
[37]. RBCs resemble biconcave disks with an average diameter of approximately 8 µm and
contain a viscous cytosol enclosed by a membrane. At the stage of the RBC formation,
the nucleus and other organelles that are generally present in other eukaryotic cells are
ejected, leaving behind a relatively homogeneous cytoplasm and no inner cytoskeleton.
RBC cytoplasm is a hemoglobin-rich solution, which is able to bind oxygen. Therefore, the
main RBC function is oxygen supply and delivery to body tissues. The RBC membrane
consists of a lipid bilayer with an attached network of the spectrin proteins linked by
short filaments of actin. The lipid bilayer is considered to be a nearly viscous and area
preserving membrane [37], while the RBC’s elasticity is attributed to the attached spectrin
network, as is the integrity of the entire RBC when subjected to severe deformations in the
capillaries as small as 3 µm. The cytosol viscosity is about 5-6 times larger than that of
blood plasma under physiological conditions. Mechanical and rheological characteristics
of RBCs and their dynamics are governed by: membrane elastic and viscous properties,
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bending resistance, and the viscosities of the external/internal fluids.

In comparison to RBCs, WBCs have one or multiple nuclei, are stiffer than RBCs and
have a spherical shape. WBCs are an important part of the body’s immune system. They
protect the body against invading bacteria, parasites, and viruses by killing these microor-
ganisms through phagocytosis ingestion and other antigen-specific cytotoxic mechanisms.
There exist different types of leukocytes (e.g., neutrophils, eosinophils, basophils, mono-
cytes, and lymphocytes), each of which is designed to fight a specific type of infection.

Freely circulating WBCs are able to adhere to the vascular endothelium, which is a crucial
step in the immune response [38]. Rolling along the vessel wall allows WBCs to efficiently
monitor for potential molecular signals, since the rolling velocity at the vessel wall is much
smaller than that of the blood flow. In fact, microfluidic experiments [39] showed that
WBCs adhere only above a critical threshold of shear. Firm adhesion of leukocytes is
generally recognized as the final step of WBC adhesive dynamics within a vessel with
further cross-endothelium migration into the surrounding tissue.
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2 Methodology

Simulations of complex fluids, consisting of a solvent and various suspended particles such
as colloids and cells, are a difficult problem. Strictly speaking, the involved length- and
time-scales range between the atomistic scale of the solvent and the mesoscopic scale of
the suspended particles, which typically start from several nanometers and finish with
micrometers. In addition, many physical properties such as the softness of particles, the
hydrodynamic interactions between them and with walls, and thermal fluctuations need
to be included.

Simulations at the molecular level are very limited in terms of the length- and time-
scales. These limits currently correspond to the submicrometer length and times on
the order of several microseconds. In order to overcome such strong restrictions, several
mesoscale hydrodynamics simulation approaches have been developed recently, including
the lattice Boltzmann method (LBM) [40], dissipative particle dynamics (DPD) [41, 42],
smoothed dissipative particle dynamics (SDPD) [43, 44], and multi-particle collision dy-
namics (MPC) [45, 46, 47]. These methods are being actively developed and to date they
are already considered as rather well-established techniques for the numerical investigation
of the dynamics of complex fluids.

Even though here we mainly focus on modeling of polymer solutions and blood flow,
simulations of complex fluids generally require the two main components: fluid flow and
suspended particles. Modeling fluid flow of a Newtonian solvent can be performed using,
for example, continuum approaches, where the incompressible Navier-Stokes equation [48]

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, ∇ · u = 0, (2)

can be used. Here, u is the fluid velocity, ρ is the density, p is the pressure, and ν is the
kinematic viscosity. The advantages of continuum techniques are the speed and robustness
of such methods and rather well-established numerical schemes and codes. However, in
these methods it is often non-trivial to incorporate some features present at the micro-
and meso-scale, for instance thermal fluctuations. Another class of efficient simulation
methods to model fluid flow corresponds to mesoscopic particle-based methods such as
DPD and SDPD, which will be mainly used in this thesis. In comparison to the contin-
uum approaches, particle-based techniques are generally more expensive computationally;
however, desired micro- and mesoscopic features can be included here rather straightfor-
wardly. Therefore, particle-based methods are very popular in modeling complex fluids at
the micro- and meso-scale.

In the next several sections, we review employed mesoscopic particle-based methods, poly-
mer and membrane models. However, we still need to discuss the coupling between fluid
flow and particle deformation. Often such coupling can be performed using frictional
forces on both the fluid and suspended particles in order to match their local velocities
[49]. Thus, fluid stresses can be transferred to the suspended particles and induce their
deformation, while in return the particles exert resisting-to-deformation forces onto the
fluid.
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2.1 Mesoscopic simulation techniques

Mesoscopic simulation approaches are being developed in order to be able to access much
longer length and times scales than those achieved when modeling at the molecular level
is employed. Common to these approaches is a simplified, coarse-grained description
of the fluid and suspended structures in order to achieve high computational efficiency,
while keeping the essential physical features on the length scales of interest. Specifically,
hydrodynamic interactions between suspended particles are captured through a mesoscopic
representation of a solvent.

2.1.1 Dissipative particle dynamics (DPD)

DPD [41, 42] is a mesoscopic simulation technique, where a system consists of a collection
of N fluid particles with mass mi, position ri, and velocity vi, and each individual particle
represents a cluster of atoms or molecules. The dynamics of DPD particles is governed by
Newton’s second law of motion,

dri = vidt,

dvi =
1

mi

∑

i 6=j
Fijdt =

1

mi

∑

i 6=j
(FC

ij + FD
ij + FR

ij)dt,
(3)

where Fij is the total force acting between the two particles i and j within a selected cutoff
radius rc. The total force is a sum of three pairwise forces: conservative (FC

ij), dissipative
(FD

ij ), and random (FR
ij) forces given by

FC
ij = aij(1− rij/rc)eij,

FD
ij = −γijωD(rij)(vij · eij)eij,

FR
ij = σijω

R(rij)ξijdt
−1/2eij,

(4)

where vij = vi − vj, rij = ri − rj, rij = |rij| and eij = rij/|rij|. The coefficients aij,
γij, and σij characterize the strength of the conservative, dissipative, and random forces,
respectively. Both ωD(rij) and ωR(rij) are distance-dependent weight functions. ξij is a
random number generated from a Gaussian distribution with zero mean and unit variance.

The dissipative and random forces act together as a thermostat to maintain an equilib-
rium temperature T and generate the correct equilibrium Gibbs-Boltzmann distribution.
Therefore, they must satisfy the fluctuation-dissipation theorem [42] given by the condi-
tions ωD(rij) = [ωR(rij)]

2 and σ2 = 2γkBT . In the original DPD method [41, 42], the
weight function has been chosen as ωR(rij) = (1 − rij/rc)

k with k = 1, while different
choices for this exponent have been made in other studies [50, 51] in order to increase
the viscosity of the DPD fluid. The equations of motion (3) are integrated using the
velocity-Verlet algorithm [52].

2.1.2 Smoothed dissipative particle dynamics (SDPD)

The SDPD method, originally proposed by Español and Revenga [43], is a mesoscopic
particle-based hydrodynamic technique which has been derived from the smoothed particle
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hydrodynamics (SPH) [53, 54] and DPD [41, 42] methods. The SPH method is obtained by
a Lagrangian discretization of the Navier-Stokes equation [53, 54]. In SDPD, the particle
density ρi is defined as

ρi =
∑

j

mjWij, (5)

where the weighting function Wij is assumed to be, for instance, the Lucy function W (r) =

105
16πr3c

(
1 + 3 r

rc

)(
1− r

rc

)3
[53]; however, other choices for this function also exist. Hence,

the density at the position of particle i can be computed using its neighboring particles
located within a sphere with a radius rc.

The discretization of the Navier-Stokes equation [43] leads to the two deterministic forces:
conservative (C) and dissipative (D), while a proper fluctuation-dissipation balance, as in
DPD, results into a random (R) force. The full set of inter-particle forces is given by

FC
ij =

(
pi
ρ2i

+
pj
ρ2j

)
Fijrij,

FD
ij = −γij (vij + eijeij · vij) ,

FR
ij = σij

(
dWij +

1

3
tr[dWij]1

)
· eij,

(6)

where pi and pj are particle pressures assumed to follow a selected equation of state.

Note that W (r) is chosen such that ∇W (r) = −rF (r) with F (r) = 315
4πr5c

(
1− r

rc

)2
. The

coefficients γij and σij define the strength of dissipative and random forces and are equal

to γij = 5η
3

Fij

ρiρj
and σij = 2

√
kBTγij, respectively. The notation tr[dWij] corresponds to

the trace of a random matrix of independent Wiener increments dWij, and dWij is the
traceless symmetric part. The time evolution of velocities and positions of particles is
determined by Newton’s second law (Eq. (3)) as in DPD.

Generally, the set of forces in SDPD is similar to that in DPD; however, the SDPD
method has a direct connection to the Navier-Stokes equation. The advantage of the
SDPD approach over DPD is that the dynamic viscosity of a fluid and its equation of
state can be a direct input, while in DPD such properties are not known a priori and need
to be determined from simulations. Thus, the fluid compressibility and viscosity in SDPD
can be well controlled.

2.1.3 Smoothed dissipative particle dynamics with angular momentum con-
servation

Even though the SDPD method has several advantages over DPD, the original SDPD
method [43] does not conserve the angular momentum. This can be traced back to the
existence of a lateral friction in SDPD, i.e. two particles slow down when they move past
each other, and thereby loose angular momentum. Recent numerical simulations using
the MPC method [55] have illustrated that angular momentum conservation is essential
in some problems including the Taylor-Couette flow with two immiscible fluids and vesicle
tank-treading in shear flow. We have extended the original SDPD method [44] (enclosed
publication P3) in order to fix the violation of angular momentum conservation. The
extension of the original SDPD formulation [43] is performed through the introduction of
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a spin variable for every particle ωi. In addition, each particle is also characterized by a
moment of inertia Ii analogously to the already defined particle mass. In order to obtain
discretized equations for the SDPD formulation with spin, we consider the NS equation
with spin [56] given by

ρ
du

dt
= −∇p+ (η + ηr)∇2u +

(η
3

+ ξ − ηr
)
∇∇ · u + 2ηr∇× ω, (7)

where η is the dynamic shear viscosity, ξ is the bulk viscosity, ηr is the rotational viscosity,
and ω is the spin angular velocity.

The discretization of the NS equation with spin and the fluctuation-dissipation relation
lead to a set of forces: conservative (C), dissipative (D), rotational (R), and a fluctuation
force [44] given by

FC
ij =

(
pi
ρ2i

+
pj
ρ2j

)
Fijrij,

FD
ij = −

(
γaij

(
vij +

eij (eij · vij)
3

))
− 2γbij

3
eij (eij · vij) , (8)

FR
ij = −γaij

rij
2
× (ωi + ωj) ,

F̃ij =

(
σaijdW ij + σbij

1

3
tr[dWij]1

)
· eij
dt
,

(9)

where

γaij =

(
20η

3
− 4ξ

)
Fij
ρiρj

, γbij =

(
17ξ − 40η

3

)
Fij
ρiρj

, (10)

and σa,bij = 2
√
kBTγ

a,b
ij . It is important to note that these equations are only valid for

2η/3 ≤ ξ ≤ 5η/3, such that the friction coefficients (γaij + 2γbij)/3 and γaij are positive.

The conservative force controls locally the pressure field in the system. The dissipative
force provides translational friction leading to the reduction of the velocity difference
between two particles. Finally, the rotational force is also dissipative, but acts on particles’
angular velocities such that a spin of one particle leads to a change in translational and
angular velocity of another particle. In this way, the translational angular momentum,
which is lost in a ”collision”, is stored as particle spin, and can be restored as translational
angular momentum later on. Another simplification which can be made is the reduction
to a single dissipative parameters γij such that ξ = 20η/21 [44] and

γaij = γbij = γij =
20η

7

Fij
ρiρj

, σaij = σbij = σij = 2
√
kBTγij. (11)

The time evolution of the position and the translational and angular velocity of a particle
i follows Newton’s second law as

ṙi = vi, v̇i =
∑

j

1

mj

Fij, ω̇i =
∑

j

1

Ij
Nij, (12)

where Nij is the torque exerted by particle j on particle i and is given by Nij = 1
2
rij×Fij.

This leads to local and global angular momentum conservation. Equation (12) is integrated
using the velocity-Verlet algorithm [52].
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Figure 2: A star polymer represented by a bead-spring model. A number of arms
(polymer chains) f = 10 drawn with different colors are connected to a common
central bead (black sphere). The length of each arm is Nm = 10. Reproduced
with permission from Ref. [4].

2.2 Polymer models

On the mesoscopic level, a linear polymer is represented by the bead-spring chain model,
where a number of beads (or particles) are connected by harmonic springs with the po-
tential

Us =
ks
2

(l − l0)2, (13)

where ks is the spring constant, l is the instantaneous bond length, and l0 is the equilibrium
bond length. Often ks is chosen large enough such that even under strong fluid stresses
the change in the bond length remains less than a few percent.

Excluded-volume interactions between polymer monomers are implemented through the
repulsive (truncated and shifted) Lennard-Jones (LJ) potential [52]

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
+

1

4

]
Θ(21/6 − r), (14)

where Θ(r) is the Heaviside step function (Θ(r) = 0 for r < 0 and Θ(r) = 1 for r ≥ 0).

Star polymers are modeled by connecting a number of linear chains to a common center
with harmonic springs, which is illustrated in Fig. 2. Since many polymer arms are
attached to the central particle, the equilibrium bond length of each center-arm connection
and LJ diameter of the central bead are taken to be larger than those for a normal
monomer.

2.3 RBC membrane model

The RBC membrane is modeled by a triangulated mesh [58, 59, 60, 49, 61, 62, 63], see Fig.
3. A total of Nv particles constitute the mesh vertices and Ns = 3(Nv − 2) springs follow
the edges of the mesh, reproducing the stretching elasticity of the membrane (Usp). A total
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Figure 3: Mesoscopic representation of a RBC membrane by a triangular net-
work of bonds. Reproduced with permission from Ref. [57].

of Nt = 2Nv − 4 triangles make up the entire membrane surface and incident triangles
have an associated potential energy (Ubend) related to the angle between them, associated
with membrane bending rigidity. Furthermore, local and global area constraints (Uarea)
are enforced along with a global volume constraint (Uvol). Formally, the total energy of a
RBC is then

Utot = Usp + Ubend + Uarea + Uvol. (15)

The total contribution of springs is given by

Usp =
∑

j∈1...Ns

[
kBT lm

(
3x2j − 2x3j

)

4ζ (1− xj)
+
kp
lj

]
, (16)

where lj is the length of spring j, lm is the maximum permitted spring extension, xj = lj/lm
is the fractional extension towards maximum length, ζ is the persistence length, and kp is
the spring constant. The equilibrium length of each spring l0j is set in accordance with an
initial triangulated mesh of a stress-free biconcave RBC shape [62, 63].

The membrane curvature elasticity can be described by the bending energy

Ubend =
∑

j∈1...Ns

kb [1− cos (θj − θ0)] , (17)

where kb is the bending coefficient, θj is the instantaneous angle between the two triangles
incident on edge j, and θ0 is the spontaneous angle.

Finally, the area and volume constraints are accounted for by two potentials

Uarea = ka
(A− Ar)2

2Ar
+
∑

j∈1...Nt

kd

(
Aj − A0

j

)2

2A0
j

,

Uvol = kv
(V − Vr)2

2Vr
,

(18)

where ka, kd, and kv are the global area, local area, and volume constraint coefficients,
respectively. A is the instantaneous surface area of the membrane, Aj is the instantaneous
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area of the j-th triangle in the network, and V is the instantaneous RBC volume. The
desired total surface area Ar, individual triangle area A0

j , and interior volume Vr are set
in accordance with the initial triangulation [62, 63].

We relate the RBC model’s variables to physical macroscopic properties of the RBC mem-
brane by linear analysis for a regular hexagonal network [62, 63]. The membrane shear
modulus is related to the spring variables by

µ0 =

√
3kBT

4ζlmx0

(
x0

2 (1− x0)3
− 1

4 (1− x0)2
+

1

4

)
+

3
√

3kp
4l30

, (19)

with x0 = l0/lm. The area-compression K and Young’s Y moduli are found as K =
2µ0 + ka + kd and Y = 4Kµ0

K+µ0
. The Helfrich model is employed to describe the bending

coefficient kb in terms of macroscopic bending rigidity κ [64], yielding kb = 2κ/
√

3.

To prevent mixing between intra- and extra-cellular fluids, bounce-back reflections for the
solvent particles are introduced at a RBC membrane. Furthermore, the RBC is coupled to
fluid flow via viscous friction between the Nv mesh vertices and local fluid particles. The
dissipative and random force components of the DPD method are used to achieve these
interactions [63]. No-slip boundary conditions at membrane vertices are enforced by careful
selection of the friction parameter γ in the dissipative force FD. A fluid sheared over the
effective surface of a membrane vertex exerts a friction force on the membrane given as
Fv =

∫
Vh
ng(r)FDdV , where n is the fluid number density, g(r) is the radial distribution

function of fluid particles about the membrane vertices, and Vh is the hemisphere volume
of fluid situated above the vertex. Equating this integral to the total force required by a
continuum hydrodynamical description leads to an expression for the calculation of γ [63].
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3 Results

3.1 Rheology of star-polymer solutions

Star polymers are constructed from f linear polymer arms, which are connected with one of
their ends to a common center. Each polymer arm can containNm monomers. By changing
the arm length L = Nml and the functionality f , star polymers can mimic linear polymers
(for f = 2), hard-sphere colloids (large f , short arms), and ultra-soft colloids (intermediate
f , long arms) [21, 22, 23]. Many of the existing studies have focused on the equilibrium
properties of star polymers [21, 65, 66, 67, 68]. Due to the architecture of star polymers,
the monomer density in the core region is relatively high in comparison with that in the
corona. The inhomogeneous density distribution within a star polymer yields an ultra-
soft interaction between two stars for sufficiently long chains [21, 22, 68]. The dynamical
and rheological properties of star-polymer solutions are much less studied. Polymer self-
diffusion has been investigated in experiments [69, 23] showing that it decreases according
to a power law with increasing polymer concentration c. Note that star-polymer diffusion
is faster in solution than that of hard-sphere colloids due to the deformability and ultra-
soft interactions of star polymers. The softness of star polymers is also responsible for
the slower increase of the zero-shear viscosity with concentration in comparison to hard
particles [69, 23].

Previous theoretical and simulation investigations have focused on the behavior of sin-
gle star polymers in shear flow [70, 71] and on the frictional interactions between two
stars [72]. The rheology of concentrated solutions has been studied using a simplified
soft-particle model [73, 74], which should mimic a star-polymer through a coarse-grained
description; however, this model ignores the deformability of star-polymers in flow. We

Figure 4: Simulation snapshot of a star-polymer solution with functionality
f = 10, arm length Nm = 30, and concentration c/c∗ = 0.75 (c∗ is the over-
lap concentration). High shear rate with concentration-dependent Weissenberg
number Wic = 153 is shown. The multiple colors serve to make different star
polymers easily distinguishable. Reproduced with permission from Ref. [4].
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Figure 5: Orientation of star polymers characterized by tan(2χG), see Eq. (20),
as a function of Wic. DPD simulation results for various star-polymer concentra-
tions, as indicated, and Nm = 10 (filled symbols) and Nm = 20 (open symbols).
The dashed black line indicates a scaling behavior tan(2χG) ∼ Wic

−1 and the
solid black line corresponds to tan(2χG) ∼ Wic

−0.43. Reproduced with permission
from Ref. [4].

have investigated the flow behavior of semidilute solutions of star polymers including their
configurational and dynamical properties and rheology [4, 75]. The generated shear flow is
characterized by the Weissenberg number Wi = γ̇τz, where τz = ηsN

2
ml

3/kBT is the Zimm
relaxation time of a polymer arm in dilute solution. However, it is clear that the relax-
ation time of a star polymer has to be different at various concentrations, and therefore a
concentration-dependent Weissenberg number Wic is employed [4, 75].

Star polymers in flow experience strong deformation as illustrated in Fig. 4. In addition,
they align in flow, which can be characterized by the angle χG computed as the angle
between the eigenvector of the gyration tensor G with the largest eigenvalue and the flow
direction given by [4]

tan(2χG) =
2Gxy

Gxx −Gyy

. (20)

The alignment angle of star polymers as a function of Wic for different concentrations
is shown in Fig. 5. Shifting different curves for various concentrations onto a single
master curve in Fig. 5 supplies the scaling factors for Wic, which represent the ratios of
concentration-dependent relaxation times. At low shear rates, the angle χG is close to the
equilibrium value π/4 and it follows the expected scaling behavior [76, 14] tan(2χG) ∼
Wic

−1. At high Wic, star polymers deform considerably, and the angle χG decreases
due to alignment of the stars along the flow direction and follows the scaling law of
tan(2χG) ∼ Wic

−0.43. The star-polymer deformation characteristics (Gxx and Gyy) also
show a universal behavior when plotted against Wic [4].

Rheological properties of the star-polymer solutions are characterized through measured
viscosities and the first and second normal-stress coefficients, which display plateaus at
low shear rates for many polymeric fluids. Figure 6 shows viscosities of the star-polymer
solutions for various arm lengths and concentrations. The curves are normalized by the
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Figure 6: Shear-rate-dependent viscosity of simulated star-polymer solutions for
various arm lengths and concentrations as a function of Wic. DPD simulation
results for various star-polymer concentrations, as indicated, and Nm = 10 (filled
symbols) and Nm = 20 (open symbols). Only polymer contributions to the
viscosity are shown. The viscosity curves are scaled with the corresponding values
of the zero-shear viscosity η0 for different concentrations. The solid line indicates
the power-law dependence ηp ∼ Wi−0.36c . Reproduced with permission from Ref.
[4].

corresponding zero-shear viscosity η0 in order to find a scaling behavior. At Wic > 1, the
viscosities exhibit a power-law decay with increasing shear rate. The power-law exponent
seems to depend on the star-polymer concentration such that at low concentrations it is
equal to approximately −0.3, while at high star concentrations c/c∗ ' 1.3 it is about −0.4.
Thus, the viscosity curves do not show a universal behavior [4]. Such a dependence has
not yet been identified by any theory and appears to be independent of the arm length.
The first and second normal-stress coefficients also show some non-universality in their
scaling for different concentrations [4]. It has not yet been clarified what causes these
differences for various concentrations, which do not exist for linear-polymer solutions [2].
The dynamics of star polymers under flow is different from that of linear polymers, which
exhibit tumbling motion [27], whereas star polymers show a tank-treading-like rotation
[70] for functionalities f > 5. The rotational frequency of this motion appears to depend
considerably on the star-polymer concentration, which has been attributed to the screening
of hydrodynamic interactions at high concentrations [75]. In addition, the tank-treading
dynamics of star polymers in shear flow shows a striking resemblance to the tank-treading
behavior of lipid vesicles [4], which can be described by the Keller and Skalak model [77].
This indicates that there is a similarity between the dynamics of star polymers and vesicles
within a solution.

3.2 Dense brushes of stiff polymers in fluid flow

Polymer brushes have been investigated in many studies [78, 79, 80], because they are an
important part of various technological and biological interfacial systems. Major research
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efforts have focused on brushes with flexible polymers (i.e., with negligible bending stiffness
on the polymer length), while brushes with stiff filaments (i.e., with non-negligible bending
resistance at the scale of contour length) have received limited attention. Such brushes are
present in many biophysical systems, for example, lubricating aggrecan brushes in joints
[81] and the endothelial glycocalyx layer in blood vessels [82, 83]. In addition, recent
technological applications of cantilevered micro- and nano-rod arrays [84] or high-density
brushes [85] have been suggested in the context of functionalized surfaces [86].

There exist a few simulation [88, 89, 90] and theoretical [90, 91, 92] studies, where the
equilibrium and mechanical properties of stiff-polymer brushes have been investigated.
For example, simulations of polymer-brush compression [93, 94] have shown that for the
initial deformation such brushes can be much softer mechanically than those made out
of flexible polymers. The main reason is that the grafted polymers in flexible-polymer
brushes are already in a collapsed (coiled) state, making the brush rather dense and not
very susceptible to deformation. In contrast, the flexural rigidity of polymers in stiff-
polymer brushes significantly limits polymer collapse, and therefore such a brush is not so
dense and the initial deformation of the brush corresponds to the bending of semiflexible
grafted polymers. Non-equilibrium properties of a stiff-polymer brush have been studied in
simulations [95] with the focus on the response of a glycocalyx layer in blood vessels to fluid
flow. The flow-induced deformation of grafted semiflexible polymers has been considered in
a mean-field approach [96], where the steric interactions between polymers were not taken
into account, limiting the model’s applicability to the deformation of brushes with low
grafting densities. We have extended this theoretical model [87] to predict flow-induced
deformation of a dense brush of stiff polymers or filaments. In addition, we have also
performed a systematic study of the deformation of a semiflexible-polymer brush in flow
using mesoscopic simulations (see Fig. 7) for a wide range of grafting densities, polymer-
bending rigidities, and shear rates.

Our mean-field approach [87] for brush deformation in shear flow assumes identical bending
of all grafted polymers. Thus, a single semiflexible polymer, subjected to a hydrodynamic

Figure 7: Simulation snapshot of a polymer brush under flow with shear flow in
x direction. Semiflexible polymers are grafted on both walls. Reproduced with
permission from Ref. [87].
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drag force due to fluid flow and steric interactions due to its neighbors in the grafted
lattice, is considered. We consider the torque balance for a circular rod [97] such that
external forces (F(s) = (Fx(s); Fy(s))) are counteracted by the rods’s elastic resistance,
as

EI
dr(s)

ds
× d3r(s)

ds3
= F(s)× dr(s)

ds
, (21)

where EI is the polymer bending rigidity and r(s) is the position on a polymer at curve-
linear coordinate s along the polymer. This equation can be further reduced to the for-
mulation in terms of the local angle θ(s) [87] as

EI
d2θ(s)

ds2
= Fy(s) sin θ(s)− Fx(s) cos θ(s), (22)

with the boundary conditions of θ(s)|s=0 = θ0 at the grafted surface and dθ/ds|s=L = θ0
at the free end.

The force F(s) on the filament has two contributions: 1) drag force (Fd(s)) due to fluid
flow and 2) a force due to excluded-volume interactions (Fv(s)). These forces at a position
s can be computed as an integral over local force densities at the filament [87]. The drag
force is approximated by using the velocity profile within the brush and friction coefficients
from the slender body theory [98]. The local velocity ux(s) within the brush is described
by the Brinkman equation [99] for flow in porous media as [87]

d2ux(s)

ds2
= ζ(s)ux(s)

σ

d2
cos θ(s)− dux(s)

ds

dθ(s)

ds
tan θ(s), (23)

where ζ(s) is the position-dependent friction coefficient, σ is the grafting density, and
d is the polymer thickness. This equation is the same as that used in the theory for
semiflexible-polymer brushes with low grafting densities [96]. Boundary conditions for Eq.
(23) are ux(s)|s=0 = 0 and dux(s)/ds|s=L = γ̇|s=L cos θ(L), where L is the polymer length.
To describe the steric interactions between the filaments, we introduce a discrete polymer
representation similar to that in simulations [87]. Thus, a polymer consists of N beads
with the diameter d. The excluded-volume interactions between beads are approximated
by a repulsive potential and the steric interactions are computed as a discrete sum of these
forces, representing the integral over the local force density.

Figure 8 presents the relative brush height as a function of the shear rate at the top
of the brush, normalized by the bending rigidity of the polymers. The predictions from
the theoretical model and simulations agree well. Here, we also show the universality of
brush deformation in terms of polymer bending rigidity characterized by lp/L (lp is the
persistence length), if polymers are stiff enough with lp/L & 10. Clearly, this universal
behavior is expected to break down when EI/L becomes small and comparable to kBT ,
i.e. when the grafted polymers become rather flexible. In this case entropic effects have
to be considered in addition.

The theoretical model predicts quantitatively the flow-induced deformation of a stiff-
polymer brush and its effect on fluid flow. It quantifies the relative contributions of
fluid friction, polymer bending resistance, and steric excluded-volume interactions be-
tween polymers. As an example, in Ref. [87] we have computed the effect of a brush on
the flow resistance, which can be used for the estimation of the influence of the glycocalyx
layer on blood flow in microvessels.
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Figure 8: Relative brush height as a function of the shear rate at the top of
a brush normalized by polymer elasticity from simulations and the theoretical
model for different scaled grafting densities σ = (d/alat)

2 (alat is a constant of
the square lattice), as indicated. Two bending rigidities of lp/L = 10 and 100 are
considered. Reproduced with permission from Ref. [87].

3.3 Motion of single RBCs in tube flow

The motion of single RBCs in a cylindrical tube flow mimics their traveling through
small vessels in the microvasculature. Since RBCs are very flexible, they are subject to
strong deformation in the microcirculation, which depends on local flow and/or geometrical
constraints. RBC deformation has been found to be important in the reduction of blood
flow resistance [60, 63, 100, 101, 57] and for the release of ATP and oxygen delivery [102,
103]. The knowledge about the behavior of RBCs in micro-flows will also help in the
development of lab-on-a-chip applications [104, 105] for the analysis of blood samples and
the detection of diseased cells.

Before we discuss the behavior of RBCs in tube flow, we shortly touch upon the dynamics
of RBCs in shear flow to point out some similarities. RBC dynamics in shear flow has been
investigated experimentally [106, 107, 108], theoretically [109, 107, 110], and in simulations
[61, 63, 111, 112, 113]. Experimental investigations [106, 107, 108] have shown that RBCs
tumble at low shear rates and tank-tread at high shear rates. The tank-treading motion of a
RBC can be imagined as the periodic motion of the RBC membrane, while the inclination
angle of the cell remains nearly fixed. The tank-treading membrane motion is possible
for RBCs, because they have no inner cytoskeleton; similarly this motion also occurs for
capsules and vesicles. The existence of the transition from tumbling to tank-treading
is due to a minimum energy state of the RBC membrane such that an energy barrier
has to be exceeded in order for a RBC to tank-tread [106]. Note that the experiments
[106, 107, 108] have been performed at the viscosity contrast (the ratio between the cytosol
and suspending-fluid viscosity) close to unity or even lower, while under physiological
conditions the viscosity contrast is equal to about 5-6. Tank-treading of vesicles appears
to be suppressed at high enough viscosity contrasts (∼ 5 − 7) [114, 115], and therefore
it is plausible to expect that the tank-treading of RBCs might not be relevant under
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(a) (b)

Figure 9: Simulation snapshots of a RBC in tube flow (from left to right). (a)
an off-center slipper cell shape and (b) a parachute shape. Reproduced with
permission from Ref. [116].

physiological conditions.

RBCs in Poiseuille flow also show rich behavior, characterized by various shapes including
parachutes and slippers [117, 60, 118, 61, 119, 120, 100, 121, 101, 116], as illustrated in Fig.
9. Parachutes are characterized by a symmetric shape similar to a semi-spherical cap and
they flow in the center of a tube without significant membrane motion. In contrast, slippers
are non-symmetric RBC shapes, where the membrane is subjected to a tank-treading
motion. Thus, slippers are mainly differentiated from parachutes by an asymmetric shape
and the membrane motion. Experimental studies [120, 118] have illustrated the two types
of slippers, a non-centered slipper [120] and centered slipper [118], where the latter may
closely resemble a parachute shape. Slipper shapes have been also found in simulations
using 2D [100, 101] and 3D models [116].

Recent 2D simulations [100, 101] have yielded a phase diagram of various shapes including
parachute, slipper, and a snaking dynamics, as a function of RBC confinement and flow
strength. The snaking dynamics is characterized by a wiggling motion of a discocyte shape
near the tube center. We have employed 3D simulations [116] to generate a similar diagram
of RBC shapes in tube flow, which is only qualitatively similar to the diagram in 2D.
Figure 10 shows the RBC shape diagram in 3D for different flow rates and confinements.
The flow rate is characterized by a non-dimensional shear rate γ̇∗, which is a product of
the average shear rate (or pseudo-shear rate) and the characteristic relaxation time of a
RBC [116]. The confinement χ is the ratio of an effective RBC diameter and the tube
diameter. At strong confinements and high flow rates, parachutes are mainly found, while
low confinements lead predominantly to off-center slippers. When the flow rate is small
enough, off-center tumbling RBCs are found, which can be explained by the existence
of the tumbling-to-tank-treading transition mentioned above for RBCs in shear flow. In
contrast to the 3D model results, this region is absent in 2D simulations [100, 101], since
this transition cannot be captured by a 2D model. Another prominent difference between
the phase diagrams in Fig. 10 and in 2D simulations [100, 101] is the existence of the
“confined slipper” in 2D at high confinements which is absent in 3D. Slippers at high
confinements in 3D are hindered due to the cylindrical shape of a tube, which makes a
confined slipper configuration energetically unfavorable, since it would have to conform
the wall curvature.
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Figure 10: A phase diagram of RBC shapes in tube flow for the average mem-
brane properties of a healthy RBC. Different dynamic states, depending on the
flow strength characterized by a non-dimensional flow rate γ̇∗ and the confinement
χ, are depicted by symbols: parachute (green circles), slipper (brown squares),
tumbling (red diamonds) and snaking (blue stars) discocyte. The phase-boundary
lines are drawn approximately to guide the eye. Reproduced with permission from
Ref. [116].

The results in Fig. 10 have been obtained for the viscosity contrast of unity. Therefore,
they may not fully reflect the behavior of RBCs in microcirculation and the investigation
of RBC dynamics in tube flow for a physiological viscosity contrast remains one of our
on-going projects. The study in Ref. [116] has also focused on the investigation of the
effect of membrane elasticity on RBC dynamics in microcapillary flow. Changes in RBC
membrane properties lead to a shift of boundaries between different RBC shapes and
dynamics illustrated in Fig. 10. Consequently, it should be possible to detect such changes
based on the observation of RBCs in flow and simulations can provide the basis for a
quantitative interpretation of these observations. The ability to interpret changes in RBC
behavior can be helpful in the analysis of blood in various blood-related diseases and
disorders.

3.4 Development of blood flow in idealized vessels

Blood flow in idealized vessels (or tubes) has been investigated in a number of experiments
[122, 123, 124, 125] and simulations [126, 127, 128, 119, 129, 130]. In tube flow, RBCs
migrate away from the wall toward the tube center resulting a near-wall layer free of
RBCs [131, 132], as illustrated in Fig. 11. The migration of RBCs away from the wall is
mediated by cell-wall hydrodynamic interactions in flow, which is referred to as a lift force
[133, 134, 135] and arises due to the non-spherical discocyte shape and high deformability
of RBCs. The layer of fluid void of RBCs near the wall is called RBC free layer (RBC-FL)
or cell free layer (CFL).
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The viscosity in the RBC-FL is much smaller than that in the tube center populated
with RBCs. Therefore, if the thickness of RBC-FL is considerable in comparison with the
tube diameter, the effect of the RBC-FL on blood-flow resistance can be significant. This
is the reason for the effective blood viscosity appearing to be smaller in microvessels in
comparison to much larger vessels in the microvasculature. The effect of the decrease in
the apparent blood viscosity with decreasing tube diameter is called Fahraeus-Lindqvist
effect [122, 125] and is strongly correlated with the thickness of the RBC-FL.

Blood flow in the microcirculation is quite complex and the distribution of RBCs in a
vessel cross-section can be significantly disturbed at vessel bifurcations and junctions,
leading to a reduced RBC-FL and an increased flow resistance [136]. After a distortion
of RBC-FL at a vessel junction has occurred, RBCs will migrate toward the center of the
following vessel segment, leading to a dynamic recovery of the RBC-FL thickness. Thus,
the flow resistance in the microvasculature depends on the degree of RBC dispersion at
vessel bifurcations and the corresponding recovery length of the RBC-FL in relation to
the characteristic length of straight vessel segments in microcirculation.

In order to investigate the importance of this effect, we have studied the convergence
of blood flow in idealized vessels starting from a dispersed configuration of RBCs [137].
Hence, the thickness of the RBC-FL is followed in time, after the flow has been turned on.
Figure 12(a) presents the development of the RBC-FL thickness δ(t) for different pressure
gradients for the case of tube hematocrit Ht = 0.45. Here, the time is scaled by the
pseudo-shear rate ¯̇γ of the fully-developed flow. We observe a rapid increase of the RBC-
FL thickness up to about t¯̇γ ≈ 25, followed by a plateau thickness δf when the RBC-FL
has converged. The same curves normalized by δf are shown in Fig. 12(b), where we see
that they practically fall on top of each other. This indicates that the shear rate ¯̇γ is the
only relevant time scale for the convergence of the RBC-FL and the flow profile. A similar
conclusion has been also drawn for other hematocrits with Ht ≤ 0.45 [137]. Therefore,
the convergence of the RBC-FL to δf appears to be nearly independent of hematocrit
and is reached within t¯̇γ . 25. In addition, this conclusion is valid for different vessel
diameters D in the range 10 µm < D < 100 µm [137], corresponding to the vessel sizes
where the RBC-FL thickness can play a significant role for blood-flow resistance in the
microvasculature.

Figure 11: A simulation snapshot of blood flow (RBCs only) in a tube with
a diameter D = 20 µm and at tube hematocrit Ht = 0.45. The thin layer
between the RBC core and the tube walls is the cell-free layer. Reproduced with
permission from Ref. [17].



3.4 Development of blood flow in idealized vessels 25

t

(t
) 

(
m

)

0 50 100

1

1.2

1.4

1.6

1.8

2

=9 s
­1

=21 s
­1

=51 s
­1

=84 s
­1

=117 s
­1

._

._

_._.
_.
_.
_.

(a)

t

(t
)/

f

0 50 100
0.6

0.7

0.8

0.9

1

._

(b)

t

(t
)/

f

5 10 15

0.5

1

1.5

._

t
1/3

1

Figure 12: Development of the RBC-FL thickness for the case of Ht = 0.45 and
D = 20 µm. The time is scaled by the pseudo-shear rate ¯̇γ. (a) The RBC-FL
thickness development for various pseudo-shear rates. (b) The same set of data
as in plot (a) with all curves normalized by the plateau value of the RBC-FL
thickness δf . The inset in (b) is a log-log plot illustrating a power-law behavior
of the RBC-FL curves at small t¯̇γ. Reproduced with permission from Ref. [137].

The RBC-FL development results allow us to estimate the length and time required for
the RBC-FL convergence. The flow convergence time is equal to about tc . 25/¯̇γ =
25D/v̄. Consequently, the convergence length is found as lc . v̄tc = 25D [137]. As an
example, for D = 20 µm the convergence length is equal to approximately lc . 0.5 mm,
independently of the flow rate and Ht. Thus, the effect of the RBC core distortion past
vessel bifurcations on the blood-flow resistance can practically be neglected if L � 25D;
however, it may considerably affect the flow resistance if L is smaller than or comparable
to 25D. Characteristic lengths of microvessels between bifurcations [28] are on the order
of 0.5−1 mm. Hence, the contribution to flow resistance due to the RBC dispersion effect
at vessel junctions is expected to be rather small for vessels with diameters D . 20 µm,
while in vessels with larger diameters (20 µm . D . 100 µm) this contribution cannot be
ignored.

We have also developed a simple physical model to describe the mechanisms which govern
the final RBC-FL thickness. The thickness δf is defined by the balance of the lift force
on RBCs driving them away from the wall [133, 134, 135] and RBC-RBC interactions
or collisions in flow dispersing them. Hence, to describe δf theoretically, the lift force
on RBCs, which compresses the cell core of the flow, should be balanced by an effective
pressure due to RBC collisions in flow. An effective pressure Π in a sheared colloidal
suspension has been defined through an effective temperature in Ref. [138] as

Π = n(kBT + csηeff γ̇Vr)Z, (24)

where n = Ht/Vr is the RBC number density, cs is a constant, ηeff is an effective suspension
viscosity, γ̇ is the shear rate, and Z is the compressibility. The first term in Eq. (24)
corresponds to the thermal contribution of pressure, while the second term describes the
shear-induced component due to particle interactions or collisions in flow [139, 140, 141].
The pressure inside the flow core has to be balanced by the surface pressure Πs from a
hydrodynamic lift force (Fl) on RBCs [142, 143, 135, 141] and by an entropic repulsion of
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Figure 13: Aggregated RBCs resembling stacked-disk structures in equilibrium
at Ht = 0.1. Reproduced with permission from Ref. [57].

RBCs (Fe) from the wall. Such surface pressure can be approximated as [137]

Πs =
Fe + Fl
D2
r

=
kBT

hD2
r

+
clηoγ̇D

2
r

h2
, (25)

where h is the distance from the RBC center-of-mass to the wall, Dr is the RBC diameter,
and cl is a constant. The balance between these two pressures (Πs = Π) has been shown
to capture semi-quantitatively the final RBC-FL thickness for different shear rates [137].
These results are also relevant for the flow of a suspension of other deformable particles
such as vesicles, capsules, and cells. Their migration mechanisms are expected to be
similar; however, quantitatively the predictions will change, because the lift force and
shear-induced interactions depend on the properties and dynamics of specific particles.

3.5 Blood rheology

The mechanics and behavior of RBCs in flow govern rheological properties of blood due
to their high volume fraction. In addition, a number of experiments [144, 145, 146] indi-
cated that RBCs can form aggregate structures called “rouleaux”, which resemble stacks
of disks (see Fig. 13). The aggregation property of RBCs is correlated with plasma pro-
teins (e.g., fibrinogen) [145, 146] such that an increase in their concentration results in
stronger RBC-RBC interactions. The origin of inter-RBC aggregation forces is believed
to be either depletion interactions between RBCs [147] due to the presence of a number of
suspended molecules and proteins in the plasma or macromolecular bridging due to poten-
tial interactions of plasma molecules with the RBC membrane [148]. Both hypotheses are
plausible and the exact origin of RBC aggregation interactions has not yet been identified.
Rouleaux structures formed under normal physiological conditions are rather delicate and
can already break at relatively small shear rates. At high shear rates, the aggregation
interactions become unimportant, leading to a full dispersion of RBCs [149]. This process
is reversible and rouleaux can form again if the shear rate becomes small enough.

The viscosity of blood has been measured in several rheological experiments [144, 150, 151].
Here, we need to clearly differentiate between whole blood, where RBC aggregation is
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Figure 14: Blood relative viscosity (suspension viscosity normalized by plasma
viscosity) as a function of shear rate at Ht = 0.45. Simulation results [152] are
shown as black full and dashed lines. Experimental data are for: Whole blood:
green crosses - Merrill et al. [144]; black circles - Chien et al. [150], black squares
- Skalak et al. [151]. Non-aggregating RBC suspension: red circles - Chien
et al. [150]; red squares - Skalak et al. [151]. Reproduced with permission from
Ref. [57].

present, and the non-aggregating RBC suspension, which is obtained by removing the
blood plasma and re-suspending RBCs into a neutral protein-free solution. In simulations,
these two cases are distinguished through the aggregation interactions which can be turned
on or off. Figure 14 shows blood viscosity obtained from a RBC suspension in simple shear
flow [152] in comparison to the experimental measurements [144, 150, 151]. The simulation
predictions agree well with the experimental data, capturing the effect of RBC aggregation
on viscosity at low shear rates. The viscosity of whole blood at low shear rates can be
several times larger than that of a non-aggregating RBC suspension. Other simulation
investigations [153, 154, 155] have attempted to capture the aggregation effect; however,
the viscosity predictions from these studies did not reproduce the steep increase in viscosity
at low shear rates.

As no experimental measurements of RBC aggregation forces exist, the strength of RBC
aggregation in simulations has been calibrated based on the viscosity value for a single
low shear rate [152]. After the correct model predictions for whole blood viscosity were
obtained, the model has been used to estimate the maximum force required to break up two
aggregated RBCs. The break-up force for two aggregated RBCs in the normal direction
was found to be in the range 3.0 pN to 7 pN . Thus, the aggregation forces are quite small,
which makes them consistent with the experimental observations that rouleaux structures
are rather delicate and can break up at relatively low shear rates.

Due to the formation of aggregation structures, whole blood is believed to have a yield
stress, which is a threshold shear stress required for flow to begin [144, 156, 157]. The
existence of yield stress is difficult to confirm directly in both experiments and simula-
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tions, and it is usually found by an extrapolation of available viscosity data to zero shear
rate. For blood, it has been performed based on available rheological data [144, 156, 157]
yielding a value between 0.0015 and 0.005 Pa at Ht = 0.45. Our simulation model sup-
ports the existence of yield stress for whole blood with a magnitude of about 0.0017 Pa.
However, the simulation model predicts no measurable yield stress for a non-aggregating
RBC suspension.

The shear-dependent viscosity and yield stress in blood should be correlated with RBC
deformability, dynamics, and inter-cell interactions. Such detailed information is not
available experimentally, but can be obtained in simulations. In Ref. [152], the local
microstructure of blood has been examined and no significant structures were found for
the non-aggregating RBC suspension over a wide range of shear rates. In contrast, for
whole blood several pronounced peaks in the radial distribution function have been found
at low shear rates, indicating the existence of small rouleaux consisting of several RBCs.
This supports that the steep increase in blood viscosity at low shear rates and yield stress
for whole blood are due to the RBC aggregation interactions such that larger rouleaux
structures have to be broken apart before blood is able to flow. The structural data in Ref.
[152] also indicates that the shear-thinning behavior of a non-aggregating RBC suspension
is not related to any microstructural changes.

To identify the reason for the shear-thinning behavior of a non-aggregating RBC suspen-
sion, we took a closer look at the dynamics of single RBCs. In Sec. 3.3, we have briefly
discussed that the dynamics of a single RBC in shear flow can be described by the tum-
bling motion at low shear rates and tank-treading motion at high shear rates. Similar
RBC behavior is also found for sheared RBCs within a suspension [152]. Since the viscos-
ity measurements are performed at Ht = 0.45, cell crowding hinders free RBC tumbling,
leading to a larger resistance to flow. As RBCs start tank-treading at high enough shear
rates, a reduction of shear stresses due to lower tumbling constraints occurs, resulting in
a lower viscosity of the suspension. Thus, the stretching of RBCs along the flow direction
and switching of their dynamics from tumbling to tank-treading are likely to be the main
reasons for the shear-thinning behavior of a non-aggregating RBC suspension [152].

This computational model for RBC suspensions is general enough to be employed in
investigations of other cell, vesicle, and capsule suspensions. It should be possible to
tune the rheological behavior of a suspension by changing the solvent viscosity, material
properties of suspended cells, and inter-cell aggregation interactions. In Fig. 15, several
examples of the tunable properties of RBC-like suspensions are presented. Results for
stiffer cells with 10 times higher Young’s modulus than that for healthy RBCs (red curves)
show a considerable increase in viscosity. It is not entirely surprising, as it is known that
hardened RBCs lead to an increase in their suspension viscosity [158, 159]. An increase in
the RBC rigidity is also highly relevant in many hematologic disorders and diseases such
as malaria, sickle-cell anemia, and spherocytosis. Another example in Fig. 15 illustrates
the expected decrease, relative to whole blood, in the suspension viscosity for a two-
fold reduction in the aggregation strength. Thus, a significant change in the suspension
viscosity can be induced by the deformability of suspended particles and their interactions.



3.6 Margination of WBCs, and micro- and nano-carriers in blood flow 29

Shear rate (s )

R
e
la
ti
v
e
v
is
c
o
s
it
y

10
­2

10
­1

10
0

10
1

10
2

10
310

0

10
1

10
2

healthy (no aggregation)

healthy (aggregation)
stiff (no aggregation)

stiff (aggregation)
aggregation strength

­1

Figure 15: Tunable properties of cell suspensions. Black lines are viscosities of
healthy blood with and without aggregation. The blue line illustrates a decrease
in RBC aggregation strength by a factor of two. Red lines represent the viscosities
of hardened RBC suspensions with a 10 times larger Young’s modulus than that
for healthy RBCs.

3.6 Margination of WBCs, and micro- and nano-carriers in blood
flow

White blood cells (WBCs) are part of our organism’s defense system and are mainly located
in the blood stream and in the lymphatic system. In case of a problem (e.g., inflammation),
WBCs are able to adhere to the vascular endothelium [160, 161] and transmigrate into
the surrounding tissue [38]. Prior to vessel wall adhesion, WBCs migrate toward the
vessel walls in blood flow [162, 163, 164] through a process called margination. WBC
margination is a consequence of interactions of these cells with RBCs in blood flow. In
fact, one of the important physical components of the margination process is the lift force
[133, 134, 135] due to hydrodynamic interactions of cells with walls. The lift force on
RBCs is expected to be larger than that on WBCs due to the non-spherical discocyte
shape and high deformability of RBCs and the competition of these forces on RBCs and
WBCs may lead to the segregation effect or the margination of WBCs.

WBC margination shows a non-trivial dependence on various blood flow properties includ-
ing hematocrit, flow rate, vessel geometry, and RBC aggregation. For instance, in vivo
experiments on WBC adhesion [164] have demonstrated a high WBC adhesion rate at low
flow rates characteristic for venular blood flow and high Ht > 0.45. In contrast, in vitro
experiments on WBC adhesion in glass tubes [165] suggested no sensitivity of WBC adhe-
sion to Ht. Similarly, a 2D simulation study [166] has also suggested no significant effect
of Ht on WBC margination. In contradiction to the apparent Ht independence of WBC
margination are recent microfluidic experiments [167], which have shown that the most
pronounced WBC margination occurs within an intermediate range of Ht ' 0.2 − 0.3,
while at both lower and higher Ht values WBC margination is reduced. In our recent
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Figure 16: Simulation snapshot of RBCs (red) and a marginated WBC (white).
The flow is from the left to the right. Ht = 0.3 and γ̇∗ = 32. Reproduced with
permission from Ref. [169].

simulation work in both 2D [168] and 3D [169], we were able to reconcile the existing
contradicting observations of WBC margination dependence on Ht, showing that a strong
margination effect is achieved for an intermediate range of Ht values. The apparent in-
consistency with experiments [165] and simulations [166], which indicated no dependence
of WBC margination on Ht, has been explained by the fact that the Ht values used in
these studies fall almost entirely into the region of a strong WBC margination predicted
in Refs. [168, 169].

Figure 16 shows an example blood flow with a marginated WBC for Ht = 0.3 and γ̇∗ = 32.
A non-dimensional shear rate γ̇∗ is the product of the average shear rate (or pseudo-
shear rate) and the characteristic relaxation time of a RBC [169]. During the course
of simulations we measure the center-of-mass distribution of a WBC within the tube,
which reflects the probability of a WBC to be at a certain position in the tube. From
the WBC distribution we compute the margination probability defined as the probability
of the WBC center-of-mass to be within a distance rw away from the wall. Figure 17
presents the WBC margination diagram for rw < 5.5 µm. The WBC radius was set to 5
µm in all simulations and thus, the condition rw < 5.5 µm is equivalent to a maximum
distance of 0.5 µm between the WBC surface and the wall. The diagram shows that WBC
margination is strongest within the range of Ht = 0.2− 0.4. At low Ht, the concentration
of RBCs is small leading to a weak WBC margination. At high Ht, WBC margination
is also attenuated due to interactions of a WBC with RBCs in flow. In Refs. [168, 169],
we have shown that for low enough Ht the region in front of a marginated WBC remains
virtually free of RBCs, which could otherwise interfere with the WBC and lift it off the
wall. However, at large enough Ht, due to RBC crowding a marginated WBC may often
encounter RBCs in front, which help to effectively displace it away from the wall, leading
to a low margination probability. Finally, WBC margination becomes weaker for higher
flow rates, which is consistent with experimental observations that WBC margination
and adhesion primarily occurs in venules and not in arterioles [164, 170, 167]. As an
estimation, the flow rates in the venular part of the microcirculation correspond to the
values of γ̇∗ . 90, while in the arteriolar part the flow rates are higher with γ̇∗ & 120
[28, 171].

In Ref. [169], an estimation of the increase in flow resistance due to the presence of a
marginated WBC has also been performed. Marginated WBCs increase the flow resistance
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Figure 17: WBC margination-probability diagram calculated for rw < 5.5 µm,
where rw is the distance of the WBC center-of-mass from the wall. The small
white circles in the diagram indicate performed simulations. No aggregation
interactions between RBC were imposed here. Reproduced with permission from
Ref. [169].

by up to about 30% for vessel diameters of 20 µm; this effect on the flow resistance is
expected to subside for much larger tube diameters. The WBC margination results are
also relevant for the margination of other cells in blood flow with a similar size and
deformability properties. For instance, circulating tumor cells are similar in size and are
rather stiff [172, 173], indicating that they will mainly marginate in the venular part of
microcirculation, and therefore the tissue invasion by tumor cells should largely occur from
venules. The WBC margination results are also relevant for microfluidic flow, where the
separation of WBCs or circulating tumor cells from whole blood can be of interest.

Similarly to WBCs, margination of micro- and nano-carriers used for drug delivery appli-
cations [175, 176] can be expected in blood flow. Successful delivery of micro- and nano-
carriers strongly depends on their binding to specific targeted sites, which will be affected
by their margination properties. Here, in addition to the various blood flow conditions,
we are mainly interested in the effect of particle characteristics such as size, shape, and
deformability on their margination. The role of particle size and shape in the efficient
delivery is a multi-faceted problem. For example, large enough particles with a diameter
(Dp) greater than approximately 4 µm become trapped in the smallest capillaries of the
body [177] and recent experiments suggest that large particles with Dp & 3 µm are subject
to an enhanced phagocytosis [178]. On the other hand, microfluidic experiments [179] indi-
cate that spherical particles with the size of 2 µm adhere much more frequently than their
sub-micron counterparts. Furthermore, nano-particles with a size below 20 − 30 nm are
rapidly excreted through the kidneys [180]. Adhesion of various particles has been studied
experimentally [181, 182] and theoretically [183, 184], with the outcome that oblate ellip-
soids are subject to stronger adhesion than spheres with the same volume. These studies
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Figure 18: Dependence of margination on particle size. Probability diagrams of
particle margination for variousHt and γ̇∗ values and for circular 2D particles with
the sizes (a) Dp = 0.3Dr (1.83 µm), (b) Dp = 0.15Dr (0.91 µm), (c) Dp = 0.04Dr

(0.25 µm). The white squares (�) indicate the values of Ht and γ̇∗ for which
simulations were performed. The margination probability is calculated based on
the RBC-FL thickness. Reproduced with permission from Ref. [174].

show that particle size and shape are also very important parameters for the design of
efficient drug-delivery carriers. To better understand the adhesion potential of micro- and
nano-particles, we have investigated the margination of particles with different properties
in blood flow [174, 185].

Figure 18 presents margination diagrams for circular particles of different sizes (simulations
in 2D). The comparison of diagrams clearly indicates that the region of high margination
probability becomes smaller with decreasing particle size. The reason for the reduction
in margination probability is related to the ratio between particle size and the thickness
of the RBC-FL [174, 185]. If the particle has a size similar to the RBC-FL thickness, its
distribution shows a pronounced peak in the RBC-FL indicating that the particle spends
a lot of time very close to the wall. As the size of a particle is decreased, its margination
becomes worse, because its distribution in the RBC-FL does not have a strong peak and
smaller particles can also fit better between RBCs in the cellular core of the flow. In fact,
the distribution of particles smaller than roughly 250 nm is close to the distribution of the
blood plasma, indicating that they can be incorporated well within inter-RBC gaps. This
result shows that the margination properties of such small nano-particles can be directly
inferred from local Ht distributions. Our numerical observations are also supported by
recent in vivo experiments [186] which have shown that particles with a size of about 1 µm
are located closer to the vessel wall than smaller nano-particles.
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The simulation results in Refs. [174, 185] have also shown that particle margination
is most pronounced in small vessels such as capillaries, indicating that their adhesion
is most probable in the capillary part of the microvasculature. Particle deformability
worsens their margination properties [185], which is similar to the case of WBCs [168].
Ellipsoidal particles possess slightly worse margination properties in comparison with the
spherical particles; however, the adhesion of ellipsoids appears to be significantly better
[181, 182]. As a conclusion, our simulations suggest that ellipsoidal particles of micron size
are favorable for drug delivery in comparison with sub-micron spherical particles [174, 185].
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4 Discussion and outlook

4.1 Summary and conclusions

The examples given above and the considerable amount of work in soft matter and bio-
physics demonstrate that the behavior and rheology of soft-particle suspensions have many
generic features as well as many specific aspects which differentiate such systems. For in-
stance, generic features are softness of interactions, the shear-thinning behavior of various
suspensions, the tank-treading and tumbling motion of individual particles in a solution,
the deformation and interactions in flow, etc. This indicates that the physical mechanisms,
which govern the behavior of such systems, are often similar in spite of the apparent dif-
ferences among various soft systems. One of the examples we showed is the tank-treading
motion which occurs for star polymers, vesicles, and RBCs, even though structurally these
objects are very different. Shear thinning of various suspensions of soft particles is, per-
haps, even more generic and may occur due to structural changes within a suspension,
the deformability and alignment of soft particles in flow, and the break-up of aggregates
in the case of attractive inter-particle interactions.

Despite many similarities among various soft matter systems, their behavior still shows
many differences and specificities both quantitatively and qualitatively. For example,
capsules and RBCs possess shear elasticity in comparison to vesicles, which is responsible
for the existence of tumbling-to-tank-treading transition at low viscosity contrasts between
inner and outer fluids. Another example is the internal viscosity (or friction) which can be
changed and controlled for vesicles, capsules, and cells, but such a possibility does not exist
in polymer systems. Here, internal viscosity would be one of the parameters for tuning the
rheological properties of a suspension. It is also important to note that distinct suspensions
may show similar behavior in one regime, but a very different response in another. For
example, star-polymer solutions at low shear rates display rheological properties similar
to a suspension of rigid-sphere colloids, because the deformation of star-polymers in that
regime is very small. With increasing shear rate, star polymers deform and their rheological
properties become dissimilar to those of hard-sphere colloids.

A computational framework (e.g., presented methods or other simulation approaches)
based on mesoscopic modeling is also rather generic and often can be applied to various
soft-matter systems, including polymers, proteins, vesicles, capsules, and cells. This means
that such methods should be able to capture many of the generic features of soft-particle
suspensions at least qualitatively. However, what makes a simulation powerful is the ability
to take a step further and to provide not only qualitative, but also quantitative predic-
tions. At this step, the specificities of a particular system become very important and the
corresponding model has to include all the relevant physical details in order to describe
the specific features of a particular system. The development of quantitative and realistic
models is practically impossible without proper experimental input, making interactions
with experimentalists essential. There are already many examples of simulations validated
by experiments and used for the quantification of more sophisticated experimental mea-
surements. More importantly, many computational models already attempt to go beyond
experimental predictions in order to generate and/or test new physical and biological hy-
potheses. Hence, such simulations can be employed to guide and optimize experimental
tools and settings for a better understanding of involved physical mechanisms.
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The number of the parameters relevant for soft-particle suspensions is very large, including
molecular length, stiffness, monomer density within macromolecules, internal viscosity,
membrane bending rigidity, membrane shear modulus, particle shape and size, and particle
interactions. This poses difficulties in the systematic investigation of their behavior and
rheological properties; however, it also offers entirely new possibilities for tuning their
properties. Here, accurate modeling of such suspensions opens up great opportunities,
since simulations are usually more robust and significantly cheaper than equivalent large
sets of experiments. Moreover, the rapid development of the computational capacity of
modern supercomputers allows to perform very large and sophisticated simulations, which
can closely mimic, extend, or even replace various experimental systems. More work is
required in the future to explore the full application potential of such systems and to
gain a deeper insight into the relation between microscopic properties and the emergent
macroscopic behavior.

4.2 Current research directions

Finally, we would also like to outline a few current research directions. Blood flow will
remain an important research topic in the future, because the methods developed and
the results obtained so far open the doors to address a broad range of biophysical and
biomedical problems and questions. One of the current issues is the viscosity contrast
between the cytosol and plasma and its effect on the dynamics of single RBCs and blood
flow in microvessels. The examples of RBC dynamics and blood flow shown in this thesis
are based on the assumption of the viscosity contrast of unity, while the physiological
ratio is close to 5 − 6. Our preliminary data indicate that the realistic viscosity contrast
for a RBC suppresses its tank-treading motion leading to new types of dynamics with
significant cell deformations. This effect considerably alters the behavior of single RBCs
in microvessels. The viscosity contrast is also likely to change the lift force on flowing
RBCs, which in turn alters the migration of RBCs away from the walls. Thus, in this
project we depart further away from a more generic RBC model and move closer to a
quantitative model for RBCs and blood flow.

Another research direction corresponds to simulations of blood flow in microcirculation.
Here, an extension of the employed simulation techniques is required in order to model
blood flow in complex vessel geometries and small microvascular networks. The main aim
of this research is to better understand blood flow in microvasculature and devise empir-
ical or theoretical models for the behavior of blood cells around bifurcations and vessel
junctions, their partitioning and traversal through a microvascular network. Such models
will help us understand the perfusion of the microvasculature, blood flow regulation, and
the delivery of oxygen and drug carriers. Another important aspect of this research direc-
tion is blood flow in various blood-related diseases and disorders, where the structure and
perfusion of microcirculation can change and the alteration of blood cell properties may
occur.

We also pursue modeling of microfluidic flow. Our main interest in this project is the
behavior of soft particles in microfluidics with application to particle sorting and detection
of rare solutes. In such devices, a number of physical phenomena can be relevant, including
migration in flow, deformability, particle interactions, adhesiveness, device geometry, etc.
In relation to this project, we also investigate the behavior of various mixtures, for example,
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polymers and cells. This leads to new physical insights for such systems, but is also relevant
and useful in many biophysical and biomedical applications.

We also investigate the swimming behavior of microswimmers. The motility and manip-
ulation of microswimmers can lead to a number of potential applications ranging from
cargo delivery to micromixing within microfluidic systems. In particular, we are inter-
ested in an artificial microswimmer represented by the Janus colloid whose one half is
coated with gold. Under external laser irradiation, the gold cap is able to absorb heat
leading to a local temperature gradient, which results in microswimmer propulsion due to
thermophoresis. Recent experiments [187, 188] have shown that Janus particle propulsion
can be significantly altered in binary mixtures near a critical point; however, this behavior
remains poorly understood. Thus, we investigate the behavior of Janus colloids in critical
mixtures using particle-based mesoscopic numerical simulations.
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Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The
flow resistance inmicrocirculation is governed by flow behavior of blood through a complex network of vessels,
where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel
bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dis-
persed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates,
vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cellsmigrate
toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow
resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic
shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow
development, lc ≲ 25D, for vessel diameters in the range 10 μm b D b 100 μm. Thus, the potential effect of red
blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels
which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally
lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both
external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the
viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe
the converged cell-free-layer thickness at steady-state flowwith respect to flow rate. The model is based on the
balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced
effective pressure due to cell–cell interactions in flow. We expect that these results can also be used to better
understand the flow behavior of other suspensions of deformable particles such as vesicles, capsules, and cells.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Flow resistance of a full cardiovascular system ismainly attributed to
the resistance of blood flow within microvasculature or microcircula-
tion (Lipowsky et al., 1980; Popel and Johnson, 2005; Pries and
Secomb, 2008; Secomb and Pries, 2011), which is comprised of the
smallest vessels (e.g., arterioles, capillaries, venules) with diameters
up to about 100 μm. In particular, the flow resistance in microvascula-
ture is governed by the flow behavior of blood through a complex
network of vessels, and therefore, the knowledge about bulk blood
properties is far from sufficient to predict the behavior of blood and
its flow resistance in microcirculation. For instance, experimental
measurements (Lipowsky et al., 1980; Pries et al., 1994; Pries and
Secomb, 2005) of blood flow resistance in vivo have shown that it
may be several times larger than that in in vitro experiments on blood

flow in glass tubes (Reinke et al., 1987; Pries et al., 1992). Several poten-
tial contributions to an increased blood flow resistance in vivo have
been suggested. These include vessel irregularities, bifurcations, and
junctions, which may affect the distribution of red blood cells (RBCs)
in a vessel cross-section (Pries et al., 1994; Secomb and Hsu, 1997;
Pries et al., 1989), the presence of endothelial surface layer
(or glycocalyx) (Vink and Duling, 1996; Weinbaum et al., 2007) at the
vessel walls (Pries and Secomb, 2005; Pries et al., 1997), and the length
of vessel sections between bifurcations and junctions (Popel and
Johnson, 2005; Pries et al., 1996).

The endothelial surface layer resembles a polymeric brush at a vessel
wall with an estimated thickness of about 0.5 − 1.5 μm (Pries et al.,
2000; Yen et al., 2012). Its effect on an increased flow resistance
can be interpreted as an effective reduction of the vessel diameter due
to the glycocalyx, and a large enough thickness of this layer (∼2 μm)
provides a plausible explanation for the discrepancy of experimentally
measured blood flow resistances in vivo and in vitro (Pries and
Secomb, 2005; Pries et al., 1997). However, contribution of the other
effects has not been rigorously studied. As an example, RBCs in
microvessels migrate away from the walls leading to a layer near a
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wall void of RBCs (Goldsmith et al., 1989; Cokelet andGoldsmith, 1991).
This layer is called cell-free layer (CFL) or RBC-free layer, and its thick-
ness is directly associated with the blood flow resistance (Popel and
Johnson, 2005; Reinke et al., 1987; Fedosov et al., 2010a). In the
microvasculature, blood flow and in particular the distribution of RBCs
in a vessel cross-section can be significantly disturbed at bifurcations
and junctions resulting in a reduced CFL thickness and an increased
flow resistance (Ong et al., 2012). After the RBC distribution is distorted
at a vessel bifurcation, in the following vessel segmentRBCswillmigrate
toward the vessel center leading to a dynamic development and recov-
ery of the CFL thickness. Thus, the flow resistance in microcirculation is
affected by the degree of RBC dispersion at vessel junctions and the
length of the CFL recovery after the distortion in comparison to a
characteristic length of vessel segments between bifurcations in
microvascular networks.

RBC migration and the development of CFL are governed by
hydrodynamic interactions of RBCs with channel walls (Cantat and
Misbah, 1999; Abkarian et al., 2002; Coupier et al., 2008) and cell–cell
interactions or collisions in flow (Kumar and Graham, 2012;
Grandchamp et al., 2013). The former RBC-wall interaction is usually
referred to as a lift force (Cantat and Misbah, 1999; Abkarian et al.,
2002; Coupier et al., 2008; Messlinger et al., 2009), while the latter
one is called shear-induced diffusion or shear-induced normal stress
(Grandchamp et al., 2013; Leighton and Acrivos, 1987). The lift force
drives RBCs away from the vessel walls, while the cell–cell interactions
lead to an effective dispersion of RBCs. The balance between these two
contributions at steady flow results in a converged thickness of the
RBC flow core and CFL. Clearly, the CFL development and its final
thickness are functions of a number of parameters including hematocrit
(volume fraction of RBCs), flow rate, vessel diameter, and aggregation
interactions between RBCs. There exists a diffusion-based model
(Carr, 1989; Carr and Xiao, 1995), which predicts a recovery length of
CFL symmetry after it is distorted behind vessel bifurcations. However,
the model has several adjustable parameters.

The main focus of this paper is a systematic investigation of CFL
development in microvessels for a number of blood flow conditions
using mesoscopic simulations (Fedosov et al., 2014a, 2014b). We use
the smoothed dissipative particle dynamics method (Español and
Revenga, 2003) to study the development of blood flow for various flow
conditions starting from a fully-dispersed configuration of RBCs. Follow-
ing the migration of RBCs away from the walls, the CFL thickness is dy-
namically monitored until it converges to a constant value of a fully-
developed flow. The time evolution of CFL thickness appears to be nearly
universal with respect to the flow rate for physiological hematocrit levels
Ht ≤ 0.45; this range of hematocrit levels is also directly relevant for
healthy microcirculatory blood flow (Lipowsky et al., 1980; Pries et al.,
1986). This allows us to define a length lc for the development of CFL,
which is nearly independent of the flow rate and shorter than or equal
to 25D, for vessel diameters in the range 10 μm b D b 100 μm. Thus, the
effect of RBC dispersion at vessel bifurcations and junctions on the flow
resistance may be significant in vessels which are shorter or comparable
to the length lc, while in longer vessel sections it can be practically
neglected. Aggregation interactions between RBCs result in a reduction
of blood flow resistance, since they aid to maintain a more compact RBC
flow core.

Finally, we also develop a simple theoretical model which describes
well the final CFL thickness when the flow has converged. The model
considers the balance between a lift force on RBCs due to cell-wall
hydrodynamic interactions and shear-induced effective pressure due
to cell–cell interactions in flow. This model supports the idea that
these are the two main mechanisms which govern the final CFL thick-
ness. Similar ideas have also been applied to describe dispersion of
RBCs after injection (Grandchamp et al., 2013). We hope that our
results will help to better understand also the flow behavior of other
suspensions of deformable particles such as vesicles, capsules, and
cells, and will trigger new investigations in this area.

The paper is organized as follows. In the second section, we briefly
introduce the simulation techniques employed for RBC and flow simula-
tions and describe the simulation setup. The third section presents
simulation results and the theoretical model, while in the fourth section
implications of the results are discussed. We conclude in the fifth
section with a brief summary.

Models & methods

We employ the smoothed dissipative particle dynamics (SDPD)
method (Español and Revenga, 2003) to model fluid flow. SDPD is a
mesoscopic simulation technique, where each SDPD particle corre-
sponds to a small volume of fluid instead of individual atoms or
molecules. The RBCmembrane is represented by a triangulated network
model (Discher et al., 1998; Noguchi andGompper, 2005; Fedosov et al.,
2010b; Fedosov et al., 2010c) and coupled to fluid flow using friction
forces.

Smoothed dissipative particle dynamics

SDPD (Español and Revenga, 2003) is a mesoscopic hydrodynamics
method based on two popular approaches: the smoothed particle
hydrodynamics (Lucy, 1977; Monaghan, 1992) and the dissipative par-
ticle dynamics (Hoogerbrugge and Koelman, 1992; Español and
Warren, 1995) methods. In SDPD, a simulation system consists of N
point particles with mass mi, position ri, and velocity vi. The Newton's
second law of motion governs the evolution of particle positions and
velocities over time as

dri ¼ vidt; dvi ¼
1
mi

FCi þ FDi þ FRi
� �

dt; ð1Þ

where FC, FD, and FR are conservative, dissipative, and random forces
due to inter-particle interactions, respectively. The equations of motion
above are integrated using the velocity-Verlet algorithm (Allen and
Tildesley, 1991). The three pairwise forces on particle i are defined as
follows

FCi ¼
X
j

pi
ρ2
i

þ pj

ρ2
j

 !
wijri j;

FDi ¼ −
X
j

γi j vi j þ vi j � ei j
� �

ei j
� �

;

FRi ¼
X
j

σ i j dWS
i j þ

1
3
tr 1ð Þ dWi j

h i� �
� ei j;

ð2Þ

where eij = rij/|rij| and vij = vi − vj. pi and pj are particle pressures
assumed to follow the equation of state p = p0(ρ/ρ0)α − b, where p0,
ρ0, α, and b are selected parameters. Density of particles is calculated

locally and determined as ρi = ∑jWL(rij) with WL rð Þ ¼ 105
16πr3c

1þ 3 r
rc

� �
1− r

rc

� �3
being the Lucy function (Lucy, 1977), where rc is the cutoff

radius. Furthermore, ∇WL(r) = − rw(r) such that w rð Þ ¼ 315
4πr5c

1− r
rc

� �2
and wij = w(rij). The coefficients γij and σij define the strength of

dissipative and random forces and are defined as γi j ¼ 5η0
3

wi j

ρiρ j
and σ i j ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTγi j

q
, where η0 is the desired dynamic viscosity of fluid and kBT is

the energy unit. The notation tr[dWij] corresponds to the trace of a

random matrix of independent Wiener increments dWij, and dWS
i j is

the traceless symmetric part.
Table 1 presents the fluid simulation parameters in units of the fluid

particle mass m, the cutoff radius rc, and the thermal energy kBT. Even
though SDPD allows one to directly input desired fluid viscosity η0,
the measured dynamic viscosity η of SDPD fluid might be slightly
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different. The assumption that η = η0 is reliable only if each SDPD
particle has a large enough number of neighboring particles, which
may require large enough rc and/or density of fluid particles n.
Consequently, we advise to always check validity of the approximation
directly using a shear flow simulation. For instance, SDPD fluid with the
parameters in Table 1 yields slightly larger fluid viscosity measured in a
shear flow setup than η0.

Red blood cell model

To simulate RBCs a triangulated spring-network model (Discher
et al., 1998; Noguchi and Gompper, 2005; Fedosov et al., 2010b;
Fedosov et al., 2010c) has been employed. Each RBC is constructed by
a collection of Nv particles linked by Ns = 3(Nv − 2) springs with the
following potential

Usp ¼
X

j∈1…Ns

kBTlm 3x2j−2x3j
� �

4p 1−xj

� � þ kp
l j

2
4

3
5; ð3Þ

where lj is the length of the j-th spring, lm is themaximum spring exten-
sion, xj = lj/lm, p is the persistence length, and kp is the spring constant.
This spring definition allows us to define a nonzero equilibrium spring
length l0. The bending rigidity of a membrane is modeled as follows

Ubend ¼
X

j∈1…Ns

kb 1−cos θ j−θ0
� �h i

; ð4Þ

where kb is the bending constant, θj is the instantaneous angle between
two neighboring triangles having a shared edge j, and θ0 is the angle
representing the spontaneous curvature, which is set to zero in all
simulations. Finally, to mimic area-incompressibility of the lipid bilayer
and incompressibility of the inner cytosol, we use two constraints with
the potentials given by

Uarea ¼ ka
A−Arð Þ2
2Ar

þ
X
j

kd
Aj−A0

j

� �2
2A0

j

;

Uvol ¼ kv
V−Vrð Þ2
2Vr

;

ð5Þ

where ka, kd, and kv are the global area, local area, and volume constraint
coefficients, respectively. A and V are the instantaneous RBC area and
volume, while Aj is the instantaneous area of an individual triangle in
a triangulated network. Ar, Aj

0, and Vr are the desired total RBC area,
area of the j-th face (set according to the initial triangulation), and
total RBC volume, respectively.

The RBC model parameters (e.g., p, kp, kb) can be related to macro-
scopic membrane properties (e.g., shear, Young's, and bending moduli)
through a linear analysis for a regular hexagonal network (Fedosov
et al., 2010b, 2010c). For instance, the membrane shear modulus is
given by

μ0 ¼
ffiffiffi
3

p
kBT

4plmx0

x0
2 1−x0ð Þ3 −

1
4 1−x0ð Þ2 þ

1
4

� �
þ 3

ffiffiffi
3

p
kp

4l30
; ð6Þ

where x0 = l0/lm. The corresponding area-compression K and Young's Y
moduli can be found as K= 2μ0 + ka + kd and Y= 4Kμ0/(K+ μ0). The
bending coefficient kb in Eq. (4) can be expressed in terms of themacro-
scopic bending rigidity κ of theHelfrichmodel (Helfrich, 1973) askb ¼ 2
κ=

ffiffiffi
3

p
. The coefficients ka, kd, and kv can be selected large enough to

approximate properly area-incompressibility of the lipid bilayer and
incompressibility of the inner cytosol. Thus, the necessary model
parameters are calculated directly from desired macroscopic RBC
properties. In addition, we also employ a “stress-free” model of a RBC
obtained by computational annealing such that equilibrium length l0

i

for each spring is set to the corresponding edge length within initial
membrane triangulation (Fedosov et al., 2010b; Fedosov et al., 2010c).
This also implies that lmi = l0

i × x0 is set individually with x0 = 2.2, see
Refs. Fedosov et al. (2010b) and (2010c) for more details.

To describe RBC properties, we define an effective RBC diameter as
Dr ¼

ffiffiffiffiffiffiffiffiffiffi
Ar=π

p
. The average effective diameter for a healthy RBC is equal

to Dr = 6.5 μm (Evans and Skalak, 1980). Table 2 outlines RBC param-
eters for simulations in units of Dr and kBT, and the corresponding
average values for a healthy RBC in physical units.

Coupling between RBCs and the fluid flow is done through viscous
friction (Fedosov et al., 2010b) between cell vertices and the surround-
ing fluid particles. The coupling is implemented via dissipative particle
dynamics interactions (Hoogerbrugge and Koelman, 1992; Español
and Warren, 1995) using dissipative and random forces similar to FD

and FR above. The strengthγ of the dissipative force is adjusted to satisfy
no-slip boundary conditions at a membrane. Using an approximation of
linear shear flow near themembrane, the coefficientγ can be expressed
in terms of fluid density n, interaction cutoff radius rc′, number density of
membrane particles nm, and fluid viscosity η (Fedosov et al., 2010b).
This formulation results in satisfaction of the no-slip BCs for the linear
shear flow over a flat membrane; however, it also serves as an excellent
approximation for no-slip at themembrane surface. Note that conserva-
tive interactions between fluid and membrane particles are turned off,
which implies that the radial distribution function is structureless, i.e.
g(r) = 1.

RBC aggregation model

For blood, the attractive cell–cell interactions are crucial to represent
aggregation of RBCs. These forces are approximated by the Morse
potential U rð Þ ¼ De e2β r0−rð Þ−2eβ r0−rð Þ� �

, where r is the separation
distance, r0 is the zero force distance, De is the well depth of the poten-
tial, and β characterizes the interaction range. The Morse potential
parameters were chosen as β = 1.5 μm−1, r0 = 0.3 μm, and De =
0.3kBT. For more details see Ref. Fedosov et al. (2011).

Table 1
SDPD fluid parameters used in simulations. Mass, length, and energy for SDPD fluid are
measured in units of the fluid particle massm, the cutoff radius rc, and the thermal energy
kBT, respectively. p0, ρ0, b, and α are parameters for the pressure equation, n is the number
density of fluid particles, and η0 and η are the desired andmeasured dynamic viscosities of
the SDPD fluid. In all simulations, we have set m = 1, rc = 1.5, and kBT = 0.4.

p0r3c
kBT

ρ0rc3 α br3c
kBT

η0r
2
cffiffiffiffiffiffiffiffiffi

mkBT
p nrc

3 ηr2cffiffiffiffiffiffiffiffiffi
mkBT

p

675 10.125 7 675 266.8 10.125 284.6

Table 2
RBC characteristics in units of the effective RBCdiameterDr and kBT, and the corresponding
average values for a healthy RBC in physical units.Nv is the number of membrane vertices,
Ar is the RBC membrane area, Vr is the RBC volume, T is the temperature, Yr is the mem-
brane Young'smodulus, κr is themembranebending rigidity, and kd, ka, and kv are the local
area, global area, and volume constraint coefficients, respectively. In all simulations, we
have chosen Ar = 133.5 and kBT = 0.4, which implies that Dr = 6.5.

RBC parameters Scaled units Physical units

Nv 500
Ar 133.5 × 10−12 m2

Dr
ffiffiffiffiffiffiffiffiffiffi
Ar=π

p
6.5 × 10−6 m

Vr 0.34 Dr
3 93 × 10−18 m3

T 310 K
Yr 1.82 × 105 kBT

D2
r

18.9 × 10−6 N/m

κr 70 kBT 3 × 10−19 J
kd 4.2 × 104 kBT

D2
r

4.3 × 10−6 N/m

ka 2.1 × 106 kBT
D2
r

2.1 × 10−4 N/m

kv 1.4 × 107 kBT
D3
r

220 N/m2
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Cell-free layer

Cell-free layer (CFL) is a fluid layer close to the channel wall void of
RBCs. In Poiseuille flow, CFL forms due to a hydrodynamically-induced
lift force on RBCs close to a wall (Cantat and Misbah, 1999; Abkarian
et al., 2002; Messlinger et al., 2009) leading to their migration toward
the tube center and leaving a near-wall fluid layer free of RBCs. Fluid
viscosity in the CFL region is similar to that of plasma, whose viscosity
is considerably lower than the effective viscosity in the tube center
populated by RBCs. Thus, a CFL serves as an effective lubrication layer
for the RBC core to flow and its thickness is directly associated with
the resistance of blood flow. The thickness of the CFL is generally larger
for lower hematocrit levels and larger vessel diameters (Maeda et al.,
1996; Kim et al., 2007). The measurement of the CFL thickness δ in
simulations is done by projecting RBC vertices of a simulation snapshot
onto a plane and fitting a curve which describes the edge of RBC core in
flow (Fedosov et al., 2010a). The average distance from the wall to the
RBC edge is assumed to be the CFL thickness. To reduce errors in the
CFL measurements a number of simulation snapshots at different
times are considered.

Simulation setup

The simulation setup contains a single periodic cylindrical channel
with a diameter D = 15 μm and 80 μm and the length of L = 60 μm.
The channel is filled with fluid particles and suspended RBCs. The
average plasma viscosity under healthy conditions is assumed to be
η = 0.0012 Pa ⋅ s. For simplicity, the fluid viscosity inside a RBC is set
to be the same as that of blood plasma. The flow is driven by a constant
force f applied to each solvent particle, which is equivalent to a constant
pressure gradient ΔP/L= fn, where ΔP is the pressure drop and n is the
number density of solvent particles. To characterize the flow we define

an average (or pseudo) shear rate γ
�
as

γ
� ¼ v=D; ð7Þ

where v ¼ Q=A is the average flow velocity with a volumetric flow rate
Q through a cross-sectional area A = πD2/4.

Before the start of flow, RBCs are distributed almost randomly in the
tube as shown in Fig. 1(a). This distribution is achieved by running a
simulation without a flow for some time, which allows RBCs to diffuse
and reach their equilibrium distribution. After that the flow is started
and the development of CFL is measured in time as RBCs migrate
away from the wall. For comparison Fig. 1(b) illustrates the

distribution of RBCs for D = 40 μm, Ht = 0.3, and γ
� ¼ 298 s−1 after

the blood flow has been fully developed. Clearly, RBCs have migrated
toward the channel center yielding a CFL near the wall.

Results

Cell-free layer evolution

We first investigate the development of the CFL in blood flow.
Already in the absence of flow, a non-zero CFL thickness is measured
due to the entropic repulsion (e.g., due to hindered rotational motion)
between RBCs and the tubewall. In addition, sincewe consider relative-
ly small vessel diameters, a non-zerowall curvature prevents RBCs from
fully conforming with its cylindrical shape, which also results in a non-
zero CFL thickness. After the flow is started, RBCsmigrate away from the
wall, and the development of the CFL is monitored in time. Fig. 2(a)
shows the evolution of the CFL thickness δ(t) for different driving forces
(or pressure gradients) for the case ofHt=0.3 andD=20 μm. The time

is normalized by theγ
�
value of the fully-developed flow. The CFL curves

show a rapid increase of the CFL thickness up to about tγ
� ≈25 followed

by a plateau, which we will also refer to as a final CFL thickness δf. The
values of δf are larger for higher flow rates; however, the growth is
clearly limited by excluded-volume interactions between RBCs in the

flow core and is expected to approach a constant value for large γ
�
.

Fig. 2(b) presents the same CFL curves with their plateau values
scaled by δf. The scaled CFL curves appear to be similar indicating that

the shear rate γ
�
is the only relevant time scale here. Thus, the develop-

ment of CFL for Ht = 0.3 is mainly governed by shear forces in flow. A
similar conclusion can be drawn for lowHt supported by our simulation
data for Ht = 0.15 (not shown here) and for higher Ht shown in Fig. 3.
Some discrepancies between the curves in Figs. 2(b) and 3(b) for differ-
ent shear rates indicate that there may exist a second relaxation time.

The initial fast time scale is governed by γ
�
and corresponds to RBC

migration away from the wall as it was discussed before. The second
time scale is related to cell–cell interactions in flow such that RBCs in
the core of the flow have to re-arrange and reach a denser flow-
induced packing. This time scale is slower than that for RBC migration,
and appears to be more noticeable for larger Ht values. This process is
also illustrated in Fig. 4 by the development of hematocrit profile for
Ht = 0.45. While the initial shift of the local hematocrit curve away
from the wall is rather rapid, the further development of local RBC
density in the bulk appears to be slower. However, the convergence of
the CFL to δf is nearly independent of hematocrit (Ht ≤ 0.45) and occurs

within tγ
� ≲25.

To verify that the conclusionsmade so far donot change significantly
for vessel diameters in the range 10 μm b D b 100 μm, we performed a

Fig. 1. Simulation snapshots for D=40 μmandHt=0.3. (a) Before the flow is applied, RBCs are distributed nearly randomly in the tube. (b) After the flowhas converged forγ
� ¼ 298 s−1.

The CFL region can be clearly seen.
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number of simulations for D=15, 40, and 80 μm. The CFL dynamics for
D = 40 μm is shown in Fig. 5(a) for different Ht values. Furthermore,
Fig. 5(b) presents a comparison of the CFL convergence for different
vessel diameters and pseudo-shear rates. In all simulated cases the

convergence of CFL thickness is reached by the time tγ
� ≲25 , in

agreement with the simulation data for D = 20 μm in Figs. 2 and 3.

Effect of RBC aggregation

The presence of aggregation interactions between RBCs leads in
general to a larger CFL thickness. Fig. 6 compares the development of
CFL thickness for the cases with/without aggregation interactions. Ini-
tially, the CFL for the simulations with RBC aggregation seems to devel-
op similarly to the cases without RBC aggregation present. However,
attractive interactions between RBCs lead to a larger final CFL thickness
δf in comparisonwith thatwithout aggregation. The dynamics of CFLde-
velopment appears to be not significantly affected by the presence of

RBC aggregation such that δf plateau is roughly reached at tγ
� ≈25,

independent of RBC aggregation properties. Note that the strength of
RBC aggregation used here corresponds to normal aggregation level in
blood under healthy conditions (Fedosov et al., 2011), and stronger

aggregation interactions between RBCs, which may be present in
some blood diseases and disorders, may alter the conclusions. However,
we expect that effective attraction between RBCs should shorten
the time for CFL convergence rather than extend it and therefore,
the estimated CFL development time should become even faster for

stronger RBC aggregation. Finally, at high enough flow rates (γ
� ≳50 s−1

for the healthy aggregation level) RBC aggregation should not make a
significant contribution to blood flow properties (Fedosov et al.,
2011), see also Fig. 7(a).

Theoretical model for CFL

The importance of CFL thickness is its direct correlation with blood
flow resistance. The larger the CFL, the lower the resistance to blood
flow will be, which has been found in the Fahraeus–Lindqvist effect
(Fåhraeus and Lindqvist, 1931). The final CFL thickness δf increases
with flow rate and channel diameter as illustrated in Fig. 7. Also, RBC
aggregation enhances the CFL at least at small enough flow rates. The
final CFL thickness δf is a consequence of the lift force on RBCs driving
them away from the wall (Cantat and Misbah, 1999; Abkarian et al.,
2002; Messlinger et al., 2009) and cell–cell interactions or collisions in
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the bulk of flow dispersing the RBCs. Thus, to describe δf with respect to
different shear rates theoretically, the lift force on RBCs, which
compresses the cell core of the flow, should be balanced by an effective
pressure due to collisions in flow. Following the idea based on an
effective temperature in Ref. Vollebregt et al. (2012), a particle pressure
Π in a sheared colloidal suspension can be described as

Π ¼ n kBT þ csηeff γ
�
Vr

� �
Z; ð8Þ

where n = Ht/Vr is the RBC number density, cs is a constant, ηeff is an
effective suspension viscosity,γ

�
is the shear rate, and Z is the compress-

ibility. The first term in Eq. (8) corresponds to the thermal contribution
of pressure, while the second term represents the shear-induced
component due to particle interactions or collisions in flow
(Grandchamp et al., 2013; Leighton and Acrivos, 1987; Frank et al.,
2003). The compressibility Z for a suspension of spherical colloids has
a number of different theoretical approximations, where that by

Carnahan & Starling (Carnahan and Starling, 1969) is perhaps the
most successful one with

Z ϕð Þ ¼ 1þ ϕþ ϕ2−ϕ3

1−ϕð Þα ; ð9Þ

where ϕ is the particle volume fraction and α = 3. For RBCs, the
compressibility Z is likely to increase slower with ϕ than that for rigid
spheres, so that α is likely to be smaller than 3. However, exact details
are not so important here, since our goal is a semi-quantitative approx-
imation of CFL.

The particle pressure inside the flow core is balanced by the surface
pressureΠs, which arises from a hydrodynamic lift force on RBCs and an
entropic repulsion of RBCs from the wall due to hindered rotational
motion. The entropic repulsion force can be approximated as Fe =
kBT/h (e.g., for a rigid disk), where h is the distance from the cell's
center-of-mass to the wall. This force is only important at distances

smaller than the disk radius and at very low shear rates γ
�
b1

� �
; for

instance, it provides a non-zero CFL thickness in absence of flow. Here,
we omit any dependence of Fe on the shear rate (in general, Fe should
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reduce with increasing shear rate), since its contribution becomes

negligible in comparison with the lift force already for γ
� ≥1. Thus, the

surface pressure can be approximated as

Πs ¼
Fe þ Fl
D2
r

¼ kBT
hD2

r
þ clηo γ

�
D2
r

h2
; ð10Þ

where Fl is the lift force (Coupier et al., 2008; Grandchamp et al., 2013;
Messlinger et al., 2009; Sukumaran and Seifert, 2001) and cl is a
constant. In general, the lift force would depend on particle properties
(e.g., rigidity, viscosity contrast between inner and outer fluids) and
its dynamics (e.g., tank-treading or tumbling, inclination angle), so
that Eq. (10) should be considered as an expression which captures
general trends of a lift force on RBCs. The balance between these two
pressures (Πs = Π) allows us to describe semi-quantitatively the CFL
thickness for different shear rates. As an approximation in both

Eqs. (8) and (10), we assume that γ
� ¼ γ

�
of the tube flow, while ηeff in

Eq. (8) is calculated according to the empirical relations for blood flow
in tubes (Pries et al., 1992). Also, for the compressibility Z in Eq. (9)
we assume that α = 2, since a suspension of RBCs should be more
compressible than that of hard spheres. Fig. 8 presents the simulation
data for δf against fits of the theoretical model with cs = 10−4 and
cl = 10−3. The symbols correspond to simulation data, while the solid
lines with corresponding colors are fits by the theoretical model. In
spite of the simplicity of the model, the theoretical fits describe the
data quite well, especially for a fixed diameter D=20 μm and different
Ht values. The agreement for different diameters and Ht = 0.3 is less
satisfactory.

Discussion

Our simulations show that the initial rapid RBC migration away
from the wall is nearly independent of the various conditions, such as
hematocrit and flow rate, when scaled with the characteristic shear
rate. This indicates that initially the shear rate is the only relevant
time scale for the RBC migration. An experimental investigation of
vesicle migration away from a wall (Coupier et al., 2008) has shown
that vesicle displacement Δy follows a power-law behavior Δy ∼ tβ. A
log–log plot of the CFL development curves shown as an inset in
Figs. 2 and 3 indicates that the initial rapid CFL-thickness increase is
close to a power-law behavior with an exponent equal to or smaller
than 1/3. The value of 1/3 corresponds to the dependence of lift force
on the distance h as Fl ∼ 1/h2 for the migration of single cells. However,
the initial migration of RBCs appears to be slower than the power-law
behavior with an exponent 1/3 due to cell–cell interactions. At later
times, the RBC migration slows down even further and another time
scale corresponding to the relaxation of RBC core becomes relevant.
This can be seen better for the case of Ht = 0.45 in Fig. 3, where cell–
cell interactions affect the CFL convergence. However, for all investigated
hematocrit levels (Ht ≤ 0.45) the rearrangement process of RBCs in the
flow core only weakly affects the time for CFL convergence as shown in
Figs. 2 and 3.

Another important conclusion, which can be drawn from the CFL
development results, is that the length of blood-flow convergence
to steady state is practically independent of the flow rate for vessel
diameters in the range 10 μm b D b 100 μm. Thus, for physiological
hematocrit levels, including those for normal microvascular blood
flow (Lipowsky et al., 1980; Pries et al., 1986), the flow convergence

time is equal to about tc≲25=γ
� ¼ 25D=v. Then, the length required for

the flow to converge is lc≲vtc ¼ 25D ; for instance, for D = 20 μm,
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lc ≲ 0.5 mm, independently of the flow rate and Ht. In vessels with a di-
ameter smaller than about 10 μm, the CFL thickness might be difficult
to define properly, since the vessel diameter is comparable to or smaller
than the RBC size; thismakes the estimation for the length of blood flow
convergence rather unpractical. In vessels with a diameter larger than
100 μm, the CFL thickness becomes small in comparison with D, and
therefore its effect on blood flow resistance can be nearly neglected.

The estimation of the convergence length for blood flow has
direct implications for quantifying this effect on the flow resistance in
microcirculation. Microcirculatory blood flow is not always steady,
since, for instance, the distribution of RBCs in a vessel cross-section
can be significantly distorted at bifurcations leading to a diminished
CFL and an increase in the flow resistance. Following the flow develop-
ment after a dispersion of RBCs, we can estimate an effective increase in
resistance. For this purpose, we divide a length L of the channel into a
number of slices of thickness Δx. Then, the pressure drop ΔP(xi) at
every slice i is equal to

ΔP xið Þ ¼ 128Qη xið ÞΔx
πD4 ; ð11Þ

where η(xi) is the effective viscosity at a slice i, which is amonotonically
decreasing function of x as x → L, since the CFL develops and its
thickness increases. When, the CFL thickness comes to a plateau value,
the local effective viscosity would also saturate. On the other hand,
ΔP = (128QηeffL)/(πD4) = ∑iΔP(xi). Thus, the effective viscosity over
the channel length L can be expressed as

ηeff ¼
1
L

X
i

η xið ÞΔx≈ 1
L

Z L

0
η xð Þdx ¼ η: ð12Þ

The effective resistance over the channel length L characterized by
ηeff will mainly depend on L and the initial dispersion of RBCs which
would affect η(0). The performed simulations correspond to the
worst-case scenario of RBC dispersion, since they are allowed initially
to diffuse and fill up the full channel cross-section. Therefore, the
maximum value of η(0) can be estimated as the bulk viscosity of
blood for a given tube Ht, which is normally several times larger than
the plasma viscosity for physiological Ht values. However, the RBC
core distortion past vessel bifurcations in blood flow is likely to be less
than that assumed initially in simulations and hence, η(0) is generally
expected to be even smaller in microvasculature. With respect to the
vessel length L, the effect of potential RBC dispersion can be practically
neglected if L ≫ 25D; however, it may noticeably increase the flow
resistance if L is smaller than or comparable to 25D, which is an approx-
imate CFL convergence length. Characteristic lengths of microvascular
vessels between bifurcations (Popel and Johnson, 2005) are on the
order 0.5 − 1 mm. Thus, the contribution to blood flow resistance due
to the potential RBC dispersion at vessel bifurcations and junctions is
expected to be rather small for vessels with diameters D ≲ 20 μm,
while in vessels with larger diameters (20 μm ≲ D ≲ 100 μm) this
contribution should be significant.

Aggregation interactions between RBCs lead to a reduction of blood
flow resistance evidenced by the increased terminal CFL thicknesses in
Fig. 7(a). The corresponding flow resistances characterized by the
relative viscosity are shown in Fig. 9. The relative viscosity is defined
as ηrel = Qplasma/QRBC, where Qplasma corresponds to the rate of flow of
plasma without RBCs, while QRBC is the flow rate of blood for the same
pressure gradient. Analogously, ηrel= ηapp/η, where ηapp is the apparent
blood viscosity in tube flow. The curves in Fig. 9 demonstrate that
aggregation interactions in blood lead to a decrease in flow resistance
at least at the low flow rates, which is qualitatively consistent with the
experimental results (Reinke et al., 1987). These low flow rates would
be relevant in the venular part of microcirculatory blood flow. It is also
likely that the aggregation interactions between RBCs would lead to a

lower distortion of RBC flow core at bifurcations further contributing
to the reduction of flow resistance.

The theoretical model for the δf thickness confirms that the main
mechanisms for CFL formation are the lift force which drives RBCs
away from the wall and the shear-induced pressure due to cell–cell
interactions in flow which disperses RBCs. Thus, δf corresponds to a
CFL thickness when these two driving forces balance each other. The
value of cs for RBC suspension is considerably smaller than that estimat-
ed for colloidal suspensions (cs = 1/9) in Ref. Vollebregt et al. (2012).
Thismight be due to an alignment of RBCs in flow such that the effective
particle size for inter-cell collisions ismuch reduced. Another uncertain-
ty comes from the assumption for the function Zwhose value might be
well overestimated. The value of cl in this work also appears to bemuch
smaller than that suggested for single vesicles (cl ≈ 0.1 − 0.2) in Refs.
Messlinger et al. (2009) and Sukumaran and Seifert (2001). A reduction
in lift force is likely to happen due to the alignment of RBCs in flow and
their increased concentration. However, the ratio of the constants cs and

cl, which determines the value of δf at large γ
�
, is not very far from the

above estimations (Messlinger et al., 2009; Vollebregt et al., 2012;
Sukumaran and Seifert, 2001). Due to a number of simplifying
assumptions, the discrepancies between the δf values and the fits in
Fig. 8 are not entirely surprising and can be easily alleviated by changing
the constants cs and cl, which are likely to be sensitive to different RBC
dynamics and local concentration. Finally, following these arguments
we can often anticipate the changes in CFL thickness and flow
resistance. For example, for rigidified RBCs the lift force should be
considerably reduced, and therefore, it should result in a smaller CFL
thickness. Furthermore, more spherical suspended cells and/or particles
than RBCs are also subject to a reduced lift force from the wall.

In our simulations, we employed same viscosity for the suspending
fluid and RBC cytosol and neglected the RBC membrane viscosity.
For a healthy RBC, the viscosity contrast λ, defined as the ratio of
cytosol over blood plasma viscosity, is approximately λ = 5. Recent
experiments (Vitkova et al., 2008) and simulations (Yazdani and
Bagchi, 2011) indicate that the viscosity contrast strongly affects the
tumbling-to-tank-treading transition, which is known to shift to higher
shear rates with increase in the viscosity contrast. For high enough
λ ≳ 5, the tank-treading motion of a single RBC might be suppressed.
In addition, a non-zeromembrane viscosity further intensifies this effect
increasing the effective viscosity difference (Noguchi and Gompper,
2004). Thus, the tank-treading of a RBC membrane is strongly
suppressed, but still partially possible due to effective confinement
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Fig. 9.Relative viscosity (the ratio of blood apparent viscosity to plasma viscosity) of blood
flow for different Ht values, flow rates, and RBC aggregation. D = 20 μm. The data are
shown by dashed lines for systems without aggregation interactions and by solid lines
for the simulations where RBC aggregation interactions were present.
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interactions between RBCs. The preference for tumbling dynamics of
RBCs will likely lead to a reduction of the lift force on RBCs (Coupier
et al., 2008; Messlinger et al., 2009) and an enhancement of cell
dispersion in the RBC core. Such changes would result in a smaller CFL
thickness of the developed flow and a larger flow resistance in compar-
ison with the case of λ=1 investigated here. Due to a smaller lift force,
the migration of RBCs away from the wall will also likely become
slower. However, it is difficult to predict the length required for the
CFL convergence, since the final CFL thickness will also be affected by
the viscosity contrast. Thus, this issue requires further investigation.

Finally, the simulation predictions for the CFL convergence and the
required vessel length need experimental validation. An experimental
setup would require measurements of the CFL thickness at a number
of consecutive positions along a tube or a vessel. For instance, an exper-
iment with sudden flow start-up might be an option. Alternatively, an
experiment, where the changes in CFL right after a tube inflowaremon-
itored, would be mimicked by the simulations. Several experiments on
measurements of the CFL near bifurcations (Pries et al., 1989; Ong
et al., 2012) already exist; however, a direct comparison with the pre-
sented simulation data is not feasible.

Summary

We have investigated the development of CFL in blood flow starting
from a fully dispersed cell configuration. RBCs migrate away from the
wall due to a lift force which arises from cell-wall hydrodynamic inter-
actions. The convergence of CFL thickness toward a constant δf value at
steady-state flow appears to be nearly universal if scaled with the aver-
age shear rate, and the corresponding power-law behavior has a simi-
larity with that of a single vesicle migrating away from a wall.
Aggregation interactions between RBCs lead to a larger CFL thickness
in comparison to the flow where attractive interactions between cells
are absent. The final CFL thickness δf is well described by a theoretical
argument that at steady state a balance between lift forces on RBCs
and shear-induced effective pressure due to cell–cell interactions in
flow exists. The theoretical model describes quite well the δf depen-
dence on shear rate in spite of many simplifying assumptions made.

Our results allow us to estimate the effect of a reduced CFL thickness
on blood flow resistance which may occur, for instance, at vessel bifur-
cations where RBCs can get dispersed. The universality of CFL conver-
gence with respect to flow rate results in the estimation for the vessel
length lc required for full CFL development to be less than or equal to
25D for vessel diameters in the range 10 μm b D b 100 μm. Thus, in ves-
sels with a length comparable to or shorter than 25D the effect of RBC
dispersion on the flow resistance might be considerable, while in
much longer vessels this effectmay be neglected. Quantitatively, this ef-
fect can be taken into account by averaging the effective fluid viscosity
η(x) along the vessel length, which is directly associated with the CFL
development. Finally, the presented results are not only relevant for
blood flow, but also for a flow of suspension of deformable particles
such as vesicles, capsules, and cells. Theirmigrationmechanisms are ex-
pected to be similar, even though quantitatively the current predictions
may be altered, since the lift force and shear-induced pressure depend
on the properties and dynamics of specific particles. We hope that the
presented results will trigger further investigations of such systems in
order to better understand their flow properties.
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Abstract – Dense filamentous brush-like structures are present in many biological interfacial
systems (e.g., glycocalyx layer in blood vessels) to control their surface properties. Such structures
can regulate the softness of a surface and modify fluid flow. In this letter, we propose a theoretical
model which predicts quantitatively flow-induced deformation of a dense brush of stiff polymers
or filaments, whose persistence length is larger or comparable to their contour length. The model
is validated by detailed mesoscopic simulations and characterizes different contributions to brush
deformation including hydrodynamic friction due to flow and steric excluded-volume interactions
between grafted filaments. This theoretical model can be used to describe the effect of a stiff-
polymer brush on fluid flow and to aid in the quantification of experiments.

Copyright c© EPLA, 2015

Introduction. – Polymer brushes have been subject
to enormous interest in the last several decades due to
their importance in various technological and biological
systems [1–3]. However, the main focus of most exper-
imental, theoretical, and simulation studies has been on
the behavior of brushes consisting of grafted flexible poly-
mers (i.e., with negligible flexural stiffness on the length of
a polymer). Brushes with stiff chains, whose persistence
length is larger or comparable to the contour length, have
received limited attention to date, in spite of their frequent
presence in many biophysical systems. Dense filamentous
brush-like structures often serve as structural elements in
the human body with the examples of lubricating aggre-
can brushes in joints [4], endothelial glycocalyx layer in
blood vessels [5,6], periciliary layer of lung airway [7], and
hair cells in the inner ear mediating the sense of hear-
ing and balance [8,9]. Better understanding of their non-
equilibrium behavior, for instance their response to flow,
will lead to insights into the functionality of the respec-
tive structures and the effects of pathological alterations.
Technologically, brushes with stiff grafted elements, such
as cantilevered micro- and nano-rod arrays [10] or high-
density brushes [11], can be used in nanofluidic devices [12]
or in the context of functionalized surfaces [13].

Equilibrium properties of stiff-polymer brushes have
been investigated in a few simulation [14–16] and the-
oretical [16–18] studies predicting the brush height.
In silico compression tests of dense semiflexible-polymer

brushes [19,20] have shown that such brushes might be
much softer mechanically than the brushes made out of
flexible polymers making them useful in micro-flow appli-
cations. As an example, the response of a glycocalyx layer
in blood vessels to fluid flow has been studied in simula-
tions [21] predicting a flow-rate–dependent increase in the
flow resistance. Recently, a mean-field approach [22] has
been developed to describe the flow-induced deformation
of grafted semiflexible polymers. In this theory, the steric
interactions between polymers have been neglected limit-
ing the model’s applicability to the deformation of a single
grafted polymer.

In this letter, we develop a theoretical model which is
able to describe quantitatively the flow-induced deforma-
tion of a dense stiff-polymer brush and its effect on flow.
The model is applicable to the brushes where individual
grafted polymers or filaments possess a persistence length
which is larger or comparable to their total contour length.
To validate this model we perform corresponding meso-
scopic simulations for a wide range of conditions including
polymer elasticity, grafting density, and flow rate. The
model allows us to identify the importance of different
contributions to brush deformation such as hydrodynamic
friction due to flow and steric excluded-volume interac-
tions between polymers. This model can be employed
for the quantification of experiments in biological settings
and for the development of brush interfaces with specific
surface properties. It can be also used to describe the
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Fig. 1: (Colour on-line) Snapshot of a SDPD simulation system
with shear flow in the x-direction. Stiff polymers are grafted
on both walls. The fluid particles are not shown.

behavior of a stiff-polymer brush in flow, where explicit
brush modeling is difficult or unfeasible.

Simulations. – To illustrate the system of interest,
fig. 1 presents the simulation setup, where a slit-like ge-
ometry with a height D is employed. Both the top and
bottom walls are covered by stiff polymers grafted on the
square lattice with a constant alat. The polymers are built
up from N = 11 bonded beads with a diameter d = 1.0
and the potential energy given by

U =

N−1∑

i=1

[
ks

2d
[ri,i+1 − d]

2
+

EI

d
[1 − cos θi]

]
, (1)

where ks is the spring constant, ri,i+1 is the distance be-
tween the beads i and i + 1, EI is the bending rigid-
ity, θi is the angle between two consecutive springs, and
EI/ks = d2/16. The polymers are stiffly anchored at the
surface by fixing the bead i = 1 at the surface and the
bead i = 0 inside the surface. To prevent overlap be-
tween beads, the purely repulsive, shifted, and truncated
at rc = d Lennard-Jones (LJ) potential [23] is introduced
with the parameters ε = kBT and 21/6σLJ = d, where
kBT is the thermal energy unit.

To model the fluid flow, we employ the smoothed dis-
sipative particle dynamics (SDPD) method [24] using a
density of ns = 3 for both fluid and wall particles. In-
teractions of the fluid particles with the polymer beads
are mediated by friction forces. Shear flow is generated
by moving one of the walls with a constant velocity. The
Poiseuille flow is driven by an external force fq which acts
on each fluid particle in the x-direction. This corresponds
to a pressure drop ΔP along the slit length lx such that
fqns = ΔP/lx.

To characterize the simulated systems we use several
dimensionless parameters such as the bending rigidity of

Fig. 2: (Colour on-line) Comparison of different simulation
methods. Relative polymer brush height (h/L) as a function
of non-dimensional shear rate ˜̇γ from Brownian-dynamics and
lattice-Boltzmann simulations [22] and the SDPD simulations
of this work.

the grafted polymers,

lp
L

=
EI

kBTL
, (2)

grafting density σ = (d/alat)
2, and non-dimensional shear

rate,

˜̇γ =
ηL3

kBT
γ̇. (3)

Here, lp/L is the ratio of polymer persistence and contour
lengths, η is the fluid’s viscosity, and γ̇ is the shear rate on
top of a brush. The effective brush height h is calculated
using the first moment of the polymer-bead density profile
similar to that in ref. [21],

h = 2

∫
yρ(y)dy∫
ρ(y)dy

. (4)

To verify our simulation model, we compare in fig. 2
the SDPD results with previous simulations of grafted
semiflexible polymers in shear flow using the Brownian-
dynamics and lattice-Boltzmann methods [22]. The SDPD
results of this work are in excellent agreement with the
previous simulations of similar brush systems [22]. In ad-
dition, we have also tested whether the type of shear flow
(e.g., Couette or Poiseuille) over a brush may have a con-
siderable effect. Figure 2 shows that brush deformation
appears to be nearly independent of the flow applied and
can be well characterized by ˜̇γ. To span a wide range of
conditions, we have simulated systems with grafting den-
sities σ in the range from 0.01 to 1 (which corresponds
to SC close packing), polymer elasticities lp/L between 10
and 100, and shear rates ˜̇γ between 101 and 106. Note that
the grafted polymers are relatively stiff with lp/L > 1,
and, therefore, entropic conformational changes such as
polymer coiling can be practically neglected. The corre-
sponding Reynolds numbers Re = vLns/η, with v being
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the velocity at the brush top, have been kept between 10−6

and 10−1 to ensure no inertial effects. Monitoring of bond
lengths has shown that no significant extension (� 1%) of
polymers has been present, and thus, polymer stretching
can be neglected.

Theory. – Our mean-field approach to describe the be-
havior of stiff polymer brushes in shear flow assumes iden-
tical deformation for all polymers. Thus, we consider a
single polymer as an elastic cantilever which is subject to
a hydrodynamic drag force due to fluid flow and steric
interactions due to its neighboring polymers in the lat-
tice. The polymer deformation is described by its inter-
nal curve-linear coordinate s ∈ [0, L] and the angle θ(s)
between the y-axis and a local tangent line at s. The
correspondence of internal coordinates to the Cartesian
coordinates is simply done as x(s) =

∫ s

0
sin θ(s′) ds′ and

y(s) =
∫ s

0
cos θ(s′) ds′.

The torque balance for a circular rod [25], where exter-
nal forces (F(s) = (Fx(s); Fy(s))) are counteracted by the
rods’s elastic resistance, leads to

EI
dr(s)

ds
× d3r(s)

ds3
= F(s) × dr(s)

ds
, (5)

where r(s) is the position on a rod at s such that
dr(s)/ds = (sin θ(s); cos θ(s)). This equation formulated
in terms of the local angle θ(s) reduces to

EI
d2θ(s)

ds2
= Fy(s) sin θ(s) − Fx(s) cos θ(s), (6)

with the boundary conditions of θ(s)|s=0 = θ0 at the
grafted surface and dθ/ds|s=L = 0 at the free end. θ0

characterizes the grafting angle between the polymer beam
and the surface’s normal and can generally be a constant
or a function of stress applied to the beam. However, in
the current study we investigate perpendicular grafting of
stiff filaments to a surface with θ0 = 0.

The force F(s) consists of two contributions: i) drag
force (Fd(s)) from fluid flow and ii) a force due to
excluded-volume interactions (Fv(s)), and thus, F(s) =
Fd(s) + Fv(s). Note that beam stretching is neglected.
The force at a position s can be found as an integral over
local force density (f(s) = f d(s) + fv(s)) such that

F(s) =

∫ L

s

f(s′)ds′. (7)

The force density of the drag force exerted on a stiff poly-
mer is given by

fd
x (s) = fd

⊥(s) cos θ(s) + fd
‖ (s) sin θ(s) =

(
ζ⊥ cos2 θ(s)+ζ‖ sin2 θ(s)

)
ηux(s)=ζ(s)ηux(s),

fd
y (s) = fd

⊥(s) sin θ(s) − fd
‖ (s) cos θ(s) =

ηux(s) sin θ(s) cos θ(s)
(
ζ⊥ − ζ‖

)
,

(8)

where fd
⊥(s) and fd

‖ (s) are the corresponding normal and
parallel components of the force density with the conven-
tion that fd

⊥(s) is directed with the x-axis and down to

the wall (see fig. 1), while fd
‖ (s) has a tangential direction

toward the increase of the s-coordinate. ζ⊥ and ζ‖ are
the normal and tangential components of the friction co-
efficient per unit length, ζ(s) = ζ‖ sin2 θ(s) + ζ⊥ cos2 θ(s),
and ux(s) is the local flow velocity and uy(s) = 0. The fric-
tion coefficients are approximated using the slender body
theory [26] for a thin cylinder similar to that in ref. [27],

ζ⊥ =
8π

ln(L/d) − 1
2 + ln(2)

,

ζ‖ =
4π

ln(L/d) − 3
2 + ln(2)

.
(9)

Note that these friction coefficients describe a drag on an
isolated rod. If we neglect hydrodynamic interactions, the
drag force on a polymer can be described using a single
friction coefficient ζ = ζ‖ = ζ⊥ = 3π as in ref. [22]. In this

case, the force density fd
y (s) vanishes. The differences in

model predictions using these two limiting cases for the
friction coefficients will be discussed further in text.

The local velocity ux(s) depends on hydrodynamic pen-
etration into the brush [28] and is described by the
Brinkman equation [29] for flow in porous media as

d2ux(y)

dy2
= ζ(y)

σ

d2

ux(y)

cos θ(y)
. (10)

The same equation has been also used in the theory by
Kim et al. [22]. Boundary conditions for eq. (10) are
ux(y)|y=0 = 0 and dux(y)/dy|ymax = γ̇|s=L. Equation (10)
in internal coordinates becomes

d2ux(s)

ds2
= ζ(s)ux(s)

σ

d2
cos θ(s) − dux(s)

ds

dθ(s)

ds
tan θ(s),

(11)
with ux(s)|s=0 = 0 and dux(s)/ds|s=L = γ̇|s=L cos θ(L)
being boundary conditions.

To introduce the steric interactions between the fila-
ments, we discretize the beam into N = �L/d� spheres
similar to the polymer representation in simulations,
where the symbol �∗� denotes the integer floor function.
Since identical deformation of all polymers is assumed,
only steric interactions in the plane of beam deformation
need to be considered. Therefore, the calculation of vol-
ume exclusion interactions includes only the two neigh-
bors surrounding a beam in the flow direction. Finally,
the force density fvn on a sphere n ∈ [0, . . . , N − 1] in a
discretized beam due to excluded-volume interactions is
computed by a sum over all spheres j of neighboring poly-
mers within the plane of beam deformation as

fvn =
∑

j

gnj

d
, (12)

where gnj is the force between spheres n and j approxi-
mated by a simple repulsive force,

gij =

⎧
⎨
⎩

rij � d : εg
kBT

d
[(d/rij)

α − 1]
rij

rij

rij > d : 0

⎫
⎬
⎭ , (13)
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F. Römer and D. A. Fedosov

where rij = |rij |, and εg and α are parameters controlling
the softness of inter-bead interactions. This force defini-
tion appears to be very robust, and the results are hardly
affected by εg and α, if εg � 50 and α ≥ 3, since the in-
teractions become hard enough. Thus, in order to have a
larger time step for a numerical solver, we use εg = 50 and
α = 3 in the theoretical model, while in simulations the
employed LJ potential is harder. The volume exclusion
force Fv(s) is calculated through the integral in eq. (7),
whose discrete representation is given by

Fv(s) = fv�s/d� (d �s/d� − s/d) +
N−1∑

n=�s/d�
fvnd, (14)

where the symbol �∗� denotes the integer ceiling function.
Direct numerical solving of eq. (6) appeared to be dif-

ficult for high grafting densities and shear rates, i.e. in
the regime where excluded-volume interactions dominate.
Therefore, we substituted eq. (6) with its time-dependent
version given by

∂θ

∂t
= EI

∂2θ

∂s2
− Fy(s) sin θ + Fx(s) cos θ, (15)

where θ becomes a function of s and time t. Finally,
eqs. (15) and (11) are solved numerically for a given set
of parameters (elasticity, grafting density, and shear rate
on top of a brush) using the following iterative procedure.
i) Initially, we guess a beam configuration and the polymer
is discretized into 102 elements. Then, eq. (11) is solved
using a boundary value problem (BVP) solver for ordinary
differential equations [30] in order to obtain the velocity
profile. ii) At this step, the calculation of the hydrody-
namic drag force Fd(s) and the volume-exclusion interac-
tion force Fv(s) is performed following eqs. (8) and (14),
respectively. iii) As a next step, eq. (15) is integrated
using the DuFort-Frankel scheme [31], and the resulting
configuration is taken as an initial guess for a new cycle.
This iteration is repeated until the convergence condition∑

i ‖θi(t) − θi(t − Δt)‖ ≤ 10−7 is satisfied, where Δt is
the time step.

Results and discussion. – Figure 3(a) presents our
main result, the relative brush height as a function of the
shear rate on top of the brush normalized by the bending
rigidity of the polymers for the case of two friction coef-
ficients from eq. (9). The predictions of our theoretical
model are in good quantitative agreement with the cor-
responding SDPD simulations for two different bending
rigidities of lp/L = 10 and 100. Brush deformation for dif-
ferent elasticities of the grafted polymers shows a universal
behavior with respect to the polymer bending rigidity, if
polymers are stiff enough with lp/L � 10. Clearly, the
theory is expected to fail when EI/L becomes smaller or
comparable to kBT (or if lp/L � 1) or when the grafted
polymers can be considered rather flexible. In this case
entropic effects have to be necessarily included, which is
out of the scope of this work.

Fig. 3: (Colour on-line) (a) Relative brush height as a func-
tion of the shear rate on top of a brush normalized by poly-
mer elasticity from SDPD simulations and the theoretical
model for different grafting densities. Two bending rigidities
of lp/L = 10 and 100 are considered. (b) Normalized veloc-
ity profiles for pressure-driven flow in a micro-channel with
walls functionalized with stiff polymers. The dots represent
data from simulations and the solid lines refer to the theory for
grafting densities (from top to bottom) σ = 0.01, 0.06, 0.25,
0.83 and 1.0. The dashed line shows the velocity profile for an
unperturbed Poiseuille flow and the same pressure gradient.

Some deviations between theoretical predictions and
simulations are observed at high grafting densities
(σ � 0.5) and flow rates due to a better packing of
deformed stiff polymers. Remember that the theory as-
sumes identical deformation for all fibers such that pos-
sible deformation in the flow vorticity direction (z-axis)
is not considered. Thus, the theory overpredicts the ef-
fect of excluded-volume interactions, which can be seen in
fig. 3(a) for σ = 1.0 where the theory estimates a larger
brush height in comparison to that obtained in simula-
tions. The curve for σ = 1.0 also nicely illustrates the on-
set of excluded-volume effects with respect to shear rate
by a significant change in the slope of brush height occur-

ring at approximately EI d2θ
ds2 ∼ F v

y sin θ − F v
x cos θ. Thus,

at large shear rates the brush height is mainly determined
by the excluded-volume interactions.
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Dense brushes of stiff polymers or filaments in fluid flow

Fig. 4: (Colour on-line) Comparison of the relative brush height
for different choices of the friction coefficients in the theoretical
model. Solid lines correspond to the case of two friction coef-
ficients from eq. (9), while the dashed lines represent model
predictions for ζ = ζ‖ = ζ⊥ = 3π. The data are shown for
grafting densities σ = 0.01, 0.25, and 0.83 and lp/L = 10.

To further support the validity of the theoretical
model, we present the correspondence of fluid velocities in
fig. 3(b). An excellent agreement of theoretical and sim-
ulated velocity profiles indicates that the approximation
using the Brinkman equation (eq. (11)) properly captures
the frictional effect of the brush on fluid flow for a wide
range of grafting densities. However, we need to mention
that at the lowest grafting density studied (σ = 0.01),
the Brinkman equation overestimates the influence of the
brush on flow. Therefore, in this single case we simply as-
sumed a constant shear rate du

dy = γ̇|y=h within the brush,
which matches very well the simulated velocity profile, as
shown in fig. 3(b).

The model predictions in fig. 3 correspond to the case of
two friction coefficients from eq. (9), which were derived
for a single isolated rod [26]. Thus, they are expected to
provide a reasonable approximation for the friction on fil-
aments at low grafting densities. As the grafting density is
increased, hydrodynamic interactions are expected to get
screened leading to the loss of hydrodynamic correlations
between different segments of a polymer. In this case, a
single friction coefficient ζ = ζ‖ = ζ⊥ = 3π can be as-
sumed. Figure 4 presents the comparison of model predic-
tions using the two different choices of friction coefficients
for various grafting densities and lp/L = 10. As expected,
the friction coefficient of 3π leads to an overestimation of
the applied drag for low grafting densities, and the other
choice (eq. (9)) appears to be better. At high grafting
densities, the difference in model predictions using differ-
ent friction coefficients nearly vanishes, even though the
choice of ζ = 3π has been expected to be the best. This
indicates that at high grafting densities the brush height
is mainly determined by the excluded-volume interactions
and moderate changes in the applied friction play a sec-
ondary role.

Fig. 5: (Colour on-line) Relative apparent viscosity as a func-
tion of the shear rate on top of the brush scaled by elasticity.
The dots and circles represent data from simulations and the
solid and dashed lines refer to the theory for grafting densities
(from top to bottom) σ = 1.0, 0.83, 0.25, 0.06 and 0.01.

The effect of stiff-polymer brush on the fluid flow can
be characterized by an increase of the flow resistance due
to the presence of a brush. Figure 5 shows that the rel-
ative apparent viscosity, the ratio of the apparent viscos-
ity (obtained by fitting the Poiseuille law to the resulting
flow rate) to the fluid viscosity, might strongly increase if
a brush is hardly deformed, and becomes smaller as the
brush gets bent by the flow. Qualitatively, this effect can
be understood by a change in an effective channel diam-
eter. The flow-induced brush deformation can be used
for a flow control in microfluidics and is directly related
to an increase in blood flow resistance in small vessels
whose surface is covered by glycocalyx having a brush-
like structure [5,6]. In vivo experiments on blood flow
resistance [32] reveal a much higher resistance in small
vessels (D � 35 μm) in comparison to in vitro experi-
ments in glass tubes [33]. This effect is mainly attributed
to the glycocalyx layer at vessel walls [34], and the the-
oretical model of this work can provide its quantitative
description.

Conclusion. – In conclusion, the presented theoretical
model is able to predict quantitatively the flow-induced
deformation of a brush of stiff polymers or filaments and
its effect on fluid flow. The model quantifies the rela-
tive contributions of fluid friction, polymer bending re-
sistance, and steric excluded-volume interactions between
polymers. In comparison to the analytic mean-field ap-
proach by Kim et al. [22], the presented theoretical model
significantly extends the range of model applicability to
high grafting densities of stiff polymers and strong defor-
mations under flow. In particular, the current model ex-
plicitly includes the effect of excluded-volume interactions
between different polymers. We expect that this model will
be used for the quantification of biological and technologi-
cal experiments with stiff brush-like structures, and can be
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extended to include direct mechanical deformations due to
external forces (e.g., brush-cell interactions).
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Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techni-
ques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) 
methods, and can be considered as an improved dissipative particle dynamics approach. 
Despite several advantages of the SDPD method over the conventional DPD model, the 
original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum 
conservation, leading to unphysical results for problems where the conservation of angular 
momentum is essential. To overcome this limitation, we extend the SDPD method 
by introducing a particle spin variable such that local and global angular momentum 
conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the 
Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated 
similarly to the DPD method. We test the new SDPD method and demonstrate that 
it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum 
conservation is validated using two problems: (i) the Taylor–Couette flow with two 
immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast 
between inner and outer fluids. For both problems, the new SDPD method leads to 
simulation predictions in agreement with the corresponding analytical theories, while the 
original SDPD method fails to capture properly physical characteristics of the systems due 
to violation of angular momentum conservation. In conclusion, the extended SDPD method 
with angular momentum conservation provides a new approach to tackle fluid problems 
such as multiphase flows and vesicle/cell suspensions, where the conservation of angular 
momentum is essential.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Mesoscopic hydrodynamic simulations, such as the lattice Boltzmann (LB) method [1], dissipative particle dynamics 
(DPD) [2–4], multi-particle collision dynamics (MPC) [5,6], smoothed particle hydrodynamics (SPH) [7,8] etc., are frequently 
used to investigate a wide range of problems including colloidal and polymer solutions, dynamics of microswimmers, tissue 
growth, and flow behavior of vesicles and cells. All these examples include mesoscopic length scales (e.g., the size of sus-
pended particles) rendering the modeling on atomistic level impossible. A continuum approximation is also not appropriate 
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for such problems due to the loss of necessary mesoscopic details. Thus, large scientific efforts have been invested to derive 
reliable and efficient mesoscopic simulation techniques, which are able to tackle a wide range of problems.

A recently established mesoscopic method, smoothed dissipative particle dynamics (SDPD) [9], combines advantages of 
two popular techniques namely SPH and DPD. The SDPD method for fluid flow is directly derived using a discretization of 
the Navier–Stokes equation similar to SPH, while the inclusion of thermal fluctuations in SDPD is similar to that in the DPD 
formalism. SDPD can also be considered as an improved DPD method. Advantages of the SDPD method over conventional 
DPD include the possibility of using an arbitrary equation of state, direct input of transport properties, and a well-defined 
physical scale of discretized elements or fluid particles. In addition, it has been shown that the SDPD method produces 
proper scaling of thermal fluctuations for different fluid particle sizes [10]. The SDPD method has been already applied to 
a number of problems including simulations of different particles [11] and polymers [12] in a suspension, single red blood 
cells in tube flow [13], margination of leukocytes [14], and margination of different particles [15] in blood flow.

Despite the advantages of SDPD over the DPD method, the original SDPD formulation [9] does not conserve angular 
momentum, both locally and globally. Recent numerical simulations using the MPC method [16] have shown that angular 
momentum conservation is essential in some problems including Taylor–Couette flow with two immiscible fluids and vesi-
cle tank-treading in shear flow. A violation of angular momentum conservation may lead to an asymmetric stress tensor 
and spurious unphysical torques, resulting in erroneous simulation results. In both DPD and SDPD methods, the system 
consists of a number of point particles. The particle interactions are determined by the three pairwise forces: conservative, 
dissipative, and random. In DPD, all forces between a pair of particles are directed along the line connecting two particle 
centers, which automatically leads to angular momentum conservation. However, in SDPD, dissipative and random forces 
possess not only a part along the inter-particle axis as in DPD, but also a component perpendicular to the inter-particle 
axis. This perpendicular part of dissipative and random forces destroys local and global angular momentum conservation. 
There exist a version of the SDPD method with angular momentum conservation [17], where the perpendicular component 
of dissipative and random forces has been neglected resulting in a method formulation very similar to DPD. In this method 
the input viscosity has to be scaled by a theoretically defined coefficient which depends on space dimension. The method 
has been shown to properly capture the torque on a rotating particle under shear [11] and the dynamics of two rotating 
discs [18]. However, it is advantageous to keep a perpendicular component of the dissipative force, since it provides much 
more efficient control over fluid transport properties than the component along inter-particle axis alone [19].

To derive a consistent version of SDPD with angular momentum conservation, we introduce a spin variable, such that 
each SDPD particle possesses an angular velocity. This idea is similar to that of the fluid particle (FPM) model [20], where 
every particle possesses an angular velocity; however, FPM lacks a direct connection to the discretization of the Navier–
Stokes equation. Also, a spin variable has been introduced in the single-particle DPD formulation [21], where a colloidal 
particle can be represented by a single DPD particle with spin. Consistent SDPD formulation with angular momentum 
conservation is obtained by a direct discretization of the Navier–Stokes equation for a fluid with spin [22]. The resulting 
formulation is similar to the original SDPD method [9] with the addition of a rotational friction force which governs particle-
spin interactions similar to the FPM method. First simulation tests show that the newly derived method represents properly 
transport properties of a simple fluid performing similar to the original SDPD method. Then, the new SDPD method is vali-
dated using several problems where angular momentum conservation plays an essential role [16]. First, the Taylor–Couette 
flow with two immiscible fluids is simulated showing that the extended SDPD method results in predictions in agreement 
with the analytical solution derived from the Navier–Stokes equation. The original SDPD method applied to this problem 
fails to capture correctly the corresponding flow profiles. Another fluid flow problem considered for validation of the new 
SDPD method is a tank-treading vesicle in shear flow, which has been described theoretically by Keller and Skalak [23]. Vesi-
cle tank-treading in shear flow corresponds to rotational motion of a membrane around the vesicle center-of-mass, while 
the vesicle preserves its stationary shape with a finite inclination angle. The new SDPD formulation results in predictions 
of vesicle inclination angles and tank-treading frequencies for several viscosity contrasts between inner and outer fluids in 
agreement with the Keller–Skalak theory [23], while the SDPD method without angular momentum conservation clearly 
fails to capture quantitatively correct dynamics.

The paper is organized as follows. In Section 2, the new SDPD approach with conservation of local and global angular 
momentum is derived. In Section 3, we provide simulation results for simple SDPD fluids including measurements of fluid 
transport properties and simulation results for the Taylor–Couette flow with two immiscible fluids. In Section 4, a tank-
treading vesicle in shear flow is investigated. Finally, we conclude in Section 5 with a brief summary.

2. SDPD with angular momentum conservation

The SDPD method proposed by Español and Revenga [9] is a mesoscopic particle-based hydrodynamic approach which 
has been derived from the SPH [7,24] and DPD [2,3] simulation methods. More details on the DPD method are provided in 
Appendix A.

In the SPH method, a field variable g̃(r) is replaced by the convolution integral of a field g(r) and a kernel function 
W (r, h) as,

g̃(r) ≈
∫
V

g
(
r′)W

(
r − r′,h

)
dV ′, (1)
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where the kernel function has to be differentiable and depends on the distance |r − r′| and the smoothing length h. In 
addition, the integral over W (r − r′, h) has to be normalized and the condition limh→0 W (r − r′,h) = δ(r − r′) needs to 
be satisfied. For W (r, h) being the delta function, we would have g̃(r) = g(r). The convolution integral is discretized using 
small fluid volumes (or particles) such that ρ(r′)dV ′ → m j with m j being the mass and ρ(r′) → ρ(r j) being the mass 
density of particle j at the position vector r j . The discretized convolution integral is then given by

g̃(ri) ≈
N∑

j=1

m j

ρ(r j)
g(r j)W

(|ri − r j|,h
)
, (2)

where N is the number of particles (Lagrangian discretization points) within the volume V characterized by the smoothing 
radius h. Furthermore, derivatives of the field variable g(r) follow similar approximation strategy which is described in 
Appendix B. Further in the text, we will also use the notations ρ(r j) = ρ j , g(r j) = g j , and W (|ri − r j |, h) = W ij .

Using the SPH formalism, the continuity equation dρ/dt = −ρ∇ · v becomes (see Eq. (B.10))

dρi

dt
=

∑
j

m jvi j · ∇i W ij, (3)

where ∇i W ij can be analytically calculated. The particle density ρi is defined as

ρi =
∑

j

m j W ij. (4)

Hence, the density of particle i can be computed using its neighboring particles located within a sphere with a radius 
h. Similarly, different terms of the Navier–Stokes (NS) equation can be discretized to obtain the equations which govern 
particle dynamics, see Appendix B for more details.

To extend the original SDPD formulation [9], which lacks angular momentum conservation, we introduce a spin variable 
for every particle ωi . In addition, each particle will also possess a moment of inertia Ii analogously to the already defined 
particle mass. We also define a function F (ri j) = Fij ≥ 0 such that ∇i W ij = −ri j F i j . In order to obtain discretized equations 
for the SDPD formulation with spin, we consider the NS equation with spin [25],

ρ
dv

dt
= −∇p + (η + ηr)∇2v +

(
η

3
+ ξ − ηr

)
∇∇ · v + 2ηr∇ × ω, (5)

where p is the pressure, η is the dynamic shear viscosity, ξ is the bulk viscosity, ηr is the rotational viscosity, and ω is 
the spin angular velocity. The introduced spin variable can be interpreted in two different ways. On the one hand, it is an 
approach used to recover angular momentum conservation in the SDPD formulation. On the other hand, the spin can be 
thought of as an effective angular velocity of a fluid volume represented by a particle. However, it should not be confused 
with a molecular spin. The discretization of the NS equation with spin provides a consistent model, where translational and 
rotational friction interactions are properly balanced unlike the FPM model which does not have a direct connection to the 
NS equation.

Using the rules in Eqs. (B.11)–(B.15) of Appendix B and the Newton’s second law of motion midvi/dt = Fi , the discretiza-
tion of the NS equation (5) yields the three forces: conservative (C), dissipative (D), and rotational (R) given by

FC
i j =

(
pi

ρ2
i

+ p j

ρ2
j

)
Fijri j,

FD
ij = −

(
5η

3
+ 3ηr − ξ

)
Fij

ρiρ j
vi j − 5

(
η

3
+ ξ − ηr

)
Fij

ρiρ j
êi j(êi j · vi j),

FR
i j = −2ηr

Fi j

ρiρ j
ri j × (ωi + ω j), (6)

where pi is the particle pressure and êi j = ri j/|ri j|. The conservative force controls locally the pressure field in the system. 
The dissipative force provides translational friction leading to the reduction of the velocity difference between two particles. 
Finally, the rotational force is also dissipative, but acts on particles’ angular velocities such that a spin of one particle leads 
to a change in translational and angular velocity of another particle.

The defined set of deterministic forces in Eq. (6) can be referred to as an SPH discretization with angular momen-
tum conservation. However, the SDPD method also incorporates consistently thermal fluctuations by appending a random 
force to the set of forces in Eq. (6). Here, the combination of dissipative, rotational, and random forces has to satisfy the 
fluctuation–dissipation balance. Similar to the FPM framework [20], we define a tensor T i j = A(ri j)1 + B(ri j)êi j êi j , where 
A(r) and B(r) are some functions of inter-particle distance and 1 is the unity matrix. The dissipative and rotational forces 
in Eq. (6) can be written in a tensorial form as
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FD
ij = −T i j · vi j, FR

i j = −T i j ·
(

ri j

2
× (ωi + ω j)

)
, (7)

which implies that ηr = 5η/3 − ξ ,

A(ri j) = 4

(
5η

3
− ξ

)
Fij

ρiρ j
, and B(ri j) = 10

(
ξ − 2η

3

)
Fij

ρiρ j
. (8)

Following the general framework of the FPM [20], the random force can be defined as

F̃i jdt =
√

2kB T

(
Ã(ri j)dW S

i j + B̃(ri j)

3
tr[dW i j]1 + C̃(ri j)dW A

i j

)
· êi j, (9)

where dW i j is a matrix of independent Wiener increments, tr[dW i j] is the trace of this matrix, dW S
i j = 1

2 (dW i j +dW i j) −
1
3 tr[dW i j] is the traceless symmetric part, and dW A

i j = 1
2 (dW i j −dW i j) is the antisymmetric part. The functions Ã(r), B̃(r), 

and C̃(r) are related to A(r) and B(r) of the tensor T i j as A(r) = 1
2 ( Ã(r)2 + C̃(r)2) and B(r) = 1

2 ( Ã(r)2 − C̃(r)2) + 1
3 (B̃(r)2 −

Ã(r)2) [20]. To further simplify the expression in Eq. (9), we select C̃(r) = 0 leading to

Ã(ri j) =
(

2

(
20η

3
− 4ξ

)
Fij

rir j

)1/2

and B̃(ri j) =
(

2

(
17ξ − 40η

3

)
Fij

rir j

)1/2

. (10)

The full set of forces for the SDPD method with angular momentum conservation is finally given by

FC
i j =

(
pi

ρ2
i

+ p j

ρ2
j

)
Fijri j,

FD
ij = −γ a

i j

(
vi j + êi j(êi j · vi j)

3

)
− 2γ b

i j

3
êi j(êi j · vi j),

FR
i j = −γ a

i j
ri j

2
× (ωi + ω j),

F̃i j =
(
σ a

i jdW S
i j + σ b

i j
1

3
tr[dW i j]1

)
· êi j

dt
, (11)

where

γ a
i j =

(
20η

3
− 4ξ

)
Fij

ρiρ j
, γ b

i j =
(

17ξ − 40η

3

)
Fij

ρiρ j
, (12)

and σ a,b
i j = 2

√
kB Tγ a,b

i j . It is important to note that these equations are only valid for 2η/3 ≤ ξ ≤ 5η/3, such that the 
friction coefficients (γ a

i j + 2γ b
i j )/3 and γ a

i j are positive. Another simplification which can be made is the reduction to a single 
dissipative parameters γi j such that ξ = 20η/21 and

γ a
i j = γ b

i j = γi j = 20η

7

Fij

ρiρ j
, σ a

i j = σ b
i j = σi j = 2

√
kB Tγi j. (13)

Time evolution of the position and the translational and angular velocity of a particle i follows the Newton’s second law 
as

ṙi = vi, v̇i =
∑

j

1

m j
Fi j, ω̇i =

∑
j

1

I j
Ni j, (14)

where Ni j is the torque exerted by particle j on particle i and is given by Ni j = 1
2 ri j × Fi j . This leads to local and global 

angular momentum conservation. Equation (14) is integrated using the velocity-Verlet algorithm [26]. Finally, in simulations 
we use the Lucy function

W (r) = 105

16πh3

(
1 + 3

r

h

)(
1 − r

h

)3

, (15)

as a kernel function [7], which leads to F (r) = 315
4πh5 (1 − r

h )2. The equation of state for the pressure is chosen to be

p = p0

(
ρ

ρ0

)α

+ b, (16)
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Fig. 1. Fluid properties of SDPD+a (blue) and SDPD-a (red) for different temperatures and pressure gradients �P/L, for a channel of length L. (a) Measured 
viscosity η normalized by η0 = 50

√
mE/l2. (b) Particle density ρ normalized by ρ0 = 3m/l3. The considered energy levels are kB T ∈ {0.1, 0.4, 1}E , while 

h = 1.5l. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where ρ0 is the reference density, and the parameters p0, α, and b can be freely selected. This pressure equation yields the 
speed of sound c2 = p0α/ρ0, which can be easily controlled through the above parameters resulting in a good approxima-
tion of fluid incompressibility [24,27].

The derived SDPD method with angular momentum conservation will be referred to as SDPD+a further in text. The 
SDPD method without angular momentum conservation [9] will be called SDPD-a. For SDPD-a, the forces are very similar 
to those in Eq. (11); however, the rotational force contribution is excluded. The conservative force is kept the same, while 
the dissipative force assumes a coefficient γi j = 5ηFij/(3ρiρ j) [9] using the formulation with a single dissipative parameter 
as in Eq. (13), which leads to ξ = 0.

In both simulation methods, it is important to consider how the mass and for SDPD+a the moment of inertia of a fluid 
particle have to be assigned. For flows with low Reynolds numbers Re (i.e., in the Stokes regime), which is the main interest 
of the current study, the simulation results are independent of the choice of m and I . However, for high enough Re, particle 
mass should correspond to the mass of a fluid volume described by a single particle, since in SDPD particle volume can be 
defined. For SDPD+a, our proposition is to define similarly the moment of inertia as that of a sphere with the same volume 
as a simulated particle, which agrees with the suggestion in Ref. [20]. This would also lead to the moment of inertia to be 
a function of the particle density.

3. Simulations with a simple SDPD fluid

3.1. SDPD fluid properties

In comparison with the DPD method, an advantage of SDPD is that transport coefficients such as fluid viscosity can be 
directly specified, while in DPD they often need to be computed in a separate simulation for selected fluid parameters. 
Furthermore, in SDPD the volume of a fluid particle is clearly defined as V = m/ρ , which also determines a physical size 
of the particle [9]. To test the validity of SDPD discretization, we calculate fluid viscosity and particle density directly 
in simulations for several specified viscosities, temperatures, densities, and smoothing lengths. A reverse-Poiseuille flow 
setup [28], where the flow in two halves of a computational domain is driven in opposite directions applying the same 
force f per particle, is used to calculate fluid viscosity using an analytical solution of the Hagen–Poiseuille equation [29]. 
The particle density is computed on the fly by averaging ρ over all particles.

We introduce the basic units for the mass, m (e.g., fluid particle mass), length, l, and energy, E . In the simulations, 
this corresponds to setting m = 1, l = 1, and E = 1. For flows with low enough Reynolds number Re, results should be 
independent of the choice of m and I . We have tested our simulations for η0 = 25

√
mE/l2, ρ0 = 3m/l3, and the five-fold 

increase of particle mass and moment of inertia. As presented in Fig. 9, the results are hardly affected by the choice of I
and m.

The size of a fully-periodic simulation domain has been set to 20l ×40l ×10l, where the flow was driven along the y-axis. 
Model parameters for the pressure equation (16) have been set to p0 = 100E/l3, b = −100E/l3, and α = 7. For the SDPD+a 
fluid, the moment of inertia of every particle has been set to I = 1 ml2. To cover a broad range of the parameter values, we 
performed simulations for four different viscosities η0 ∈ {25, 50, 100, 120}√mE/l2, three energy levels kB T ∈ {0.1, 0.4, 1}E , 
two densities ρ0 ∈ {3, 5}m/l3, and two smoothing lengths h ∈ {1.5, 3.0}l. For a physical fluid with ρ0, η0, and kB T , it is then 
straightforward to determine m, l, and E . The corresponding Reynolds numbers, defined as Re = ρŪ W /(2η), with W being 
the channel width, are ranging from 0.01 to 4.3. The total number of fluid particles N is equal to either 24 000 or 40 000
depending on the chosen density. The mean particle spacing �x = (1/n)1/3, with n = ρ/m being the number density, is 
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Fig. 2. Fluid properties of an SDPD+a fluid for different pressure gradients �P/L, for a channel of length L and particle densities ρ0 = 3m/l3 (blue) 
and ρ0 = 5m/l3 (purple). (a) Measured viscosity η normalized by η0 ∈ {50, 100}√mE/l2. (b) Particle density ρ normalized by ρ0. Different energy levels 
kB T ∈ {0.4, 1}E were considered, while h = 1.5l. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 3. Fluid properties of an SDPD+a fluid for different pressure gradients �P/L, for a channel of length L and smoothing lengths h = 1.5l (blue) and 
h = 3.0l (green). (a) Measured viscosity η normalized by η0 ∈ {50, 100}√mE/l2. (b) Particle density ρ normalized by ρ0 = 3m/l3. Different energy levels 
kB T ∈ {0.4, 1}E were considered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

either �x ≈ 0.7 or �x ≈ 0.6 leading to a ratio of smoothing length and mean particle spacing of h/�x ∈ {2.2, 2.6, 4.3, 5.1}, 
and an average number of neighboring particles Nn of Nn ∈ {42, 70, 339, 565}, depending on the choice of h and ρ0.

Fig. 1(a) displays the measured viscosity η normalized by the specified viscosity η0 with respect to the applied pres-
sure gradient �P/L = f ρ0/m, for a channel of length L, and for a case of h = 1.5l. For both SDPD+a and SDPD-a fluids, 
the measured viscosity is slightly higher than η0 for small pressure gradients, but smaller than η0 for high pressure gra-
dients. This effect appears to be more pronounced for a lower temperature. The particle density measurements presented 
in Fig. 1(b) show a slight deviation from the specified value of ρ0 = 3m/l3. However, for both SDPD+a and SDPD-a fluids 
the particle density values are similar. In addition, our simulations show that the particle density does not depend on the 
specified viscosity, since it is governed by local fluid structure of particles within a radius h which is characterized by the 
radial distribution function.

Fig. 2 presents similar measurements of fluid viscosity and particle density for an SDPD+a fluid using different ρ0 values. 
As the particle density is increased, the mean particle spacing is reduced and the fluid properties are better approximated 
resulting in a smaller variation of the measured properties from the specified values. A better result obtained for higher 
densities is due to a larger number of neighboring particles within the interaction radius h, which leads to a better approx-
imation for discretized terms of the NS equation. These results agree well with convergence studies of SPH depending on 
the smoothing length and the mean particle spacing [30]. Similar trends are also observed for the SDPD-a fluid. Fig. 3 illus-
trates fluid viscosity and particle density of a SDPD+a fluid for different smoothing lengths h; an SDPD-a fluid yields similar 
results. With increasing h the measured values move closer to the specified ones and the temperature dependence practi-
cally vanishes. This effect is again due to a larger number of neighboring particles within h leading to smaller discretization 
errors for larger h values. However, computational cost may increase considerably for larger h, since it is proportional to h3
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Fig. 4. A sketch of two cylinders with radii Ro and Ri where the subscripts ‘o’ and ‘i’ denote the outer and inner cylinders, respectively. Taylor–Couette flow 
can be generated by rotation of the outer cylinder with a rotational frequency Ωo . In simulations with two immiscible fluids, the inner cylinder (shaded 
area) is replaced by another fluid which cannot mix with the fluid inside the gap between two cylindrical surfaces. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Angular velocity vφ profiles for the Taylor–Couette flow with two immiscible fluids using both SDPD+a and SDPD-a methods. Radial position r is 
normalized by the cylinder radius Ro , while angular velocity is scaled with the cylinder angular velocity Ωo Ro . The SDPD+a method leads to a correct 
linear profile, while the SDPD-a method fails to do so due to violation of angular momentum conservation. The SDPD-a results for different resolution with 
ρ = 10ρ0 and for a twice larger system size (marked as “scaled”) show hardly any dependence on fluid resolution.

or to the number of neighboring particles. Typically it is suggested to use about 50–60 neighboring particles in SDPD [31]; 
however, slightly smaller values are also possible in simulations if small variations of fluid properties are acceptable.

3.2. Taylor–Couette flow of two immiscible fluids

Taylor–Couette flow usually refers to a fluid flow in the gap between two rotating cylinders as shown in Fig. 4. However, 
we consider a setup, where the inner cylinder is replaced by another immiscible fluid such that no mixing between the 
two fluids at Ri can occur. A solution of the incompressible NS equation for this problem yields a linear angular velocity 
profile vφ(r) = Ω0r across both immiscible fluids, where r is the radial position. Note that this solution is independent of 
the viscosity values of the immiscible fluids. Here, it is also assumed that the system has infinite length in the cylinder-axis 
direction and the angular velocity Ωo Ro is small enough to ensure that no Taylor–Couette instabilities occur.

Recent numerical simulations with a similar setup [16] have shown that the conservation of angular momentum is 
necessary to obtain correct velocity and torque profiles across immiscible fluids with different viscosities. To test our new 
implementation of the SDPD+a method, the Taylor–Couette flow with two immiscible fluids has been simulated. Both inner 
and outer fluids had the following parameters p0 = 100E/l3, b = −100E/l3, α = 7, ρ0 = 3m/l3, h = 1.5l, and kB T = 0.4E , 
while the ratio of fluid viscosities was set to ηi/ηo = 3. The computational domain was assumed to be periodic in the 
cylinder-axis direction, while the cylinder wall was modeled by a layer of frozen particles with a thickness h whose structure 
(e.g., radial distribution function) was the same as that of the fluids. To prevent mixing of the fluids and particle penetration 
into the wall, specular reflection of particles has been imposed at cylindrical surfaces with r = Ri and r = Ro . The wall 
particles were rotated with a constant angular frequency Ωo in order to generate flow. The corresponding Reynolds number 
is Re = ρΩo Ro Ri/ηo ≈ 0.3. Particle mass and inertia do not effect the simulation results, as shown in Fig. 10 for simulations 
with a two-fold increase/decrease of the mass and moment of inertia. Figure 5 shows angular velocity profiles for the 
Taylor–Couette flow using both SDPD+a and SDPD-a methods. The SDPD+a simulation properly captures a linear profile of 
angular velocity, while the SDPD-a method leads to distinct slopes within the regions of different viscosities. This example 
illustrates the importance of angular momentum conservation and provides a validation for the new SDPD approach.

A resolution study shows that these results are unaffected by an increase of fluid resolution in the SDPD-a method. 
Simulations with different densities ρ ∈ {2, 3, 5, 10}ρ0 and a larger system size have led to the same angular velocities (up 
to a statistical averaging error) as presented in Fig. 5. A similar result is mentioned in Ref. [11], where the measured system 
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Fig. 6. Simulation snapshots of a tank-treading vesicle in shear flow for λ = 2. An xy-plane view, where the flow is in x direction. The red sphere is attached 
to a fixed position on a vesicle in order to illustrate the TT motion of the membrane; however, it is just a marker used for visualization and introduced at 
post-processing stage. Note that small shape fluctuations are clearly visible. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

properties were independent on the mean particle spacing of an SPH approach without angular momentum conservation. 
Thus, increase of resolution in SDPD-a does not seem to resolve the problem of angular momentum conservation. Currently, 
the origin of this observation is not clear and requires further investigation.

4. Tank-treading of a vesicle in shear flow

Flow dynamics of soft deformable objects such as liquid droplets, lipid vesicles, red blood cells, and elastic capsules has 
attracted a lot of scientific interest recently due to a wide range of possible applications. For instance, a number of exper-
iments [32–34], theoretical approaches [23,35–37], and simulations [38,36,39–42] have shown that fluid vesicles exhibit a 
rich dynamical behavior in shear flow including tank-treading (TT) and tumbling (TB) motion. The tumbling motion corre-
sponds to vesicle rotation around its center-of-mass nearly as a rigid body. A tank-treading vesicle in shear flow shows a 
stationary shape with a finite inclination angle θ > 0 with respect to the flow direction, while the membrane is rotating 
around the center-of-mass of the vesicle, see Fig. 6. The occurrence of different vesicle motion is governed by the viscosity 
contrast λ = ηi/ηo between fluids inside and outside the vesicle with viscosities ηi and ηo , respectively. A physical expla-
nation for the TT-to-TB transition can be derived from the two components of shear flow: an elongational part which tends 
to stretch and align a vesicle along the x = y axis with an inclination angle of θ = π/4 and a rotational part of the flow 
which exerts a torque on the vesicle membrane. Increasing of viscosity contrast leads to higher shear stresses inside the 
vesicle opposing its TT motion, which results in an effective torque and decrease of the vesicle inclination angle. Thus, for 
high enough λ a transition from TT to TB motion occurs. Keller and Skalak (KS) [23] derived a theory which predicts the 
TT-to-TB transition. Moreover, the KS theory is able to predict the inclination angle θ in the vesicle TT regime.

The KS theory assumes a fixed ellipsoidal shape (r1/a1)
2 + (r2/a2)

2 + (r3/a3)
2 = 1, where ri , i ∈ {1, 2, 3} are the Cartesian 

coordinates and ai are the semiaxes of the ellipsoid. The motion of a vesicle is derived by considering energy balance 
between the energy supplied by the fluid and the energy which dissipates on the membrane and inside the vesicle. This 
balance leads to a differential equation given by

dθ

dt
= 1

2
γ̇

(
B cos(2θ) − 1

)
, (17)

where γ̇ is the shear rate. If B > 1, the vesicle is in the TT regime, and hence, a steady inclination angle can be found as 
θ = 0.5 arccos(1/B), where B is a function of vesicle shape and viscosity contrast given by

B = f0

(
f1 + 1

f1

(
1

1 + f2(λ − 1)

))
,

f0 = 2

a1/a2 + a2/a1
,

f1 = 0.5(a1/a2 − a2/a1),

f2 = 0.5g
(
α2

1 + α2
2

)
,
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Table 1
Vesicle parameters in units of energy kB T and effective vesicle radius R0. kd is the local area constraint coefficient, ka is the global 
area constraint coefficient, kv is the volume constraint coefficient, κ is the bending rigidity, and γ̇ is the shear rate normalized by a 
characteristic vesicle relaxation time τ = ηo R3

0/κ with ηo being the outer fluid viscosity.

kd/(kB T /R2
0) ka/(kB T /R2

0) kv/(kB T /R3
0) κ/kB T γ̇ τ

1145 11 450 12 256 21.7 0.36

g =
∞∫

0

(
α2

1 + s
)−3/2(

α2
2 + s

)−3/2(
α2

3 + s
)−1/2

ds,

αi = ai

a1a2a3
. (18)

Note that the KS theory does not consider vesicle’s membrane viscosity.

4.1. Vesicle model and simulation setup

The vesicle membrane is modeled by a collection of Nv particles on an ellipsoidal surface, which are connected by Ns
edges forming a triangulated network of Nt triangles. An illustration of a vesicle structure is shown in Fig. 6. The network 
edges can be modeled by very soft springs to approximate the absence of a shear elasticity of a vesicle membrane and to 
preserve the network structure. However, the use of a spring potential appears not to be necessary, if a local area constraint 
for network triangles is employed maintaining the network structure. Thus, the membrane model omits any spring-like 
connections leading exactly to a vanishing shear elasticity of the membrane. The model incorporates local/global area and 
volume constraints which mimic incompressibility of the membrane and inner fluid, respectively, and are given by

V area = ka(A − Atot
0 )2

2Atot
0

+
∑

j∈1...Nt

kd(A j − A j
0)

2

2A j
0

, (19)

V volume = kv(V − V tot
0 )2

2V tot
0

, (20)

where ka , kd and kv are the global area, local area, and volume constraint coefficients. The term A j is the instantaneous 
area of triangle j, and A and V are the total vesicle area and volume, while A j

0 is the desired area of triangle j, and Atot
0

and V tot
0 are the desired total area and volume, respectively [43,44]. The local area constraint preserves a regular network 

without crossing of edges (without explicit spring connections), while the values of A j
0 are set to triangular areas of an 

initially triangulated vesicle surface. Membrane bending resistance is implemented using the potential energy

V bending =
∑

j∈1...Ns

kb
(
1 − cos(Θ j)

)
, (21)

where kb is the bending constant and Θ j are the instantaneous angles between two adjacent triangles having a common 
edge j. The bending constant is related to Helfrich’s macroscopic bending rigidity κ [45] as κ = √

3kb/2 [43,44]. This 
construction works well for fluid vesicles, which deviate in their shape not too much from a sphere, as here. For more 
anisotropic shapes or for large deformations, triangles can become very elongated and the discretization incorrect. In this 
case dynamic triangulation has to be employed [46,47].

The simulated ellipsoidal vesicle has a prolate shape with a1 > a2 = a3 and an aspect ratio of a1/a2 ≈ 1.7. The ellipsoid is 
characterized by a reduced volume V ∗ = V /(4π R3

0/3), where R0 =
√

Atot
0 /(4π) is the effective vesicle radius. In simulations 

we employ an ellipsoidal vesicle with V ∗ ≈ 0.93, because an ellipsoid with this reduced volume has a nearly constant shape 
in shear flow [36]; nearly negligible vesicle deformation in flow justifies the comparison of simulation results with the KS 
theory, where a vesicle assumes a constant TT path. Vesicle simulation parameters are given in Table 1. The vesicle is placed 
in a box of size Lx = 9.3R0 and L y = Lz = 5.6R0; the box size is large enough to neglect potential finite-size effects as it 
has been shown in Ref. [36]. Periodic boundary conditions are applied in x and z direction, while shear flow is generated in 
the x direction with the flow velocity v = γ̇ (y − L y/2)êx and γ̇ being the shear rate. Recent numerical simulations [48,49]
have shown that the inclination angle also depends on the Reynolds number Re = γ̇ ρ0 R2

0/ηo . Therefore, in all simulations 
we have selected Re < 0.1 to avoid inertial effects.

Two solid walls at y = ±L y/2 with no-slip boundary conditions are modeled with frozen wall particles. In addition, 
fluid particles are subject to bounce-back reflection at the walls to prevent particle penetration though the walls. The fluid 
parameters have been chosen as p0 = 100E/l3, b = −100E/l3, α = 7, ρ0 = 3m/l3, h = 1.5l, and kB T = 0.4E .

Coupling between vesicle membrane motion and fluid flow is performed through friction interactions between vesicle 
vertices and the surrounding fluid particles using the DPD dissipative and random forces (see Appendix A); this friction cou-
pling is identical to that used for red blood cells in flow in Refs. [43,44]. Note that for membrane-fluid coupling, DPD forces 
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Fig. 7. (a) Comparison of inclination angles θ of a TT vesicle in shear flow obtained from SDPD+a (blue) and SDPD-a (red) simulations and from the KS 
theory (black) for different viscosity ratios λ. The ‘exchange’ method for fluid separation is employed. (b) Comparison of the ‘exchange’ and ‘reflection’ 
methods for the separation of inner and outer fluids at the membrane surface for different λ values. The ‘reflection’ method does not strictly conserve 
angular momentum at the membrane. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

are used (not SDPD) providing conservation of angular momentum automatically. To simulate two distinct fluids separated 
by a membrane, two different strategies are employed. The first method for fluid separation implements bounce-back re-
flections of fluid particles at the membrane surface; this method will be referred to as the ‘reflection’ method further in the 
text. Current implementation of fluid-particle reflections provides local conservation of momentum, while angular momen-
tum is not strictly conserved at the membrane. Another method for fluid separation does not consider particle reflections, 
but employs tracking of fluid particles such that a type of the particle crossing the membrane can be altered; this method 
will be referred to as the ‘exchange’ method further below. Thus, the type of an outer-fluid particle is changed to the type 
of an inner-fluid particle if this particle crosses the membrane from outside to inside and vice versa. This method for fluid 
separation at the membrane leads to local conservation of angular momentum. Both particle types possess the same mass 
and moment of inertia and therefore, local mass and momentum are conserved. Furthermore, it has been monitored that 
the average density remains constant, while the fluctuations around the average are very small.

4.2. Simulation results

The inclination angle of a TT vesicle in shear flow is calculated by

θ = arctan(u y/ux), (22)

where u = (ux, u y, uz) is the eigenvector of the moments of inertia tensor with the smallest eigenvalue. Fig. 7(a) compares 
inclination angles obtained from simulations with SDPD+a and SDPD-a fluids and from the KS theory for different viscosity 
ratios λ. Here, the ‘exchange’ method for fluid separation at the membrane is used. The simulation results obtained with 
an SDPD+a fluid agree very well with the KS theory predictions, while the results using an SDPD-a fluid show a significant 
overestimation of the inclination angle at large λ. The results for λ = 1 from both SDPD+a and SDPD-a cases coincide 
indicating that angular momentum conservation does not affect simulation results if inner and outer fluids have the same 
viscosity. The deviations of the SDPD+a results from the KS theory predictions might be due to small shape fluctuations of 
the vesicle and/or numerical errors indicated by error bars in Fig. 7(a). Comparison of simulated inclination angles using the 
‘exchange’ and ‘reflection’ methods for the separation of inner and outer fluids at the membrane is shown in Fig. 7(b). The 
‘reflection’ method does not strictly conserve angular momentum at the membrane; however, the corresponding effect on θ
seems to be rather small. Use of the ‘reflection’ method leads to a slight shift of vesicle inclination angles to smaller values.

Another property of a TT vesicle in shear flow which can be compared is the TT frequency found from the KS theory as

ω = 0.5

f1

γ̇ cos (2θ)

1 + f2(λ − 1)
. (23)

Fig. 8 displays the average TT frequency 〈ω〉 normalized by the shear rate γ̇ and obtained from simulations with SDPD+a 
and SDPD-a fluids and from the KS theory for different viscosity ratios λ. The SDPD+a predictions for 〈ω〉 are close to 
the theoretical predictions for all simulated viscosity ratios. Again, the small deviations of the SDPD+a results from the 
KS theory predictions might be due to vesicle shape fluctuations and/or numerical errors. However, simulations with an
SDPD-a fluid clearly fail to provide correct predictions in comparison with the theoretical values. As expected, the values 
of TT frequency are underestimated for the SDPD-a case, which is associated with the overestimation of inclination angles 
in Fig. 7. In case of the SDPD-a fluid, the presence of two different viscosities leads to an asymmetric stress tensor [16]
adding a stress contribution which suppresses TT frequency and results in an increased inclination angle. In case of λ = 1, 
the stress tensor is symmetric even for the SDPD-a fluid leading to correct predictions of vesicle dynamics in shear flow.
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Fig. 8. Comparison of the average TT frequency 〈ω〉 normalized by the shear rate γ̇ and obtained from SDPD+a (blue) and SDPD-a (red) simulations and 
from the KS theory (black) for different viscosity ratios λ. The ‘exchange’ method for fluid separation is employed. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

5. Summary

We presented an extension of the original SDPD method [9], which satisfies local and global angular momentum conser-
vation. In the new method (SDPD+a), each particle possesses an angular velocity, and its rotational contribution has been 
derived from the NS equation with spin following the SPH formalism. This leads to a spin variable similar to the FPM 
model [20]. Thermal fluctuations in SDPD+a have been also included similar to those in FPM [20] and in SDPD without 
angular momentum conservation (SDPD-a) [9]. Fluid properties measured directly in simulations support the correctness of 
the SDPD+a derivation and implementation, since measured values of fluid viscosity and particle density are very close to 
the specified ones. Furthermore, simulations of Taylor–Couette flow with two immiscible fluids show that SDPD+a leads to 
correct predictions of flow profiles in agreement with analytical results, while SDPD-a fails to capture properly flow charac-
teristics due to violation of angular momentum conservation. Finally, simulations of vesicle dynamics in shear flow reveal 
that angular momentum conservation is essential to obtain correct results for the inclination angle and the rotational fre-
quency of a tank-treading vesicle if there exists a viscosity contrast λ between inner and outer fluids. For λ �= 1 the SDPD+a 
method predicts vesicle characteristics in agreement with the Keller–Skalak theory for a vesicle in shear flow, while SDPD-a 
overestimates the inclination angle and underestimates the TT frequency. In conclusion, the new SDPD method with angular 
momentum conservation is able to correctly model flows where angular momentum conservation is necessary.
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Appendix A. Dissipative particle dynamics

The DPD method [2,3] is a mesoscopic particle simulation technique, where each particle represents a molecular cluster
rather than an individual atom, and can be thought of as a soft lump of fluid. The conservative force F C in DPD controls 
fluid compressibility, while the pair of dissipative F D and random forces F R defines a local thermostat in order to keep a 
DPD system at an equilibrium temperature. The DPD forces are local and act only within a selected cutoff radius rc . The 
conservative force is typically defined as

FC
i j = êi j

{
aij(1 − ri j/rc), for ri j ≤ rc,

0, for ri j > rc,
(A.1)

where aij is the repulsion coefficient between particles i and j, êi j = ri j/ri j , and ri j = |ri − r j |. The dissipative force defined 
as

FD
ij = −γωD(ri j)(vi j · êi j)êi j (A.2)

reduces the velocity difference vi j = vi − v j between two particles, and hence, provides friction in a simulated system. Here, 
ωD(ri j) is a weight function and γ is the dissipative force coefficient. The random force in DPD is given by

Fi jR = σωR(ri j)ξi jdt−1/2êi j, (A.3)

ωR(ri j) is the weight function, σ is the random force coefficient, and dt is the timestep. A random number ξi j has to 
be symmetric (ξi j = ξ ji ) with zero mean (〈ξ〉 = 0) and unit variance; different random numbers have been used in DPD 
including Gaussian and uniform distributions.
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To satisfy the fluctuation–dissipation balance, the pair of dissipative and random forces has to fulfill the conditions [3]

ωD(ri j) = (
ωR(ri j)

)2
, σ = √

2kB Tγ . (A.4)

In general, the weight functions can be arbitrarily chosen; however, a typical choice is

ωD(ri j) =
{

(1 − ri j/rc)
k, for ri j ≤ rc,

0, for ri j > rc,
(A.5)

where the exponent k = 1 was used in the original DPD method [4]. Other values of k (e.g. 0.25) have been also employed 
in order to increase the viscosity of a DPD fluid [50,51]. The equation of state of a DPD fluid [4] and the corresponding 
speed of sound cs are given by

p = kB T + αaρ2, (A.6)

c2
s = ∂ p

∂ρ
= 2αaρ, (A.7)

where a is the repulsive coefficient. Thus, in DPD the speed of sound can be controlled by changing the repulsive coefficient 
and/or fluid density. A significant increase of a may affect the timestep and lead to freezing artifacts [3], while an increase 
in particle density affects considerably the computational cost.

Appendix B. Calculation of derivatives

We summarize the calculation of derivatives of field variables similar to those in SPH [24]. Using Eq. (2), the first 
derivative of a field g can be approximated as

∂ g̃

∂x
≈

N∑
j=1

m j

ρ j
g
∂W ij

∂xi
, (B.1)

where the notations are identical to those in the main text. A disadvantage of this approximation is that the derivative does 
not vanish for g being a constant function. Therefore, a better approximation is given by

∂ g̃

∂x
= 1

φ

(
∂(g̃φ)

∂x
− g̃

∂φ

∂x

)
, (B.2)

where φ must be a differentiable function. Following Eq. (B.1), we then obtain

∂ g̃

∂x
≈ 1

φi

N∑
j=1

m j

ρ j
φ j(g j − gi)

∂W ij

∂xi
. (B.3)

When φ = 1, Eq. (B.3) reduces to

∂ g̃

∂x
≈

∑
j

m j

ρ j
g ji

∂W ij

∂xi
, (B.4)

where g ji = g j − gi . In Eq. (B.3), φ = ρ can be also selected, yielding an approximation for the first derivative as

∂ g̃

∂x
≈ 1

ρi

∑
j

m j g ji
∂W ij

∂xi
. (B.5)

The choice for different discretizations (φ = 1 or φ = ρ) may depend on a problem of interest. For instance, when different 
interacting fluids with large density ratios are considered, it has been shown that the approximation in Eq. (B.3) with φ = 1
is more accurate than that with φ = ρ , because ρ in Eq. (B.4) is included directly inside the sum [52,24]. Furthermore, if 
only a single fluid is employed, an approximation φi ≈ ρ j can be used making the above choices for φ equivalent.

There exists another definition for the first derivative,

∂ g̃

∂x
= φ

(
∂

∂x

(
g̃

φ

)
+ g̃

φ2

∂φ

∂x

)
. (B.6)

Following the SPH formalism [24] we obtain

∂ g̃

∂x
≈ φi

N∑
j=1

m j

ρ j

(
g j

φ j
+ gi

φ2
i

φ j

)
∂W ij

∂xi
. (B.7)

As a result, a choice of φ = 1 here leads to
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Fig. 9. Measured viscosity η, scaled by η0 = 25
√

mE/l2 depending on the pressure gradient �P/L, with L being the channel length for different mass and 
moment of inertia values. The density is ρ0 = 3m/l3. Although both, mass and moment of inertia, are varied, the measured values of η are hardly affected.

∂ g̃

∂x
≈

N∑
j=1

m j

ρ j
(g j + gi)

∂W ij

∂xi
, (B.8)

while for φ ≈ ρ Eq. (B.7) becomes

∂ g̃

∂x
≈ ρi

N∑
j=1

m j

(
g j

ρ2
j

+ gi

ρ2
i

)
∂W ij

∂xi
. (B.9)

A set of equations above defines different approximations of first derivatives, which can be used to derive discretizations 
of other differential operators in the NS equation. For instance, using Eq. (B.5) the gradient of g(r) can be approximated as

∇ g̃ ≈ − 1

ρi

∑
j

m j gi j∇i W ij, (B.10)

where gij = gi − g j . Similarly, the divergence and the curl of a vector field G̃(r) are discretized as

∇i · G̃i ≈ − 1

ρi

∑
j

m jGi j · ∇i W ij, (B.11)

∇i × G̃i ≈ −ρi

∑
j

m j

ρiρ j
(G j + Gi) × ∇i W ij . (B.12)

The second derivatives are then given by

∇i(∇i · G̃i) ≈ −
∑

j

m j
Fi j

ρiρ j

(
5êi j(êi j · Gi j) − Gi j

)
(B.13)

and

∇2
i g̃i ≈ −2

∑
j

m j
Fi j

ρiρ j
gi j, (B.14)

where êi j = ri j/ri j is the unity vector along the separation direction of particles i and j [9].
The curl of a vector field G can be approximated as

∇i × G̃i ≈ φi

∑
j

m j

ρ j
∇i W (ri j) ×

(
G j

φ j
+ φ jGi

φ2
i

)
, (B.15)

where a selection of φ = 1 leads to

∇i × G̃i ≈
∑

j

m j

ρ j
∇i W (ri j) × (G j + Gi), (B.16)

while φ = ρ results in

∇i × G̃i ≈ ρi

∑
j

m j∇i W (ri j) ×
(

G j

ρ2
j

+ Gi

ρ2
i

)
. (B.17)
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Fig. 10. Angular velocity vφ profiles for the Taylor–Couette flow with two immiscible fluids using both (a) SDPD-a and (b) SDPD+a methods for different 
mass m and moment of inertia I . The radial position r is normalized by the cylinder radius Ro , while the angular velocity is scaled with the cylinder 
angular velocity Ωo Ro . For all masses and moments of inertia the same results are obtained.

Appendix C. Verification of mass and inertia independence of simulation results

A number of simulations were performed to verify that simulation results are independent of the choice for particle mass 
and moment of inertia for low enough Re numbers. Fig. 9 illustrates that the effect of both mass and moment of inertia on 
the measured viscosity can be neglected for the studied range of flow Re numbers, while Fig. 10 presents a similar test for 
the Taylor–Couette flow using both SDPD-a and SDPD+a methods.
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Soft colloids comprise a wide class ofmaterials, ranging from linear polymers over polymeric assemblies, such as
star polymers and dendrimers, to vesicles, capsules, and even cells. Suspensions of such colloids exhibit remark-
able responses to imposed flow fields. This is related to their ability to undergo conformational changes and elas-
tic deformations, and the adaptation of their dynamical behavior. The rational design of soft particles for targeted
applications or the unraveling of their biological function requires an understanding of the relation between their
microscopic properties and their macroscopic response. Here, mesoscale computer simulations provide an in-
valuable tool to tackle the broad range of length and time scales. In this article, we discuss recent theoretical
and simulation results on the rheological behavior of ultrasoft polymeric colloids, vesicles, capsules, and cells.
The properties of both, individual particles and semi-dilute suspensions, are addressed.
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1. Introduction

The theoretical understanding of the rheological properties of colloi-
dal suspensions started in 1906, more than a hundred years ago, with
the now classical paper [1] of Albert Einstein, in which he predicted
the viscosity η of a suspension of hard spheres to depend on the volume
fraction Φ to leading order as

η ¼ ηs 1þ 5
2
Φþ Ο Φ2

� �� �
; ð1Þ

where ηs is the solvent viscosity. This result has turned out to be ex-
tremely useful, in particular because it does apply not only to hard
spheres in the regime ofΦ ≲ 0.1, but also to muchmore flexible objects
like coiled linear polymers, when an appropriate radius of the coil, the
“hydrodynamic radius” RH, is employed to determine the volume
fraction.

This raises the question about the importance of shape and
deformability of soft colloids for the rheological behavior of their sus-
pensions. Is it sufficient to define an appropriate hydrodynamic radius

and otherwise employ the theoretical description of hard spheres?
What is the maximum volume fraction to which such a description
might be accurate and useful? Do all soft colloids behave the same, or
is the physical origin of their softness important? What is the
dependence of viscosity on the elastic moduli of the soft colloids?
What is the role of shape, and how do shape and deformability together
determine the rheological properties of a suspension?

There is a large range of applications, in which the rheological be-
havior of soft-colloid suspensions plays an important role. From a tech-
nological point of view, polymer suspensions are probably the most
dominant. However, even this long-studied class of materials has seen
several interesting developments in recent years. For linear polymers,
semi-dilute solutions have been studied in detail, and the relation of ori-
entation and elongation of single chains to the macroscopic rheological
properties has been elucidated. More importantly, polymers with a
more complex architecture have been investigated, such as star
polymers, dendrimers, and hyperbranched polymers.

Vesicles, capsules, and cells are another class of soft objects. Capsules
are also interesting for technological applications. However, the main
focus of such suspensions is in the biomedical field. The blood is a sus-
pension of mainly red blood cells, with a volume fraction of nearly
50%. Red blood cells are of biconcave shape, and are highly deformable
because they have to squeeze through the tiny vessels of microvascular
network. Thus, the deformability of red blood cells, which may get re-
duced in diseases such as malaria or diabetes, and its effect on blood
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viscosity are very important for blood flow. Similarly, vesicles and cap-
sules are used asmodel systems for cells, but also as drug-delivery vehi-
cles. They may differ from cells by their shape and type of membrane
elasticity, and thus show different rheological properties.

To establish a relation between the structure of soft colloids and
their macroscopic rheological properties, the microscopic under-
standing of their non-equilibrium properties is desired. This is diffi-
cult to achieve experimentally. Here, computer simulations are the
appropriate tool for microscopic insight into soft matter and bio-
fluid dynamics. In particular, recently developed novel mesoscale
simulation approaches provide a detailed microscopic understand-
ing and structure–function relationships, and shed light on universal
non-linear dependencies.

In general, soft colloids showmuch richer rheological properties
than their hard counterparts [2]. This poses additional challenges
for the understanding and prediction of their behavior in semi-
dilute and dense suspensions. However, it also offers new opportu-
nities in terms of applications, because the variation of particle
properties implies the tunability of rheological behavior over a
wide range.

2. Simulation techniques

During the last few decades, various mesoscale simulation ap-
proaches have been developed to bridge the length- and time-scale
gap inherent in soft matter systems. Prominent examples are the lat-
tice Boltzmann (LB) method [3–5], the dissipative particle dynamics
(DPD) [6–8], and the multiparticle collision dynamics (MPC) ap-
proach [9–11], which is based on the direct simulation Monte Carlo
(DSMC) approach [12]. Common to these approaches is a simplified,
coarse-grained description of the solvent degrees of freedom in
order to achieve high computational efficiency while keeping the es-
sential features of the microscopic physics on the length scales of
interest—specifically, hydrodynamics. Embedded objects, such as
polymers or colloids are treated by conventional molecular dynam-
ics simulations.

2.1. Dissipative particle dynamics

In dissipative particle dynamics (DPD), each particle represents
a molecular cluster rather than an individual atom, and can be
thought of as a soft lump of fluid. The DPD system consists of N
point particles, which interact through three pairwise forces de-
noted as conservative, dissipative, and random forces. The conser-
vative force controls fluid compressibility, while the dissipative
force supplies fluid viscosity. The DPD system is kept at equilibrium
temperature with a local thermostat, which is formed by the pair of
dissipative and random forces. The time evolution of velocities and
positions of particles is determined by the Newton's second law of
motion.

2.2. Multiparticle collision dynamics

In the multiparticle collision dynamics approach, the fluid is repre-
sented by a large number of point particles, which move in continuous
space with a continuous distribution of velocities. Dynamically, the par-
ticles undergo alternating streaming and collision steps. In the stream-
ing step, they move ballistically with their respective velocities for a
time interval, which is denoted as collision time. Interactions between
the particles appear in the collision step. Thereby, the system is
coarse-grained into a grid of cubic cells, which define the collision envi-
ronment. Only particles within a cell interact with each other by a
momentum-conserving stochastic process, which leads to build-up of
fluid correlations. Various collision rules have been proposed [9,13,14],
however, the originally proposed Stochastic Rotation Dynamics (SRD)
implementation is still preferentially used [9]. Here, the relative fluid

particle velocities within a collision cell are rotated around a randomly
oriented axis by a defined angle. The algorithm exhibits unconditional
stability [9] incorporates thermal fluctuations, and hydrodynamic inter-
actions [15]. Since it is particle-based, the MPC method can easily be
combined with other simulation approaches such as molecular dynam-
ics simulations. Moreover, mechanical expressions can be exploited to
calculate, e.g., the stress tensor [16], or to implement an appropriate
temperature control [17].

2.3. Polymer model

Typically coarse-grained models are used in simulations, where
polymers are represented as bead-spring or bead-rod chains [18–21].
Stiffness is introduced by harmonic next-nearest neighbor interactions.
To build a star polymer, linear polymers are connected to a common
central particle. Thereby, the respective bond length might be chosen
larger than that of other bonds, in order to accommodate the required
particles in the core region [22•,23]. Excluded volume interactions are
modeled by a truncated and shifted purely-repulsive Lennard-Jones
potential.

2.4. Membrane models

Depending on a suspended particle of interest, a membrane model
may need to incorporate elastic and viscous properties of a membrane,
its bending resistance, and the viscosity contrast between inner and
outer fluids. One class of models can be referred to as continuum ap-
proaches,wheremembraneproperties followsomeconstitutive relations.
For example, in-plane membrane shear elasticity can be described by
Hookean or neo-Hookean law, while out-of-plane deformations are con-
trolled by curvature elasticity [24–26]. Another class of membrane
models corresponds to the network model of a membrane, which is
built by a set of points which form a two-dimensional triangulated net-
work on a membrane surface [27–31•,32•]. These models typically
incorporate bending and stretching resistance, and area and volume con-
straints. In addition, viscoelastic membrane properties can be mediated
by springs with attached dashpots [31•]. These network models assume
a fixed connectivity; however, there exist a network model for a fluidic
membrane (e.g., used for modeling fluid vesicles) which employs a
dynamically triangulated network [27,28,33]. Thefluidicmembrane com-
bined with a fixed elastic network leads to a two-layer membrane model
[28,33]. Recently, a model of two continuous layers has been developed
[34•], which allows for sliding and detachment of the two corresponding
layers.

In continuum methods, coupling between membrane deforma-
tion and fluid flow is often implemented through the immersed
boundary method (IBM) [24,35] or front tracking method (FTM)
[25], which advect vertices with the local fluid velocity and exert
membrane forces onto the fluid flow. Alternatively, fluid–structure
interactions can be implemented through viscous coupling. In
particle-based methods, the no-slip boundary conditions at the
membrane surface are implemented through viscous force coupling
in DPD [31•] or collisions in MPC [28] between fluid particles and
membrane vertices.

3. Polymeric particles

Studies of the rheological properties of polymer systems have a long
history, driven by the importance of these materials in industrial appli-
cations. Correspondingly, there is a wide-range of literature on various
aspects of polymer solutions and melts including experiments [36,37•,
38], theory [18,20,39], and simulations [20,40–42]. Here, wewill mainly
address computer simulation studies of the polymer dynamics in dilute
and semidilute suspensions. Thereby, wewant to cover linear polymers
and more complex structures such as star polymers and dendrimers.
There are other colloidal polymeric structures, e.g., hyperbranched
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polymers [43•] or polymer networks as in microgels. However, far less
simulation studies have been performed for such particles, most likely
due to the significantly larger number of “monomers” necessary to
model the branched structures. There is a wide-range of simulation
studies on polymer melts [39,40,44,45] with emphasis on polymer en-
tanglements. The latter aspect goes beyond the scope of this article.

A broad spectrumof simulation approaches has been applied to study
the non-equilibriumproperties of linear polymers in shear flow. The var-
ious techniques are specified, and the respective references are provided
in Ref. [46•]. More recent studies employing MPC are presented in Refs.
[22•,23,42,47•,48,49,50•,51•].

3.1. Linear polymers: structure and dynamics in shear flow

3.1.1. Structure and dynamics in shear flow
The properties of linear polymers under shear flow have intensively

been studied during the last decade by various computer simulation ap-
proaches (cf. Ref. [46•]). The interestwas particularly triggered by exper-
imental studies on DNA molecules, which reveal large conformational
changes and an intriguing dynamics [52–55]. Figs. 1 and 2 illustrate
the monomer density distribution of a polymer and their deformation
under flow as obtained from simulations. The polymers are stretched
along the flow direction, compressed along the orthogonal directions,
and exhibit a preferred orientationwith respect to the flow. These prop-
erties depend on shear rate in a particular manner and are ultimately
linked to the macroscopic rheological behavior of the polymers.

Typically, the extension—specifically in experiments [54,56]—the
mean square end-to-end distances, or the radius of gyration tensor
components along and transverse to the flow direction are considered.
The respective longitudinal part increases with increasing shear rate
and slowly approaches a maximum, which is smaller than that corre-
sponding to a fully stretched chain [46•,52]. This is a consequence of
the continuous end-over-end tumbling dynamics with a non-
stationary deformation. The transverse parts decrease with increasing
shear rate according to a power law. Similar to convective boundary
layers, which occur in the Graetz–Levecque problem in thermal/mass
transport where the boundary-layer thickness is governed by a balance

of cross-stream diffusion and down-stream convection at high Péclet
numbers [57], scaling arguments have been provided for the
dependence of the polymer radius of gyration Rgy along the gradient di-
rection on the shear rateγ

�
by balancingmonomer convection and diffu-

sion [19,56,58]. Typically, the flow strength is characterized by the
Weissenberg number Wi ¼γ

�
τ, where τ is the longest relaxation time

of a polymer. Equating the time for the transverse diffusive transport
of a monomer Rgy2 /D, where D is the diffusion coefficient, with that of
the streamwise active transport over the length scale Rgx of the de-
formed polymer Rgx= γ

�
Rgy

� �
, leads to [19]

Rgy ∼ γ
� −1=3

: ð2Þ

Thereby, it is assumed that the deformation along the flow direction
is essentially independent of the shear rate. Theory [46•] and simulation
results [47•,58] confirm the later assumption for large shear rates. An al-
ternative expression is obtained under the assumption that a monomer
drags along other monomers, i.e., its diffusion coefficient is reduced by
cooperative effects. Setting D ∼ D0/Rgy, the above considerations yield

(a)
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Fig. 1. (a) Monomer density distribution in the flow-gradient plane for Np = 3000, Nm = 250, i.e., c/c⁎ = 10.38, and Wic = 569. The contour lines for the densities 0.1 (outer) and 0.5
(inner) are highlighted to emphasize the non-ellipticity of the shape. (b) Illustration of polymer stretching (right) and recoiling (left). θ is the angle between the end-to-end vector
and its projection onto the flow-gradient plane and φ is the angle between this projection and the flow direction.
From Ref. [48].

Fig. 2. Snapshot of a systems with 800 polymers of length Nm = 250 for theWeissenberg
numberWic = 184. For illustration, some of the chains are highlighted in red.
From Ref. [48].
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Rgy ∼ γ
� −1=4

[59•]. Both power-law dependencies have been observed in
simulations [56,58,59•]. Thereby, the smaller exponent 1/4 is typically
seen at smaller shear rates [56,58,59•] and the larger at high shear
rates [19,58,59•].

An essential aspect for the non-equilibrium shear response is the fi-
nite length and inextensibility of a polymer,which is implicitly assumed
in the above scaling arguments. Exploiting this fact, the dependence
Rgy ∼ γ

� −1=3
can be derived theoretically in a different way [46•]. For a

long and flexible polymer, its mean square radius of gyration is relat-
ed to the longest relaxation time τ via Rgy

2 ∼ τ. The inextensibility
constraint links the various spatial components of the polymer
[46•], which implies

τ 1þ γ
� 2τ2

� �
¼ const: ð3Þ

The quadratic dependence on the shear rate naturally appears even
in a lowest order perturbation theory for the polymer deformation
along the flow direction, because Rg

2 is independent of the direction of

shear. Hence, τ ∼ γ
� −2=3

, or Rgy ∼ γ
� −1=3

. The full theoretical expression
indicates a slow cross-over from an unperturbed polymer to the asymp-
totic behavior (2) at large shear rates. Thereby, an intermediate regime

can be approximatedby the relationRgy ∼ γ
� −1=4

over a small range of Rgy
values. Here, very accurate experiments and simulations are required to
separate the various scaling regimes or support the gradual change of
Rgy.

The preferred alignment angle can be calculated by the components
of the radius of gyration tensor, which yields in the asymptotic limit of
large shear rates the dependence γ

� −1=3
[46•]. This is confirmed by

simulations [47•].
First direct experimental observations of the tumbling dynamics of

DNA molecules have been presented in Ref. [56]. Various attempts
have been undertaken to characterize the tumblingmotion by a charac-
teristic tumbling time τT and to find the respective shear-rate depen-
dence (cf. Ref. [48,50•]). Simulations and experiments provide a
reasonable estimate of τT by direct counting of end-over-end tumbling
events [54,56]. Alternatively, power spectral densities (PSD) have
been determined for various correlation functions, which yield the
sublinear dependence τT ∼ γ

� −2=3
[47•,54,58,60–62•]. This is consistent

with the results obtained by counting tumbling events, as long as ther-
mal motion is important [54,62•]. In the athermal limit, a linear depen-
dence on the shear rate is observed [62•], in agreement with
expectations for Jeffrey orbits [63]. Various other correlation functions
have been considered, involving fluctuations of extensions along the
shear and gradient directions [54,56,60,61] or those of the radius of gy-
ration tensor components along these axes [48], which provide typically
non-periodic functions [48,50•,54,56]. Here, the tight linkage of the
polymer deformations along the respective spatial directions during a
tumbling cycle is important.

Tumbling can also be characterized by the distribution of time inter-
vals between successive tumbling events [55,64–66•]. Various criteria
can be applied to distinguish tumbling events, e.g., the time interval be-
tween comparable polymer conformations [55] — characterized by the
polymer extension — or that between successive crossings of the end-
to-end vector of the shear-vorticity plane or the gradient-vorticity
plane [65]. Since the distribution of tumbling events is typically non-
Markovian, it can be rather complicated. However, the distributions
should decay exponentially for sufficiently long time intervals, where
the events are almost independent. From the exponential function, a
decay time can then be extracted and identified as tumbling time. A
priori, neither the equivalence of the various definitions is evident, nor
it is clear that the same tumbling time or even the same dependence
on shear rate, at least qualitatively, is obtained. However, recent theo-
retical calculations [46•,65] and simulations [48–50•] suggest that the
decay time is closely related to the stationary-state end-to-end-vector

relaxation time of a polymer and that the tumbling time exhibits the
shear rate dependence τT ∼ γ

� −2=3
. The latter follows directly from the

above considerations, namely that τT = τ.
Computer simulation studies at extremely high Weissenberg num-

bers unravel another non-linear phenomenon, where the polymers
shrink in size along the flow direction with increasing Wi [59•,67,68].
Thereby, the transverse components approach a constant value. In the
presence of hydrodynamics, the effect is attributed to strong hydrody-
namic drag forces, which lead to recirculating flows inside a polymer
coil and thus to compaction due to entanglement effects [68]. The very
large shear rates necessary for compactification are difficult to achieve
in experiments, which is the reason why the phenomenon has not
been observed so far.

So far, we have mainly addressed flexible polymers. Semiflexible
polymers, where the persistence length is comparable with the contour
length exhibit additional features. Here, a more or less gradual change
of the behavior from that of a flexible to a rodlike polymer is expected
with increasing stiffness. Indeed, rods also alignwith theflowand exhibit
a tumblingmotion. For the dynamical behavior, however, the presence or
lacking of thermal noise plays a major role. Athermal rods in shear flow
exhibit so-called Jeffrey orbits, with a rotation frequency which depends
linearly on shear rate, i.e., the characteristic time is τ ∼ γ

� −1
[62•,63,69]. In

the presence of noise, however, the samedependence as forflexible poly-
mers is obtained [62•]. This has been predicted by theory [46•] and is ob-
served in computer simulations [54] and experiments [70]. However,
recent theoretical studies suggest the relationτT ∼ γ

� −3=4
for the tumbling

time over a broad range of shear rates for semiflexible polymers [71]. Ac-
cording to the above scaling relation, this would also modify the shear
thinning behavior. This aspect deserves further studies. So far, investiga-
tions of semidilute solutions of semiflexible polymers indicate a non-
power-law decay of the viscosity in the shear thinning region [72•].

3.1.2. Rheological properties in shear flow
Asmentioned before, the average anisotropic shape of a polymer de-

termines its rheological behavior. This is illustrated by the following
scaling consideration [19]. The tensile force Fx on the molecule along
the flow direction is Fx ∼ ζ γ

�
Rgy , with ζ being the friction coefficient.

By the virial theorem, the stress tensor is given by σxy ∼ FxRgy, and
hence the viscosity by

η ¼ σ xy= γ
� ∼ R2

gy ∼ γ
� −2=3 ð4Þ

in the asymptotic limit of large shear rates,with the radius of gyration of
Eq. (2) [19]. This is consistent with more precise analytical calculations
[46•] and agrees also with simulation results [19,58]. Thus, the strong
deformation of the polymer leads to pronounced shear thinning,
where the shear viscosity decreases by a power-law η ∼ γ

� −ξ . Thereby,
experiments and simulations [18–20,39,46•,47•,55,58,73,74] suggest ex-
ponents ranging from 0.4 b ξ b 0.85 [18], i.e., a broad range of expo-
nents. This is partially explained by the broad crossover between the
zero-shear rate plateau and the limiting behavior for γ

�
→∞.

The first normal stress coefficient, defined as Ψ1 ¼ σ xx−σyy
� �

=γ
� 2

[18,20], can be approximated by Ψ1 ∼σ xx=γ
� 2 ∼ FxRgxγ

� 2 ∼ RgyRgx= γ
�
to

derive a scaling relation. As for the derivation of Eq. (3), we set
Rgy ∼ τ1/2 and Rgx ∼ γ

�
τ3=2, which leads to

Ψ1 ∼ τ2 ∼ γ
� −4=3 ð5Þ

in agreement with the more precise calculation in Refs. [18,20,46•]. In
contrast to the viscosity, the dependence in Eq. (5) agrees very well
with experiments for a broad range of polymer solutions [18,56,58]
and awide spectrum of simulations [19,47•,58,74]. This could be related
to the fact that normal stresses are easier to determine than shear
stresses.

The second normal stress coefficient Ψ2 ¼ σyy−σ zz
� �

=γ
� 2

is deter-
mined by hydrodynamic and excluded-volume interactions [18,20,
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47•], and hence depends significantly on concentration. For semidilute
solutions, our simulations yield the decay |Ψ2| ∼ Wic

−4/3 of the magni-
tude of Ψ2 (Ψ2 is negative) with increasing shear rate, i.e., it decays
with the same exponent as Ψ1 [47•]. At low concentrations, we could
not extract a clear power-law dependence, since the values of Ψ2 de-
crease significantly with decreasing concentration.

We would like to emphasize once more the intimate connection
between the structural, dynamical, and rheological properties offlexible
polymers in shear flow. The above scaling considerations, and more
precise analytical considerations [46•], show that all these quantities de-
pend on the relaxation behavior of the polymer, which in turn is deter-
mined by the applied shear flow. Hence, here, we established a relation
between the microscopic properties of the system and its macroscopic
behavior.

At small shear rates, a polymer solution is in the Newtonian regime
and the viscosity is independent ofγ

�
. However, the zero-shear viscosity

η0 depends on the polymer concentration, which is often presented in
the form [47•]

η0 ¼ ηs 1þ η½ � þ kH η½ �cð Þ2 þ…
� �

: ð6Þ

Here, [η] is the intrinsic viscosity, c is the polymer concentration, and
kH is theHuggins coefficient [36,47•]. The term kH([η]c)2 depends on hy-
drodynamic interactions [47•]. For flexible polymers, kH is in the range of
0.2–0.8 and depends on the solvent quality [47•]. Typically, the value
kH =0.3 is found experimentally for flexible polymers in good solvents
[47•]. Fig. 3 shows the dependence of the zero-shear viscosity on con-
centration for polymers of various lengths [47•]. The solid line indicates
the power-law increase

η0 ¼ ηs c=c�
� �1= 3ν−1ð Þ ð7Þ

of η0 as predicted by a blobmodel of the polymer [75]. The inset plot de-
picts the relative viscosity

ηR ¼ η0−ηs
ηs η½ �c ¼ 1þ kH η½ �cþ…: ð8Þ

The comparison with the simulation data for various polymer
lengths yields the coefficient kH = 0.35 [47•], which is in close agree-
ment with the experimental result.

Hard sphere suspensions obey the Einstein relation (1). As discussed
in Ref. [47•], the same relation applies to dilute polymer solutions, when
the hydrodynamic radius of a polymer is used to define the volume
fraction.

As for dilute systems, a polymer in a semidilute suspension is aligned,
deformed, and thus exhibits shear thinning. An example of the polymer
contribution to the viscosity is displayed in Fig. 4 for polymers of various
lengths Nm and various concentrations. A concentration independent
universal behavior is obtained, when the respective quantities are repre-
sented as function of the concentration-dependent Weissenberg num-
ber Wic ¼γ

�
τc , with the concentration-dependent longest relaxation

time τc of a polymer. Thus, the same (asymptotic) scaling relations as
for a dilute system apply for a semidilute system. A closer look, however,
shows that partial screening of hydrodynamic interactions with increas-
ing polymer concentration leads to different relaxation behaviors of the
end-to-end vector components along the various spatial directions,
where the relaxation times obey τx ≤ τy ≤ τz [50•].

3.2. Star polymers

Linking polymers at a common center by one of their ends leads to
novel polymeric materials with tunable properties [76]. Two extreme
limits of such particles are colloidal particles with short grafted poly-
mers, e.g., polymeric latex spheres of varying grafting density [77,78],
or a small connecting center with comparable long polymer arms—
star polymers [76,79,80]. Here, we will focus on star polymers. By vary-
ing the arm number (functionality f) and arm length of a star polymer,
its properties can be tuned continuously from those of flexible linear
polymers to spherical colloidal particles with ultrasoft interactions.
Thereby, the structural, dynamical, and rheological properties of star-
polymer solutions strongly depend on the arm number, their length,
and their concentration c [22•,23,42,51•,76,81–88•,89,90]. Experimental-
ly, non-equilibriumproperties have been considered for a wide range of
functionalities and concentrations [76,77,91–93].

3.2.1. Structure and dynamics in shear flow
Similar to flexible polymers, shear flow deforms and aligns star poly-

mers as displayed in Figs. 5 and 6 [22•,23,51•,89]. Individual arms are
stretched along the flow direction with increasing shear rate. For a given
functionality, we find a universal dependence of the deformation on the
concentration-dependent Weissenberg number Wic ¼ β c=c�ð Þ γ� τz ,
where τz ∼ Nm

2 is the Zimm relaxation time and β is a concentration
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Fig. 3. Dependence of the zero-shear viscosity on the scaled concentration c/c⁎ for the
polymer lengths Nm = 40 ( ), Nm = 50 (●), and Nm = 250 ( ). The solid line indicates
the power-law (c/c⁎)1/(3v − 1) with v= 0.6. In the inset, ηR − 1, Eq. (7), is shown as func-
tion of [η]c forNm=40 ( ) andNm=50 (●); the slope of the solid line is 0.35, which cor-
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From Ref. [47•].
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dependent factor [22•]. Along the gradient and vorticity directions, star
polymers shrink forWic N 1. Thereby, the compression along the vortic-
ity direction is quite small compared to that in gradient direction [22•,
89]. As expected, the factor β(c/c∗) increases strongly with increasing
concentration in a nonlinear manner. Thereby, the values for the vari-
ous functionalities and arm lengths follow a universal curve [22•,23].

We find a universal stretching behavior for stars of various function-
alities in terms of a functionality-dependent Weissenberg number
ϕfWic in dilute solution, where the factor ϕf accounts for the functional-
ity dependence [23]. At higher concentrations, however, a weaker
stretching is observed at large ϕfWic. The radius of gyration tensor com-
ponent along the gradient direction decays slowerwith increasing shear
rate at higher concentrations. Thereby stars of different functionalities
exhibit a universal behavior at a particular concentration [23]. Surpris-
ingly, the scale factor ϕf decreases with increasing functionality as
ϕf ∼ f−2/3, i.e., the relaxation time of the shear response decreases
with increasing functionality [23]. This is in contrast to the relaxation
time of an individual polymer arm, which is predicted to follow the de-
pendence f (2 − 3ν)/2, with (2 − 3ν)/2 ≃ 0.1 for ν ≈ 0.6 [82]. A possible
explanation for the discrepancy is that the simulation results of [23]
are derived formoderate arm lengths and functionalities, while the scal-
ing arguments apply to very long arms and large functionalities. It
would certainly be interesting to investigate star-polymer relaxation
times in equilibrium in more detail to clarify this problem.

At equilibrium, the arms of a star polymer exhibit conformational
properties similar to those of an individual polymer under good solvent
conditions. This is reflected in the scaling properties of the arm structure
factor, which exhibits the dependence q−1/ν with ν≈ 0.63 on the scat-
tering vector. Under shear flow, the arms are stretched, which is mani-
fested by an increase of v up to ν ≈ 0.8 for large shear rates [23]. This
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Fig. 5. Star polymer conformations (top) and monomer density distributions at equilibrium (left) and under shear flow (right).
From Ref. [51•].

Fig. 6. Simulation snapshot of a solution of star polymerswith f=50, c/c⁎= 1.46, and the
Weissenberg number Wic ≈ 102. Only star polymers with their centers in a slice of
thickness of 3Rg0 parallel to the flow-gradient plane are shown, where Rg0 is the radius
of gyration at equilibrium. Multiple colors are used to distinguish the various star
polymers more easily.
From Ref. [23].
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indicates that the arms are never fully stretched in the ensemble
average.

The connectivity of the polymer arms drastically alters the non-
equilibrium dynamical behavior of a star polymer. Similar to individual
polymers, stars with a few arms only (f ≲ 4) exhibit a tumbling motion,
with a cyclic stretching and collapse of thewhole star polymer. For large
f, however, the stars rather exhibit a tank-treading-like motion [23,89,
94], reminiscent to the dynamics of vesicles [95–97]. However, individ-
ual arms still undergo tumblingmotionwith a cyclic stretching and col-
lapse of individual arms [51•]. The conformational changes are visible in
Figs. 5 and 6. Along the vorticity direction, the center-to-end vector cor-
relation function decays exponentially with time, with a shear-rate-
dependent relaxation time. The latter scales as γ

� −2=3
for Wic N 10, as

for linear polymers. Along the shear and gradient directions, the relaxa-
tion dynamics is tightly coupled and the respective center-to-end vector
component correlation functions exhibit a damped oscillatory behavior
[51•].

The rotation of the star polymer also affects the fluid flow field. Spe-
cifically, the flow lines in the interior of the star polymer are closed,
i.e., the internal fluid is screened from the outer one [94]. The rotation
dynamics can be quantified by an angular rotation frequency ωz [23,
89]. For shear rates ϕfWic ≪ 1, the frequency assumes the expected
value ωzj j ¼γ

�
=2. For large shear rates, themagnitude of the rotation fre-

quency increases as ωzj j∼γ� ζ with increasing γ
�
. Thereby, the exponent ζ

depends strongly on concentration. In dilute solution, we find ζ≈ 0 al-
most independent of the functionality [23,89], whereas above the over-
lap concentration ζ ≈ 0.35. Simulations of dilute systems without
hydrodynamic interactions yield ζ≈ 0.4 [94]. Thus, the lack or presence
of hydrodynamic interactions has a significant influence on the star's ro-
tational dynamics. Qualitatively, an increase of the polymer concentra-
tion has the same effect on ωz as suppression of hydrodynamic
interactions. Hence, we interpret the increase of ζ as an indication of
screening of hydrodynamic interactions in star polymer solutions at
concentrations far above the overlap concentration.

The shear-rate dependence of the rotation frequencies extracted
from the simulation data for various functionalities can be reproduced
well by the Keller–Skalak (KS) model for vesicles [95] over a broad
range of shear rates [23]. Thereby, we identify the axis of the effective
ellipsoid with the square root of the respective major axis of the radius
of gyration tensor [23].

The diffusive dynamics of the center-of-mass of a star polymer is sig-
nificantly slowed down with increasing concentration at equilibrium.
However, under shear flow, the dynamics is enhanced, and we find dif-
fusion coefficients along the gradient and vorticity direction, which
grow by an order of magnitude, when we increase the Weissenberg
number from unity to 102 [51•]. A similar behavior has been reported
for the diffusive dynamics of colloidal particles in glasses [98,99]. At
higher concentration, close spatial proximity of the star polymers
leads to caging. The respective star polymers rattle in their cage until a
certain rearrangement of the neighborhood opens a route to escape.
Above the“ escape time”, the star polymers exhibit Brownian motion.
Shear promotes fast and considerable rearrangements of the star poly-
mers, particularly since they are dragged along the flow direction by
shear. Thus, the star polymers can escape easily from the local neighbor-
hood, which is reflected in the shear enhanced dynamics.

3.2.2. Rheological properties in shear flow
The flow induced deformation and alignment of star polymers de-

termines the rheological properties of the suspension. Fig. 7 illustrates
the dependence of the stress tensor on the Weissenberg number and
concentration. ForWic N 1, the shear stress strongly depends on the con-
centration. The sublinear increase of the shear stress implies shear thin-
ning of the suspension. Simulations reveal a universal dependence of η
on ϕfWic(N 1) for low concentrations independent of functionality
[51•]. Here, the viscosity can be described by the power-law η ∼ γ

� −0:3

for ϕfWic N 1. For higher concentrations, again a universal curve is

obtained for various functionalities, but with the steeper slope of η∼
γ
� −0:4

[51•]. Interestingly, simulations did not show a zero shear-rate pla-
teau for concentrations significantly above the overlap concentration.
This points toward the presence of yield stress in such systems.

Zero-shear viscosities η0 for star polymers of various functionalities
from experiments and simulations are displayed in Fig. 8 [76,77]. The
zero-shear viscosity increases rapidly with concentration. The simula-
tion data are well described by the relation η0/ηs = 2.5ϕ + 6.2ϕ2,
which implies a faster increase than that for linear polymers, where
η0/ηs=2.5ϕ+6.25kHϕ2with theHuggins coefficient kH≃ 0.3 [47•]. Fur-
thermore, the zero-shear viscosity as a function of c/c∗ depends only
very weakly on the arm length. The figure shows a very consistent
trend of an increase of the zero-shear viscositywith increasing function-
ality at constant concentration c/c∗, and demonstrates the crossover of
star-polymer properties from ultra-soft to hard-sphere colloids with
increasing f. Other simulations yield a near power-law increase of the
star-polymer zero-shear rate viscosity in the range 0.1 b c/c∗ b 4 for
functionalities in the range 10 ≤ f ≤ 50 [51•].
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The viscosity of star-polymer solutions of very high functionality
f ⋍ 390 has also been measured experimentally at concentrations in
the fluid and glassy phases [93]. In the semidilute regime, the shear
stress shows a linear increase at low shear rates, followed by a less pro-
nounced growth with an effective exponent of approximately 0.5; this
effective exponent decreases with increasing concentration [93]. Both
observations are consistent with our simulation results. The exponent
of the power lawof the shear stress for intermediateWeissenberg num-
bers is important, because a value larger than unity signals shear
banding. Such a behavior has indeed been predicted for concentrated
solutions [100]. On the basis of our simulations, no shear banding is pre-
dicted for stars with f≤ 50 in the investigated concentration range. We
expect that considerably larger functionalities are necessary to observe
shear banding.

The first normal stress coefficient and the magnitude of the second
one decrease with increasing shear rate [42,51•]. Thereby, Ψ1 exhibits
the dependence Ψ1 ∼ (ϕfWic)−1 on the shear rate and functionality
(f ≳ 10). This exponent is different from that of flexible polymers. The
reason for the observed difference is yet unexplained. We also find
quite pronounced second normal stress coefficients. They decrease as
|Ψ2| ∼ (ϕfWic)−4/3 for ϕfWic N 1, i.e., show the same exponent as con-
centrated polymer solutions. Since excluded-volume interactionsmain-
ly determine Ψ2, the large magnitudes of the second normal stress
differences for dilute and concentrated systems point toward strong
excluded-volume interactions, both intramolecular at low concentra-
tions, as well as intermolecular at higher concentrations.

3.3. Dendrimers

Dendrimers form another class of ultrasoft colloids with tunable
properties [101]. As for star polymers, their dynamical and rheological
properties strongly depend on the structural unit, from which the hier-
archical entity emerges. However, so far comparably little is known
about their rheological properties.

3.3.1. Structure and dynamics in flow
Dendrimers are deformed and aligned by a shear flow [102•,103],

with a weak compression along the gradient direction and an even
weaker effect along the vorticity direction. The elongation in the flow
direction depends on the dendrimer rigidity. The simulations of Ref.
[102•] indicate a power-law increase in the range 0.1 b Wi b 50, with a
slope somewhat smaller than unity. This is in contrast to linear and
star polymers, where the elongation increases initially quadratically
[23,47•]. Therefore, a suitable relaxation time for the determination of
the Weissenberg number seems to be

τ ¼ ηl3 2Gþ 1ð Þ3ν
kBT

; ð9Þ

whereG is the number of generations, l is the bond length, and ν= 0.588
is the Flory exponent [102•].

3.3.2. Rheological properties
Shear simulations of dendrimers reveal shear thinning at sufficiently

high shear rates with an approximate power-law decay γ
� −ζ

[43•,103,
104]. For the exponent, the values ζ = 1/3 [104] and ζ = 0.55–0.6
[103] have been reported. In Ref. [103], the exponent is found to be in-
dependent of topology by comparing linear polymers with dendrimers.
The viscosity curves normalized by the zero-shear viscosity for
dendrimers and linear polymers collapse as function of the reduced
shear rate η½ �Mηs= NAkBTð Þ γ� , where M is the molecular weight and NA

is the Avogadro constant.
The dendrimer zero-shear viscosity [η0] exhibits a molecular weight

dependence, which is very different from that, e.g., of linear polymers
[103,104]. For a dendrimer, [η0] increases initially at low molecular
weight, passes through a maximum, and decreases for a large number

of monomers. In contrast, for linear polymers, the viscosity increases
in a power-law manner. Shear-thinning of dendrimers has been also
found in simulations of elongational flow [43•].

The first and second normal stress coefficients also decay for large
shear rates with a power-law Ψ1;2

�� ��∼γ� −4=3
, similar to star polymers

[103].
In general, very little quantitative studies of dendrimer rheology

have been performed. This is certainly a consequence of the consider-
ably larger computational cost of simulations due to the required large
number of particles.

4. Vesicles, capsules, and cells

Droplets, vesicles, capsules and cells are all small bags of an internal
fluid, which is separated from the embedding, outside fluid by a closed
interface or membrane. The dynamics of such objects, in particular
under flow, depends on the physical origin of their deformability, like
the surface tension at constant volume for droplets, the membrane
bending rigidity at fixed volume and surface-area for vesicles, and, in
addition, the membrane shear elasticity for capsules and cells. There-
fore, these systems have to be investigated independently to under-
stand the relation between the elasticity of the particles and the
rheological behavior of their suspensions.

Suspensions of vesicles, capsules, and cells receive more and more
attention due to their importance in technological and biomedical appli-
cations. Examples include various cell organelles, drug delivery carriers,
cosmetic and food industry applications, and tissue components.

4.1. Vesicles

A vesicle consists of a fluidic lipid bilayer membrane of fixed area A,
which encloses a fluid volume V. Their shapes and deformations are
controlled by the curvature elasticity of the membrane, which is
governed by the bending rigidity κ.

In the dilute regime, the vesicle dynamics under shear flow shows
three different types of motion: tank-treading (TT), tumbling (TB) and
vacillating-breathing (VB) (also called trembling or swinging). In the
tank-treading regime, the vesicle shape is stationary, characterized by
a constant value of the inclination angle φ of the eigenvector of the
radius-of-gyration tensor with the largest eigenvalue and the flow di-
rection, but a rotational motion of a tracer particle attached to the
lipid membrane. In the tumbling regime, the whole vesicle rotates, al-
most like a rigid object. In the vacillating–breathing regime, the shape
deformation of the vesicle becomes important, which leads to an oscil-
lation of the shape between a positive and a negative inclination angle.
The stability of these types of vesicle dynamics depends on viscosity
contrast λ = ηin/ηout, where ηin and ηout are the fluid viscosities of the
inner and outer fluids, and shear rate γ

�
, with TT and TB occurring at

low and high λ, respectively [95,105–115•].
For tank-treading quasi-spherical vesicles in three dimensions (3D),

the viscosity of a dilute suspension has been predicted to be [116,117]

η=ηout ¼ 1þ 5
2
Φ 1− Δ

40π
23λþ 32ð Þ

� �
ð10Þ

as a function of excess area Δ= 4π[(A/(4π))(4π/(3V))2/3 − 1] and vis-
cosity contrast λ, where Φ is the vesicle volume fraction. Thus, the in-
trinsic viscosity ηI = (η − ηout)/(ηoutΦ) is predicted to be a decreasing
function of Δ and λ. Furthermore, ηI is foreseen to exhibit a cusp-like
minimum at the tank-treading to tumbling (or tank-treading to
vacillating-breathing) transition, and then to increase again with in-
creasing λ [116,117]. This latter behavior has been also found in the nu-
merical calculations of a two-dimensional vesicle by the boundary-
integral approach [118].

These theoretical predictions have been tested experimentally [119,
120]. While a decrease of ηIwith increasing λwas found in Ref. [119], in
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good agreement with the theoretical prediction in Eq. (10), in contrast,
an increase of ηI was observed in Ref. [120]. However, the available ex-
perimental results are not conclusive so far for the following reasons.
First, vesicle sizes in suspensions are typically polydisperse. Second, vis-
cosity measurements require a minimum volume fractionΦ of vesicles,
typically 5% to 10%, and are therefore difficult to extrapolate to the di-
lute limit [120]. Indeed, recent experiments [121] demonstrate that ves-
icle interactions become relevant for the suspension's viscosity for Φ
around 10%.

This has stimulated new simulation studies of vesicles in shear flow
in narrow channels [122•–124]. Because of the high numerical cost of
vesicle simulations in 3D, these simulations have been performed
using 2D model systems. Here, the systems investigated in Ref. [122•]
and Refs. [123,124] differ by their presence or absence of thermal fluctu-
ations, which concerns both cross-streamline diffusion as well as mem-
brane undulations.

We discuss first the simulation results for a system with thermal
noise. The snapshots of vesicle conformations displayed in Fig. 9 show
the typical collision process of two vesicles, which are slightly displaced
in the vertical direction, and therefore move with different velocities in
the flow direction. As the vesicles collide, their long axes rotate together
to alignfirstwith theflowdirection, possibly a bit further. Then, the ves-
icles separate again and the vesicle axis rotates back to its unperturbed
inclination angle [122•]. This time-dependence obtained in the simula-
tions is in good agreement with experimental results [120]. Similar re-
sults have also been obtained from simulations in 3D (without
thermal noise) [125•]. The intrinsic viscosity of the same system is
shown as a function of viscosity contrast and reduced shear rate γ

� �
in

Fig. 10. Here, the reduced shear rate is defined as γ
� � ¼γ

� �τ , where
τ = ηoutR03/κ is the characteristic vesicle relaxation time with average
vesicle radius R0. In the tank-treading regime, the viscosity is found to
be an increasing function of λ, in agreement with the experiments of
Ref. [120]. Simultaneously, the suspension shows a pronounced shear-
thinning behavior, which makes it difficult in the simulation to reach
the low-shear-rate plateau [122•].

The rheological behavior in the absence of thermal noise seems to be
substantially different. In this case, the normalized effective viscosity of
the suspension in a 2D narrow channel withΦ=0.06 is nearly indistin-
guishable from the viscosity at very high dilution, which decreases with
increasingλ [123]. Only in the TB regimewith λ≳ 20, the viscosity of the
suspension is significantly enhanced. This effect occurs, because in the
steady state TT vesicles order in a single line with approximately the
same distances between them. At higher concentrations, vesicles can

arrange in two or three files [124]. Simulations of vesicle suspensions
in unbounded shear flow in 3D (also without thermal noise) show a
very similar dependence on the viscosity contrast for Φ = 0.1 and
Φ = 0.2 [125•].

If these differences in the rheological behavior can indeed be traced
back to the presence or absence of thermal fluctuations, then this raises
the important questions (i) of the mechanism which affects the viscos-
ity so strongly, and (ii) in which systems noise plays an important role,
and in which not. It has been found in 2D [113] and 3D [110] systems
that vesicles have highly convoluted shapes and show an irregular dy-
namics in and near the vacillating-breathing regime, in agreement
with experimental observations [108], which indicates the importance
of thermal noise. More detailed studies, both experimental [126•] and

Fig. 9. Configurations at consecutive times with time lag γ
�
t ¼ 16 of 2D vesicles with vis-

cosity contrast λ = 1.0, reduced area A⁎ = 0.8 (the area in units of the area of a circle of

equal perimeter length), reduced shear rate γ
� � ¼ 2:0, and volume fraction Φ = 0.14.

One point of each vesiclemembrane is colored yellow for visualization of its evolution dur-
ing tank-treading, and one vesicle blue for visualization of the translational motion.
From Ref. [122•].

Fig. 10. Intrinsic viscosity ηI = (η − ηout)/(ηoutΦ) of a vesicle suspension as a function of
(top) the viscosity contrast λ for reduced shear rate γ⁎ = 2.0, reduced area A⁎ = 0.8,
and concentrations Φ = 0.05 (●), 0.09 (△), and 0.14 (⋆) (the dashed line is the interpo-
lation to the data, the tank-treading-to-tumbling transition is predicted to occur at
λc ⋍ 3.7 in the Keller–Skalak (KS) theory [95]); (bottom) the reduced shear rate γ⁎ for re-
duced area A⁎= 0.8, concentrationΦ= 0.28, and viscosity contrasts λ= 2.0 (●,□) and
5.0 (○, △).
From Ref. [122•].
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theoretical [127,128•], show that the flow indeed strongly amplifies the
effect of thermal fluctuations. In the vacillating-breathing regime, a ves-
icle finds itself on the edge of a wrinkling instability, where thermally-
excited spatial modes are amplified. Fluctuations should be important
for low membrane bending rigidities (which increases membrane un-
dulations) and low external fluid viscosity (which increases rotational
and translational diffusion coefficients).

Vesicles in capillary flow have also been investigated extensively, in
particular using 2D models. Since there is no shear elasticity in 2D
(i.e., the membrane is a closed line), the vesicles are also often called
red blood cells. We focus here on the rheological behavior in narrow
channels. A suspension of discocyte-shaped vesicles is shown to be
shear-thinning, in particular near capillary numbers of order unity
[129,130], due to the flow-induced deformation from the discocyte to
the parachute shape, and the focusing of the vesicles in the center of
the channel. Surprisingly, the predictions for the behavior for small
flow velocities differ between 2D and 3D: the eigenvector of the
radius-of-gyration tensor with the smallest eigenvalue points in the
flow direction in 2D, but is perpendicular to it in 3D. Further work is re-
quired to clarify these issues.

4.2. Capsules

Capsules are often referred to particles with an elastic membrane
whose area may not be strictly conserved. Thus, capsule deformation
in flow may also lead to area dilation. In contrast to vesicles, capsule
membrane is elastic. Dynamics of a single capsule inflowhas been inves-
tigated experimentally [131–133] and theoretically [134–136•], and in
simulations [137–139], while the rheology of capsule suspension has
been mainly studied in numerical simulations [26,140•,141,142,143•].

4.2.1. Dynamics of single capsules
Several authors have studied the flow-induced deformation of

synthetic capsules, which consisted of liquid drops surrounded by
thin polymeric membranes [131–133,144]. The experimental results
have been fitted with the theory for small capsule deformations in
flow [134] showing good agreement up to moderate capsule defor-
mations. At large deformations a non-linear behavior is expected to
have a contribution. More recent experiments on polyamide micro-
capsules in shear flow [132,133] have shown shape oscillations and
membrane wrinkling. The results have been fitted by the theory
[134], even though the theory assumes a steady capsule shape with-
out oscillations. The instability of capsule shape and wrinkling in
shear flow has been theoretically investigated in Ref. [135], where
a critical shear rate for the instability and the wavelength of wrin-
kling have been predicted.

Dynamics of capsules in shear flow is also characterized by the two
states: tumbling and tank-treading. The transition can be triggered by
a viscosity contrast between the inner and outer fluids similar to that
for vesicles, which has been first described by the Keller–Skalak theory
[95]. The KS theory assumes a fixed path for a tank-treading capsule,
and therefore, does not reflect shape oscillations. Improved theories
[145,146] for red blood cells (or also capsules) have added an energy
barrier for tank-treading due to membrane elasticity. For a spherical
capsule this barrier becomes very small, while it increases as a capsule
departs further from a spherical shape. Thus, tumbling-to-tank-
treading transition may also depend on the elastic barrier for non-
spherical capsules, for instance RBCs. Recent theories [136•,138] have
also includedmembrane oscillations, which appear to be crucial for cor-
rect prediction of capsule dynamics. When cell shape deformation is
also taken into account, two types of oscillation modes coexist: one in-
duced by the shape deformation similar to fluid vesicles and the other
induced by the tank-treading energy barrier [147]. For non-spherical
capsules accompanied by a local energy minimum, coupling of these
two modes generates a complicated phase behavior.

4.2.2. Rheology of capsule suspensions
The rheology of capsule suspension has been investigated in a num-

ber of simulations [26,140•,141,142,143•] with a common conclusion
that capsule suspension exhibits shear thinning. Also, suspension's vis-
cosity strongly depends on the volume fraction of capsules. Rheology
of a dilute capsule suspension has been studied in Ref. [140•] showing
a shear-thinning behavior. However, the dependence of suspension's
viscosity on the viscosity ratio (λ) between inner and outer fluids sur-
rounding capsule shows a non-trivial behavior. An initial increase of λ
from unity leads to a decrease of the suspension's viscosity, while a fur-
ther increase in λ may result in an increase of suspension's viscosity.
This effect is related to the transition from a tank-treading behavior of
capsules to tumbling at high enough values of λ.

The rheology of capsule suspensions atmoderate concentrations has
been investigated in Refs. [141–143•]. Apart from a shear-thinning be-
havior, microstructure of the suspension has been discussed including
also single capsule properties such as orientation and deformation.
The measurements of the normal stress differences [141,142] have
shown an unexpected behavior, such that the first normal stress differ-
ence is negative at low shear rates and becomes positive as the shear
rate is increased. The numerical results of Ref. [142] have also indicated
that at high enough concentration of capsules a yield stress may appear
evenwithout any aggregation interactions between capsules. The study
in Ref. [143•] have considered inertial effects on the suspension's rheol-
ogy in Poiseuille flow. The apparent viscosity of capsule suspensionmay
decrease with an increasing Reynolds number for relatively soft cap-
sules. This effect is related to strong capsule deformations.

4.3. Blood cells and blood flow

Red blood cells (RBCs) combine the properties of both vesicles and
capsules with the membrane comprising viscoelastic and area-
preserving properties with a finite bending stiffness. Human RBCs
have a biconcave shape with a diameter ranging between 6 μm and
8 μm and a thickness of about 2 μm. A RBC membrane is constructed
from a lipid bilayer with an attached spectrin–protein cytoskeleton,
which provides integrity for a RBC since it is subject to substantial defor-
mations in microcirculatory blood flow. The inner fluid of a RBC is a he-
moglobin solution, which can be considered nearly Newtonian and is
about 5 times more viscous than the blood plasma.

Mimicking RBC structure, a complete RBC model needs to include
elastic energy of the spectrin network, a curvature energy to describe
bending resistance of the lipid bilayer, conservation of both the cell
area and volume to represent the area incompressibility of the lipid bi-
layer and incompressibility of a cytosol, membrane viscosity, and the
viscosity contrast between the cytosol and blood plasma. The RBC bi-
concave shape corresponds to the reduced volume V� ¼ V0= 4

3πR
3
0

� �
with V0 being the RBC volume and R0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0= 4πð Þp ¼ 3:25 μm, where
A0 is the area of a RBC. The reduced volume of a healthy RBC is equal
to about V⁎ = 0.6. More details on RBC and blood flow modeling can
be found in recent reviews [148,149••,150••,151].

4.3.1. Shapes and dynamics of single RBCs in flow
The behavior of single RBCs in flow inevitably affects blood rheolog-

ical properties. Deformation and dynamics of RBCs have been investi-
gated experimentally in various flows including shear flow [146,152,
153••] and tube or Poiseuille flow [154,155].

Similar to the dynamics described for vesicles and capsules, RBCs in
shear flow exhibit tumbling and tank-treading motion [146,152,153••].
An experimental study [152] has shown that the existence of these
two states is due a RBCminimumenergy state such that a certain energy
barrier has to be exceeded in order for a RBC to tank-tread. Similarly to
vesicles and capsules, this transition can be also induced by the viscosity
contrast between the cytosol and the suspending fluid, where the latter
one is normally varied in experiments. Furthermore, a tank-treading
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RBC is also subject to a swingingmotion around the tank-treading incli-
nation angle [146].

The first theoretical predictions of RBC dynamics [145,146] have
been derived from the Keller–Skalak theory for vesicles [95] by adding
an elastic energy barrier for the tank-treading motion. These theories
have qualitatively captured the tumbling-to-tank-treading transition;
however, at high enough viscosity contrast (λ≳ 3–4) theoretical predic-
tions led to a relatively wide region of an intermediate dynamics with a
co-existence of both tumbling and tank-treading states. In contrast, ex-
periments [146,153••] and numerical simulations [30,31•,34•,147,156] of
RBC dynamics in shear flow have not provided any evidence for the ex-
istence of the intermittent region. Recent theories and simulations
[136•,138] were able to resolve this issue and found that the prediction
of the intermittent region in previous works has been due to the as-
sumption of a fixed tank-treading path of RBCs. Thus, RBC deformation
during tank-treading is important. There also exist breathing dynamics
[156] around the tumbling-to-tank-treading transition,which is charac-
terized by strong membrane deformation. Recent experiments [153••]
and simulations [157] have shown the existence of another dynamical
state called rolling, where a RBC just rolls in shear flow with the orien-
tation along the vorticity direction. This transition has been attributed
to anisotropic properties of a membrane leading to a rolling state, in
which RBC deformations might be reduced. Finally, RBC simulations
with a non-zeromembrane viscosity [31•] have shown that this proper-
ty might be essential to quantitatively capture RBC dynamics in shear
flow.

RBCs in Poiseuille flow show rich behavior characterized by various
shapes including parachutes and slippers [28,30,33,154,155,158–162•].
Parachutes correspond to a symmetric shape similar to a semi-
spherical cap which flow in the center of a tube practically without
any membrane motion. In contrast, slippers are asymmetric RBCs in
tube flow whose membrane is in motion (e.g., tank-treading). There
exist two types of slippers observed in experiments, a non-centered
slipper [155] and a centered slipper [154], where the latter may closely
resemble parachute shape. Slipper shapes have been also simulated
using 2D [159•,161] and 3D models [162•].

2D simulations in slits [159•,161] have been used to predict a phase
diagram of various shapes including parachutes, slippers, and a snaking
dynamics, depending on RBC confinement and flow strength. The snak-
ing dynamics is referred to an oscillating RBC dynamics near the tube
center. Recent 3D simulations [162•] have also resulted in a diagram of
RBC shapes in tube flow, which is only qualitatively similar to the dia-
gram in 2D. Fig. 11 presents the RBC shape diagram in 3D for different
flow rates and confinements. The parachute shape is mainly found at
strong confinements and high flow rates, while off-center slippers are
predominantly observed at low confinements. At low enough flow
rates off-center tumbling RBCs are also found, which are due to the ex-
istence of the tumbling-to-tank-treading transition described above.
This region is not present in 2D simulations [159•,161], since this transi-
tion cannot be captured by a 2Dmodel. At small shear ratesγ

� �
, a snaking

region is observed with a RBC performing a periodic oscillatory motion
near the center line. However, in contrast to snaking in 2D [159•,161],
the snakingmotion in 3D is fully three dimensional andmay have an or-
bital drift, which is similar to a RBC rolling motion in shear flow [153••,
157]. Another prominent difference between the phase diagrams in
Fig. 11 and in 2D simulations [159•,161] is the existence of the “confined
slipper” in 2D at high confinements which is absent in 3D. Slippers at
high confinements in 3D are suppressed due to the cylindrical shape
of a tube, since a confined slipper would have to follow the wall curva-
ture, which is energetically unfavorable.

4.3.2. Blood rheology
Blood rheological characteristics are determined by the properties

and dynamics of RBCs due to their high volume fraction or hematocrit.
Blood rheology has been measured in a number of experiments
[163–165]. Early experiments [163,166] have found that RBCs in

whole blood (i.e., freshly drawn and stabilized against coagulation)
are able to aggregate into structures called “rouleaux”, which resemble
stacks of coins. The aggregation between RBCs is mediated by the plas-
ma proteins [166], which has been verified by an addition of fibrinogen
to blood [166]. Rouleaux structures are very fragile and form at rest or at
sufficiently slow flows. An increase of shear rate would lead to a break-
up of the rouleaux structures resulting eventually in a fully dispersed
RBC suspension. The aggregation process is reversible and rouleaux
can re-form at low shear rates. Due to aggregation interactions between
RBCs, whole blood shows a non-zero yield stress (a threshold stress for
flow to begin) [163,167].

The viscosity ofwhole blood and of non-aggregating RBC suspension
has been measured in experiments [163–165] and modeled in simula-
tions [32•,168•]. Fig. 12 presents the comparison of the relative viscosity
(the RBC suspension viscosity normalized by the viscosity of the
suspending media) from simulations and experiments. Blood viscosity
exhibits a shear-thinning behavior. A qualitatively similar behavior
has been found for capsule suspensions [140•,141] and for a suspension
of RBC-like particles [26,142,160]. Clearly, a tremendous increase of vis-
cosity at low shear rates is due to the aggregation between RBCs. RBC
aggregation has also been investigated for two-cell and multiple-cell
aggregates [169,170] with a focus on their behavior in flow. The first at-
tempts to estimate the dependence of viscosity on RBC aggregation [24]
were not able to reproduce blood rheology due to a very small simulat-
ed system of up to ten aggregated RBCs.

Matching of the viscosity predictions in simulations [168•] with the
experimental measurements [163–165] allows one to calibrate RBC ag-
gregation interactions. Then, a step further is a direct calculation of ag-
gregation forces between two RBCs, a property which has never been
measured in experiments. Simulations [168•] predict that the force re-
quired for a break-up of two RBCs in the normal direction is in the
range of 3.0 pN to 7 pN, while the tangential force needed for a sliding
break-up is in the range of 1.5 pN to 3 pN. A fluid shear stress required
for RBC disaggregation has been measured in shear flow experiments
[171], and lies between 0.01 Pa and 0.1 Pa, while simulations result in
a value of about 0.02 Pa.

Existence of a non-zero yield stress in whole blood is attributed to
rouleaux structures [163,167]. A direct confirmation of yield stress is
not possible in both experiments and simulations, and therefore,
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available measurements are usually extrapolated to zero shear rate,
which has been done, for example, for blood in Ref. [166]. The extrapo-
lation for soft capsules and cells is often convenient to perform in the

Casson coordinates γ
� 1=2

; τ1=2xy

� �
, where γ

�
is the shear rate and τxy is

the shear stress [172]. Fig. 13 shows simulated data for Ht = 0.45
[168•] in Casson coordinates. Extrapolation to zero shear rate clearly re-
sults in a non-zero yield stress for whole blood, while for a non-

aggregating RBC suspension yield stress vanishes. Simulations [168•]
predict τy to be approximately 0.0017 Pa, while experimental measure-
ments [163] lie between 0.0015 and 0.005 Pa. Yield stress in a RBC sus-
pension may also exist at very high (non-physiological) hematocrit
values [142].

The non-Newtonian viscosity and yield stress in blood can be con-
nected to RBC membrane properties, dynamics, and aggregation inter-
actions. Measurements on a single cell level in a RBC suspension may
be difficult or unfeasible in experiments, while simulations are ideal
for that. The local microstructure of blood can be described by the radial
distribution function (RDF) of RBC centers shown in Fig. 14(a) [168•]. No
significant structures are found for the non-aggregating case, while
structures of 2–4 cells can be detected in whole blood for low shear
rates. However, any microstructure is completely lost at high shear
rates, and therefore the shear-thinning of a non-aggregating RBC sus-
pension is not related to microstructural changes. This also clearly indi-
cates that the aggregation interactions betweenRBCs are responsible for
the steep increase in blood viscosity at low shear rates and for yield
stress, since larger rouleaux structures have to be destroyed for blood
to flow.

Deformation and dynamics of single RBCs within the suspension is
illustrated in Fig. 14(b) and (c) for different shear rates [168•]. Tumbling
of RBCs at low shear rates is supported by the nearly constant RBC
asphericity of about 0.154 (equilibrium value for a discocyte shape)
and by the broad orientation-angle (θ) distribution in Fig. 14(c). Also,
RBC tumbling is partially hindered in non-aggregating suspensions
due to crowding in comparison with the theoretical prediction for tum-
bling of a single RBC. In contrast, RBC aggregation results in a nearly uni-
form orientation-angle distribution at low shear rates. At high shear
rates, RBCs are subject to tank-treading dynamics supported by a nar-
row θ distribution in Fig. 14(c). A significant increase of the asphericity
in Fig. 14(b) also indicates strong RBC elongation at high shear rates. In
the range of shear rates, between 5 s−1 and 200 s−1, RBCs strongly de-
form which is indicated by a smaller RBC asphericity than that in equi-
librium (Fig. 14(b)). Thus, in this range RBCs attain on average a more
spherical shape, which leads to shear thinning through a reduction of
shear stresses due to lower tumbling constraints in comparison with
the biconcave RBC shape. Moreover, the tumbling-to-tank-treading
transition further decreases the shear stresses resulting in shear
thinning.

4.3.3. Blood flow
Behavior of RBCs and blood rheological properties govern the flowof

blood in microvessels. A well-known effect which describes a depen-
dence of the apparent blood viscosity on vessel diameter is the
Fahraeus–Lindqvist effect [173] which predicts a decrease in the effec-
tive blood resistancewith decreasing tube diameter [174]. The apparent
viscosity is found as

ηapp ¼ πΔPD4

128QL
¼ ΔPD2

32vL
; ð11Þ

whereD is the tube diameter, Q is the flow rate, andΔP/L is the pressure
gradient in a tube of length L. For convenience, we normalize the appar-
ent viscosity by the plasma viscosity to obtain relative viscosity of blood
as ηrel= ηapp/ηo, where ηo is the plasma viscosity. Fig. 15 compares sim-
ulation results [175] against the empirical fit to experiments [174]. The
Fahraeus–Lindqvist effect serves as one of the validation tests for blood
flowmodels, and this test has been also performed in other scientific in-
vestigations [25,35,176•–178].

The Fahraeus–Lindqvist effect arises from the behavior of RBCs in
blood flow. In Poiseuille flow, RBCs migrate to the tube center due to a
hydrodynamic lift force [179]. The migration of RBCs yields a RBC free
layer next to the wall, which effectively can reduce average blood flow
resistance (or viscosity). Thus, the thickness of the RBC free layer is di-
rectly associated with the Fahraeus–Lindqvist effect. The RBC free
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layer has been measured experimentally [180,181] and in simulations
[35,175,176•–178].

The structure and dynamics of RBCs in blood flow have also been in-
vestigated in simulations [33,177,178]. In microcapillaries with a diam-
eter comparable with the RBC size, RBCs may have a disordered
configuration, form a train of parachutes, or get arranged into a zig-
zag structure [33,182,183], depending on their concentration and flow
rate.

5. Discussion

The considerable amount of work on the dynamics and rheology of
soft colloidal particles under flow has revealed both generic and very
specific aspects of these systems. For example, two generic aspects are
the tank-treading and tumbling motion of individual particles in solu-
tion, and the shear-thinning behavior of semi-dilute suspensions.
Tank-treading occurs for star polymers, and for vesicles, soft capsules,
and red blood cells with small viscosity contrast; tumbling motion is
found for linear polymers, and for vesicles, stiff capsules, and red
blood cells with large viscosity contrast. Shear thinning is related to
the deformability and alignment of soft particles in flow, and the
break-up of aggregates in the case of attractive interactions, and is
therefore a property which is shared by all soft-particle suspensions.

However, many properties are quantitatively or qualitatively differ-
ent, and are very specific for certain systems. For example, the control
and variation of the viscosity of the internal fluid of vesicles, capsules
and cells have no counterpart in polymeric systems. Therefore, the vis-
cosity contrast can only be employed in the former case to tune rheolog-
ical properties. A second example is the oscillatory dynamics at the
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boundary between tank-treading and tumbling, which is found for ves-
icles, capsules and red blood cells. In the former case, this is related to
the dependence of the rotational force on the instantaneous elongation
of the particle, while in the latter case it is due to the non-spherical, elas-
tically anisotropic shape of themembrane. This strongly limits the use of
vesicle models to describe the behavior of capsules and red blood cells!

However, the dependence of the dynamical and rheological proper-
ties of soft particle suspensions on several parameters like the polymer
length, polymer stiffness, monomer density withinmacromolecules, in-
ternal viscosity, membrane bending rigidity, membrane shearmodulus,
particle shape, and particle interactions, offers entirely new possibilities
for tuning flow properties. More work is needed in the future to explore
the full application potential of these systems. This also requires deeper
insights into the relation betweenmicroscopic properties and the emer-
gent macroscopic behavior.
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Drug delivery by micro- and nano-carriers enables controlled transport of pharmaceuticals to targeted sites.
Even though carrier fabrication has made much progress recently, the delivery including controlled particle
distribution and adhesion within the body remains a great challenge. The adhesion of carriers is strongly
affected by their margination properties (migration toward walls) in the microvasculature. To investigate
margination characteristics of carriers of different shapes and sizes and to elucidate the relevant physical
mechanisms, we employ mesoscopic hydrodynamic simulations of blood flow. Particle margination is
studied for a wide range of hematocrit values, vessel sizes, and flow rates, using two- and three-dimensional
models. The simulations show that the margination properties of particles improve with increasing carrier
size. Spherical particles yield slightly better margination than ellipsoidal carriers; however, ellipsoidal
particles exhibit a slower rotational dynamics near a wall favoring their adhesion. In conclusion,
micron-sized ellipsoidal particles are favorable for drug delivery in comparison with sub-micron spherical
particles.

T
he use of targeted micro- and nano-carriers for the delivery of imaging agents and drugs provides a
promising strategy for early detection and treatment of diseases, e.g., of cancer1,2. However, the design of
particles carrying different contrast agents and drugs as well as their physical delivery are very challenging

tasks. Micro- and nano-particle fabrication, which needs to address several issues such as bio-compatibility,
durability, binding to specific targets, and the ability of controlled release, has been strongly advanced in recent
years3–7. Nevertheless, the development of efficient strategies for the delivery of carriers, including their distri-
bution in the organism following systemic administration8 and their transport through biological barriers8–10 (e.g.,
microvascular walls, interstitial space, and cell membranes), requires a much more detailed understanding of the
relevant physical and biological mechanisms2,8,11,12.

Successful delivery of micro- and nano- carriers strongly depends on their efficient binding to specific targeted
sites. Consequently, the distribution of carriers within vessel cross-sections plays an important role, since binding
of carriers is only possible in case of direct particle-wall interactions. The cross-sectional distribution of micro-
and nano-particles depends on several relevant parameters, which concern blood flow properties (such as flow
rate, red blood cell deformability, and hematocrit – the volume fraction of red blood cells), vessel size, and particle
characteristics (such as size, shape, and deformability). The migration of various suspended particles or cells
toward walls in blood flow, which is often referred to as margination, has been observed experimentally for white
blood cells13,14, platelets15,16, and rigid micro-particles17,18. Particle margination is mediated by red blood cells
(RBCs), which migrate to the vessel center19 due to hydrodynamic interactions with the walls (called lift force)20,21

leading to a RBC-free layer near the walls. More precisely, the occurrence of margination is a consequence of the
competition between lift forces on RBCs and suspended particles, and their interactions in flow22. However, the
dependence of margination efficiency on particle size and shape remains largely unexplored so far.

The role of particle size and shape in the efficient delivery is a multi-faceted problem. Large enough particles
with a characteristic diameter (Dp) greater than about 4 mm may become trapped in the smallest capillaries of the
body23. In addition, recent experiments suggest that large particles with Dp *w 3 mm are subject to an enhanced
phagocytosis24. However, recent microfluidic experiments25 have shown that spheres with the size of 2 mm show a
significantly higher adhesion density than particles with a size of 200 nm and 500 nm. Other experiments26

indicate that liposomes with Dp , 70 nm and Dp . 300 nm have shorter circulation times than those having
an intermediate size of Dp < 150–200 nm. Furthermore, nano-particles with a size below 20–30 nm are rapidly
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excreted through the kidneys27. Experiments with discoidal part-
icles28 have shown that they accumulate in the organs better than
their spherical counterparts; however, particle internalization by
macrophages appears to be worse for elongated particles29.
Adhesion of different particles has been studied experimentally30,31

and theoretically32,33, with the result that oblate ellipsoids are subject
to stronger adhesion than spheres with the same volume. To better
understand the adhesion potential of micro- and nano-particles, a
quantitative description of particle margination under realistic blood
flow conditions is required.

In this work, we investigate the role of particle size and shape on
the margination efficiency, and therefore on their adhesion potential.
Several sizes ranging from about hundred nanometers to a few
micrometers and two different shapes (spherical and ellipsoidal)
are considered. The margination of micro- and nano-particles is
studied numerically for a wide range of hematocrit values, vessel
sizes, and flow rates using a combination of two-dimensional (2D)
and three-dimensional (3D) models. Our results indicate that large
particles possess a larger probability of being marginated than small
particles. As the particle size becomes very small (less than about
100–200 nm), the particle distribution within vessel cross-section
can be described well by the plasma volume around flowing RBCs.
Furthermore, spherical particles marginate better than ellipsoids,
however the adhesion efficiency of ellipsoidal particles is expected
to be superior in comparison to that of spheres due to their slower
rotational dynamics near a wall. Finally, we discuss what size and
shape of micro- and nano-carriers may be best suited for biomedical
applications.

Results
Blood is modeled as a suspension of RBCs and micro- or nano-
particles, while blood flow is studied in idealized microvessels using
simulations in 2D and 3D, see Fig. 1 and Methods section for details.
The 3D blood model has been shown to properly capture essential
properties of blood flow in microchannels34 as well as blood rheolo-
gical characteristics35,36. To study micro- and nano-particle margina-
tion for a wide range of conditions, we also exploit a 2D blood flow
model due to its numerical efficiency; however, we will show that the
2D model is able to qualitatively reproduce the required blood flow
characteristics and the particle margination effect in comparison
with the 3D model.

Blood flow characteristics. The simulated system corresponds to a
cylindrical microvessel in 3D with the diameter W or to a channel in
2D with the width W. We focus here on channel width W 5 20 mm,
but the cases of W 5 10 mm and W 5 40 mm are also discussed. In
flow direction, periodic boundary conditions are assumed and blood
flow is driven by a constant force applied to all solvent particles,
which is equivalent to a prescribed pressure drop. The hematocrit

Ht is defined as the volume fraction of RBCs. To characterize the flow
strength, we define a non-dimensional shear rate in both 2D and 3D
as

_c�~�_ct~�_c
gD3

r

kr
, ð1Þ

where �_c~�v=W is the average shear rate (or pseudo shear rate) and �v
is the average flow velocity computed from the flow rate, while t
defines a characteristic RBC relaxation time. Here, g is the
solvent’s dynamic viscosity, Dr~

ffiffiffiffiffiffiffiffiffiffiffi
A0=p

p
in 3D and Dr 5 L0/p in

2D are the corresponding RBC diameters, where A0 is the RBC
surface area in 3D and L0 is the cell contour length in 2D, and kr is
the RBC membrane bending rigidity. The RBCs are further
characterized in 2D by the reduced area A�~4A0

�
pD2

r

� �
~0:46,

and in 3D by the reduced volume V�~6V0
�

pD3
r

� �
~0:64, where

A0 is enclosed RBC area in 2D and V0 is the enclosed RBC volume in
3D. Typical values for healthy RBCs are Dr 5 6.5 mm in 3D, while Dr

5 6.1 mm in 2D, g 5 1.2 3 1023 Pa s, and kr lies within the range of
50–70kBT for the physiological temperature T 5 37uC. Suspended
micro- and nano-particles are characterized by the diameter for
spheres and by the long axis for disks, denoted Dp in both cases.

Particle margination in 2D and 3D. Margination of micro- and
nano-particles in blood flow depends on Ht, W, and _c�.
Figures 2(a),(b) illustrate the distribution of carriers of size Dp 5

0.28Dr (1.83 mm) for two Ht values in 3D. For better visibility, the
carrier positions from a few snapshots are superimposed in the plot.
The carrier surfaces are colored according to their radial position in
the channel, with yellow color indicating a position near the channel
center, while blue color corresponds to a position near the wall.
Clearly, the carriers are marginating better for the case of larger Ht.

Carrier positions in blood flow sampled over time lead to particle
distributions, which reflect the probability of a particle to be at a
certain distance from the wall. Figure 2(c) shows several center-of-
mass distributions of circular particles in 2D with Dp 5 0.3Dr

(1.83 mm) for several Ht values and _c�<29:3. The RBC-free layer
(RBCFL) thickness, which is computed from simulation snapshots
through the analysis of the RBC core boundary34 similar to experi-
mental measurements37 (see Supplementary Fig. S1), is depicted by
small arrows. The distributions have been averaged over the halves of
the channel due to symmetry. Figure 2 shows that the carriers
migrate into the RBCFL and remain quasi-trapped there. With
increasing Ht, the carriers marginate better, as indicated by the
development of a strong peak in the distribution near the wall at
y/W 5 0, and the motion of the peak position towards the wall.
This is due to a decrease in the RBCFL thickness leading to a smaller
available space for the particles. This trend is in agreement with
experimental observations17 and simulations38–40 of margination of
blood platelets, which have a comparable size.

To quantify and compare particle margination for a wide range of
flow and particle parameters, we define the margination probability
as a fraction of particles whose center-of-mass is located within the
near-wall layer of thickness d. The choice of d depends on the exact
problem to be addressed, and several possibilities can be considered.
To describe particle margination into the vicinity of a vessel wall, it is
natural to select d to be the RBCFL thickness. Typical values of
RBCFL thickness and their dependence on Ht are displayed in
Supplementary Fig. S2. Figures 3(a),(b) present margination prob-
ability diagrams of particles for a wide range of Ht and _c� values
corresponding to 3D and 2D simulations, respectively; the compar-
ison shows that roughly _c�3D<1:2 _c�2D. Particle margination strongly
depends on Ht as well as on shear rate. At low Ht values, particle
margination is expected to be weak, while at high Ht the margination
might be also attenuated due to particle-RBC interactions near a wall.
The latter effect has been described for a marginating white blood

Figure 1 | Snapshots of cell and particle conformations in microchannels
in 3D and 2D. RBCs are colored in red and suspended particles in blue. (a)

3D simulation snapshot of blood flow for Ht 5 0.3 and _c�<39. (b) 2D

simulation snapshot of blood flow for Ht 5 0.3 and _c�<29:3.
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cell41 and is expected to subside for particles substantially smaller
than a RBC, i.e. of sub-micrometer size. A pronounced dependence
of particle margination on shear rate is observed at low flow rates. In
the limit of very small flow rates (_c� *v 1), the RBC distribution
should be nearly uniform, and therefore, the RBCFL and conse-
quently particle margination should almost vanish. As the shear rate
is increased, the RBCFL thickness grows rapidly42, leading to a sub-
stantial increase in particle margination.

The simulated values of _c� cover the range of flow rates character-
istic for the venular part of microcirculation (�_c *v 80 s{1 for W <
20 mm), where it is estimated that _c� *v 90 in 3D (_c� *v 77 in 2D),
while in arteriolar part the flow rates are higher ( _c� *w 110 s{1 for
W < 20 mm) with _c� *w 120 in 3D43,44. The considered range of shear
rates is also relevant for tumor microvasculature, since blood flow
velocities in tumors are much reduced in comparison to those under
normal conditions, due to high geometric resistance and vessel per-
meability45,46. Furthermore, the margination probability diagrams in

Figs. 3(a),(b) show that the strongest particle margination occurs in
the range of Ht 5 0.25–0.6. This region has a considerable overlap
with the characteristic hematocrits in the body’s microvascular net-
works in the range Ht 5 0.2–0.4. A strong particle margination at
high Ht values seems to be an advantage for drug delivery to tumors,
since blood within tumor microvasculature is often subject to hemo-
concentration due to plasma leakage47. We also note that particle
margination obtained from 3D simulations displays a higher mar-
gination probability at lower Ht values than that in the corresponding
2D system. This difference arises from the variation in RBCFL thick-
nesses in 2D and 3D systems. Thus, RBCFLs in 3D tubes are thinner
than those in 2D channels for the same Ht values due to cylindrical
curvature of the geometry, which affects close-packing of flowing
RBCs. In order to relate simulations with similar RBCFL thicknesses,
3D margination data should be compared with 2D data at a larger
hematocrit (by about 0.1–0.2), see Supplementary Fig. S2. In addi-
tion, the 3D data also shows a decrease of particle margination at

Figure 2 | Particle distributions in blood flow. Illustrations of 3D simulations of blood flow for the shear rate of _c�<59 and different hematocrit values (a)

Ht 5 0.2 and (b) Ht 5 0.4. RBCs are drawn in red, while spherical carriers with a size of Dp 5 0.28Dr (1.83 mm) are colored according to their

radial position r. For better contrast, carrier positions from several time instances are superimposed in the plots. (c) Center-of-mass distributions of

carriers for various Ht values at _c�<29:3. 2D simulation results for circular particles with Dp 5 0.3Dr (1.83 mm). The wall is at y/W 5 0. The arrows

indicate the boundary of the RBCFL for the different hematocrits, marked by corresponding colors.

Figure 3 | Particle margination in 3D and 2D. Probability diagrams of particle margination with respect to _c� and Ht in (a) 3D and (b) 2D, where the

margination probability is defined as a probability of a particle center-of-mass to be within the RBCFL. The white squares (%) indicate the values of Ht

and _c� for which simulations have been performed.

www.nature.com/scientificreports
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high shear rates. Nevertheless, both 2D and 3D simulations show
qualitatively similar trends for the dependence of carrier margination
on Ht and _c�. Therefore, we conclude that 2D simulations are able to
properly capture particle margination properties in blood flow.
Further, we will often employ a 2D system due to its robustness
and low computational cost in comparison with a 3D system.

Dependence of margination on particle size. The discussion above
considered the margination of micron-size particles. There is also a
strong interest in nano-carriers, with sizes starting from several
nanometers. Figures 4(a),(b) show margination diagrams of
particles with Dp 5 0.15Dr (0.91 mm) and Dp 5 0.04Dr (250 nm),
respectively. The comparison of Figs. 4(a),(b) and Fig. 3(b) for Dp 5

0.3Dr (1.83 mm) reveals that the region of high margination
probability becomes smaller with decreasing particle size. To
illustrate the reason for the reduction in margination probability
with decreasing particle size, we present in Fig. 4(c) the
distributions of particles with different sizes for Ht 5 0.3 and
_c�<29:3. For large enough particles, we observe a pronounced
peak in the distribution next to the wall due to their interactions
with RBCs, since their size is comparable with the RBCFL
thickness. Even though small particles are also marginated, their
distribution within the RBCFL is more uniform and their presence
around the vessel center line is more probable than that for larger
particles. Thus, the cumulative probability for a single particle to be
within the RBCFL is lower for nano-carriers than that for micro-
particles. Recent in vivo experiments48 also support our numerical
observations that particles with a size of about 1 mm are located
closer to the vessel wall than smaller nano-particles. Noteworthy is
that the distribution of the smallest particles with Dp 5 0.04Dr closely
approaches the distribution computed as the excess fluid volume of
flowing RBCs. This indicates that the distribution of particles smaller
in size than roughly 250 nm can be well approximated by the

distribution of the blood plasma, and therefore, their margination
properties can be directly inferred from local Ht distributions.

To decide on a suitable particle size for efficient drug delivery, a
number of different considerations have to be taken into account. A
direct interpretation of probabilities in Figs. 3(b) and 4(a),(b) sug-
gests that larger particle sizes are more favorable for drug delivery
due to their better margination properties. To further support this
proposition, we consider another definition for the margination
probability based on d 5 0.5Dp 1 s, which characterizes the fraction
of carriers whose closest surface point is not further away from the
wall than a distance s. We denote such a layer as ‘‘potential adhesion
layer’’, since particle margination into a thin near-wall layer is a
necessary precondition for adhesion. Even though the distance s is
motivated by direct receptor-ligand interactions which occur within
several nanometers, resolution restrictions in our mesoscale simu-
lation approach do not allow the selection of smaller distances than
approximately s 5 0.031Dr in 3D or s 5 0.033Dr in 2D, which
corresponds to about 200 nm. Nevertheless, the distance of several
hundred nanometers becomes relevant for particle-wall interactions
in case of a carrier whose surface is decorated by tethered molecules49.
Another definition for margination probability can also be based on a
fixed layer thickness d, thus it does not depend on Ht or on particle
size. Margination diagrams for this definition are illustrated in
Supplementary Fig. S3.

Figure 5(a) presents the margination probability into the potential
adhesion layer (ps) in 2D at _c�<29:3. At very small Ht, the fraction of
particles within the potential adhesion layer is small for all particle
sizes; however, the smallest studied particles seem to be slightly more
advantageous here. Remember that the interpretation of 2D mar-
gination data for a RBCFL thickness with respect to the same RBCFL
thickness in 3D requires a shift in Ht values such that the range of
Ht 5 0.15–0.4 in 3D corresponds to approximately the range of Ht 5

0.3–0.6 in 2D. For the range of Ht 5 0.3–0.6, Fig. 5 clearly shows that

Figure 4 | Dependence of margination on particle size. Probability diagrams of particle margination in 2D for various Ht and _c� values and for circular

particles with the sizes (a) Dp 5 0.15Dr (0.91 mm), (b) Dp 5 0.04Dr (0.25 mm). The white squares (%) indicate the values of Ht and _c� for which

simulation were performed. The margination probability is calculated based on the RBCFL thickness. (c) Distribution of particles with different sizes

across the channel for Ht 5 0.3 and _c�<29:3. For small particles the distribution resembles the black solid curve computed as the blood-plasma volume.

The arrow denotes position of the RBCFL boundary.
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the fraction of large particles within the potential adhesion layer is
much higher than that for small particles. The corresponding mar-
gination diagrams are shown in Figs. 5(b–d) and support the con-
clusion that large particles marginate better for all considered shear
rates. This indicates that micro-carriers are likely to be better for drug
delivery than sub-micron particles.

Dependence of margination on vessel size. To elucidate the effect of
vessel diameter, we performed a number of simulations in 2D for two
additional channel widths (W 5 10 mm and 40 mm) and two particle
sizes (Dp 5 0.15Dr and Dp 5 0.3Dr); corresponding simulation
snapshots are displayed in the Supplementary Fig. S4. We consider
margination into both the RBCFL and the potential adhesion layer.

The pronounced dependence of particle margination properties
on channel width for the potential adhesion layer is illustrated by a
comparison of Fig. 5(b) and Fig. 6. For particles with a size of Dp 5

0.3Dr (1.83 mm), particle margination into the potential adhesion
layer improves considerably as the channel size decreases due to
the much smaller RBCFL thickness in narrow channels. Thus, par-
ticle adhesion is expected to be more efficient in small vessels (i.e.,
capillaries) than in large vessels (i.e., venules and arterioles).
Supplementary Fig. S5 supports this observation for particles with
Dp 5 0.15Dr (0.91 mm). Furthermore, a reduction of margination
into the potential adhesion layer with decreasing particle size is
found for all channel sizes.

Particle margination based on the RBCFL thickness exhibits sim-
ilar dependence on Ht and flow rate for different channel widths, see
Supplementary Fig. S6. For the channel width W 5 10 mm, margina-
tion into the RBCFL differs only slightly for different particle sizes up
to Ht < 0.5. For Ht *w 0:5, the particle radius might be larger than the
RBCFL thickness, leading to an apparent decrease in margination for
the large particles. For the cases W 5 20 and 40 mm, where the
RBCFL thickness is always larger than the particle radius, we observe
that large particles marginate clearly better than small particles.

Dependence of margination on particle shape. Advances in micro-
and nano-particle fabrication facilitate the production of carriers of
various shapes, including spherical, prolate and oblate ellipsoidal,
and rod-like shapes5. However, advantages of different particle
shapes for drug delivery are still to be explored. Thus, we
investigate the effect of shape on the margination properties in
blood flow. Figure 7 displays results of simulations in 2D for the
margination probability (based on the RBCFL) of elliptic particles
under various blood flow conditions in comparison to circular
particles. The ellipse has an aspect ratio of about 7 and the longest
diameter is Dp 5 0.63Dr (3.84 mm); the enclosed area corresponds to
the area of a circle with diameter Dp 5 0.22Dr (1.35 mm). The plot
indicates that margination of elliptic particles is slightly worse than
that of circular particles. From these data we can also conclude that
margination of the elliptic particles with a smaller aspect ratio than 7
is similar to that presented in Fig. 7. However, since the largest

Figure 5 | Margination into a potential adhesion layer of thickness 200 nm. (a) Margination probability ps. The curves correspond to different particle

sizes, where Dp 5 0.63Dr (3.84 mm) is for an elliptic particle and the other curves are for circular particles. 2D simulation results for _c�<29:3. (b–d)

Margination diagrams for (b) Dp 5 0.3Dr (1.83 mm) (c) Dp 5 0.15Dr (0.91 mm), and (d) Dp 5 0.04Dr (0.25 mm).

Figure 6 | Margination for different channel widths. Margination into the potential adhesion layer based on d 5 0.5Dp 1 200 nm, for particles with size

Dp 5 0.3Dr (1.83 mm) and two channel widths (a) W 5 10 mm and (b) W 5 40 mm.
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SCIENTIFIC REPORTS | 4 : 4871 | DOI: 10.1038/srep04871 5

108 Scientific Reports, 4:4871, 2014



diameter of the ellipse is larger than that of a circle with the same area,
its margination into the potential adhesion layer, which is defined as
a probability of a particle to be within a near-wall layer of thickness
d 5 0.5Dp 1 200 nm, appears to be considerably larger for ellipsoids
than that for the corresponding sphere (see Fig. 5). We have also
performed a number of 3D simulations with oblate ellipsoids having
the same aspect ratio, which showed that their margination is
qualitatively similar to that in 2D.

Recent theoretical32,33 and experimental30,31 studies suggest that
ellipsoidal particles possess better adhesion properties than spheres
due to a larger contact area for adhesion interactions. It is also inter-
esting to consider drag force on an ellipsoid or sphere in shear flow
near a wall. In case of an ellipsoid close and parallel to a wall, the drag
force is found to be smaller than that on a sphere with the same
volume, which was estimated in separate simulations of a sphere
and an ellipsoid in shear flow with fixed position. Thus, adhered
ellipsoidal particles experience a lower drag force due to fluid flow
than the corresponding spheres with the same volume. In conclu-
sion, the current knowledge about adhesion of ellipsoidal particles
and our simulation results on margination suggest that ellipsoidal
particles are very likely a better choice for drug delivery than spher-
ical particles.

Dynamics of marginated particles. Local particle dynamics may
also influence the margination and adhesion efficiency. Simula-
tions in 3D show that the dynamics of marginated particles (i.e.,
within the RBCFL region) is different for spherical and ellipsoidal
particles. A spherical particle is subject to a uniform rotation, while
an ellipsoid displays tumbling dynamics. A quantitative analysis of
the average angular velocities Ævæ of marginated particles shows that
ellipsoidal particles rotate considerably slower within the RBCFL

than spherical carriers, see Fig. 8. The comparison is made for a
sphere and an ellipsoid of the same volume, while the long
semiaxis of the ellipsoid is about twice the radius of the sphere.
Within the RBCFL region it is plausible to assume a simple shear
flow with the wall shear rate _cw, which can be computed directly from
a near-wall velocity profile or estimated from the pressure gradient
applied to drive the flow. In Fig. 8, we compare the average angular
velocities of marginated spherical and ellipsoidal particles with the
theoretical predictions by Jeffery50 for an oblate ellipsoidal particle in
shear flow, which is given by

vh i~ _cw

rez1=re
, ð2Þ

where re is the aspect ratio of major and minor axis. For a sphere, re 5
1 which implies vs~ _cw=2, while for an ellipsoid, re 5 7 which results
in ve<0:14 _cw, such that ve , vs. In addition, while the results for
Ævæ in Fig. 8(a) for a sphere are close to the theoretical results, the
computed angular velocities for an ellipsoid in Fig. 8(b) are lower
than the corresponding theoretical predictions due to the
confinement of the ellipsoid between the wall and flowing RBCs. A
lower rotational velocity of a particle leads to a longer interaction
time between the particle and a wall. Thus, adhesion of ellipsoidal
particles is expected to be more efficient than for spheres with a
comparable size. In conclusion, a detailed analysis of dynamics of
marginated particles further supports the proposition that ellipsoidal
particles are likely to be better candidates for drug delivery.

Discussion
Particle margination in blood flow depends on particle size and
shape, hematocrit, vessel size, and flow rate. Margination of spherical
and ellipsoidal particles increases with increasing hematocrit, while
their margination properties appear to be rather similar, where a
sphere marginates slightly more efficient than an ellipsoid. The pre-
sented diagrams show that larger particles have a higher margination
probability in comparison to the smaller ones. Moreover, the distri-
bution of very small particles with a diameter smaller than approxi-
mately 250 nm is well represented by the blood plasma volume of
RBCs. Margination of particles into the potential adhesion layer is
found to be more pronounced in small vessels, indicating that par-
ticle adhesion is likely to occur more often in capillaries than in
arterioles and venules.

The simulation results are in good qualitative agreement with
several experimental observations15,17,25,30,31,48. For example, margina-
tion of micro-particles has been observed to be more efficient than
that of nano-particles in recent in vivo experiments48. However, a
detailed quantitative comparison is still difficult due to two reasons.
On the one hand, the majority of the simulation results is obtained
for 2D systems, which provide interesting insights into the relevant
mechanisms, but have limited power for quantitative predictions for
3D systems. On the other hand, experimental data on particle mar-

Figure 7 | Dependence of margination on particle shape. Margination

probabilities of ellipse-like particles (dashed lines) for various Ht and _c�

values in comparison to circular particles (solid lines) of the same area. The

long axis of a 2D elliptic particle is Dp 5 0.63Dr (3.84 mm) and the aspect

ratio equals approximately 7. The margination probability is calculated

based on the RBCFL thickness.

Figure 8 | Dynamics of marginated spherical and elliptical particles within the RBCFL. Comparison of average angular velocities Ævæ of (a) spherical and

(b) ellipsoidal particles for various wall shear rates _cw in 3D. The simulation results Ævæ (solid lines) are also compared with the theoretical

prediction (dashed lines) by Jeffery50 for a particle in simple shear flow.
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gination in blood flow15,48 are very scarce and most of the available
experimental investigations (e.g., Refs. 25, 30, 31) focus on carrier
adhesion. Even though margination is a necessary pre-condition for
particle adhesion to vessel walls, particle margination and adhesion
are not equivalent, since carrier adhesion may also depend on other
factors (e.g., specific targets, the receptor/ligand density and
distribution).

Clearly, the size and shape of drug carriers are important para-
meters not only for margination, but also for their adhesion and
further transport through biological barriers (e.g., internalization).
Our simulations suggest that ellipsoidal particles are expected to
adhere more efficiently than spherical carriers due to a larger surface
for adhesive interactions and decelerated tumbling motion within
the RBCFL. Therefore, our future numerical investigations will be
focused on the adhesion ability of various particles in blood flow.
Further requirements for efficient drug delivery include particle
transport through vessel walls, interstitial space, and cell membranes.
For instance, particle internalization by endothelial cells and intra-
cellular trafficking have been shown to be most efficient for spherical
sub-micron particles, rather than for micron-size carriers with an
ellipsoidal shape10. This observation points in the direction of smaller
carrier to be most efficient for internalization. As a consequence, the
concept of multi-stage drug-delivery carriers1,7, where a larger micro-
particle incorporates a number of small nano-carriers, seems to be
very promising. In this way, margination and carrier delivery or
adhesion to a specific target within the microvasculature could be
achieved using micro-particles, which would then be followed by the
release of nano-particles into the tissue. In conclusion, tackling vari-
ous drug-delivery challenges is a complex issue; its resolution
requires an inter-disciplinary effort including in vitro and in vivo
experiments and realistic numerical simulations.

Methods
Simulation method. We employ the dissipative particle dynamics (DPD) method51,52

for 2D simulations and the smoothed DPD (SDPD) method53 for 3D simulations,
where both methods are mesoscopic particle-based simulation approaches which
properly capture hydrodynamics. Both simulated systems are represented by a
collection of n point particles. The particles interact locally within a selected cutoff
region through three pairwise forces denoted as conservative (FC), dissipative (FD),
and random (FR) forces. The time evolution of the velocity vi and position ri of particle
i with the mass mi is determined by the Newton’s second law of motion dri 5 vidt and

dvi~
1

mi
FC

i zFD
i zFR

i

� �
dt. More information on the DPD formulation can be found

in Refs. 51, 52, while the DPD parameters used in 2D simulations are presented in
Supplementary Tab. 1.

In the SDPD method, the forces are derived by a discretization of the Navier-Stokes
equation similar to the smoothed particle hydrodynamics (SPH) method54, while the
implementation of thermal fluctuations is analogous to that in DPD53. The forces on

particle i are given by the conservative force FC
i ~

X
j

pi

r2
i
z

pj

r2
j

 !
vijrij , the

dissipative force FD
i ~{

X
j
cij vijzr̂ij r̂ij

:vij
� �

, and the random force

FR
i ~

X
j
sij d�Wijz

1
3

tr dWij
� �� 	

:̂rij . Thereby, dWij is a matrix of independent

Wiener increments and d�Wij is its traceless symmetric part. Here, pi and pj are particle
pressures which are given by the equation of state p 5 p0(r/r0)a 2 b with p0, r0, a, and
b being model parameters, see Supplementary Tab. S2. The particle density ri is

calculated locally as ri~
X

j
W rij
� �

, where W rð Þ~ 105
16pr3

c
1z3

r
rc

� 	
1{

r
rc

� 	3

is

the Lucy function54 and rc is the cutoff radius. The weight function w(r) is determined
by =W(r) 5 2rw(r). The coefficients cij and sij define the strength of dissipative and
random forces. The fluctuation-dissipation theorem to be satisfied requires

sij~2
ffiffiffiffiffiffiffiffiffiffiffiffi
kBTcij

q
. Finally, the friction coefficients are defined as cij~

5g0

3

w rij
� �

rirj
.

Blood components. In 3D, a RBC membrane and suspended carriers are both
modeled by a collection of discrete points, which are the vertices of a triangular
network of springs on their membrane surface55. The network assumes fixed
connectivity with the potential energy defined as

Umembrane~UspringzUbendzUareazUvol, ð3Þ

which includes the spring’s elastic energy Uspring, the bending energy Ubend, and the
area and volume conservation constraints Uarea and Uvol. The spring forces mimic the

elasticity of a membrane. The bending energy represents the bending resistance of a
membrane, while the area and volume energies enforce area-incompressibility of a
membrane and incompressibility of the inner cytosol, respectively. Detailed
description of these potentials can be found in Ref. 55, while all model parameters are
given in Supplementary Tab. S3.

In 2D, RBCs and micro- and nano-particles are modeled as closed bead-spring
chains, which incorporate bending rigidity and an area constraint41. The model
parameters are presented in Supplementary Tab. S4. Carriers in 2D are modeled by a
collection of Np

v particles (see Supplementary Tab. S5), which are constrained to
maintain a rigid configuration.

Simulation setup. The simulation setup consists of a single channel of cylindrical
shape in 3D with diameter W 5 20 mm and length of L 5 12.3Dr. In 2D, a slit
geometry with different widths W 5 10, 20, and 40 mm and length L 5 19.5Dr

(independent of W) is employed. The channel is filled with fluid particles and with N
suspended carriers and NRBC RBCs. The number of RBCs is computed according to
channel hematocrit, which corresponds to the volume fraction of RBCs in 3D and to
the area fraction of RBCs in 2D. The number of suspended particles for different
simulations is provided in Supplementary Tab. S5.

Boundary conditions. In the flow direction, periodic boundary conditions (BCs)
were imposed, while in the other directions the suspension was confined by walls. The
walls are modeled by frozen fluid particles with the same structure as the fluid, while
the wall thickness is equal to rc. Thus, the interactions of fluid particles with wall
particles are the same as the interactions between fluid particles, and the interactions
of suspended carriers and cells with the wall are identical to those with a suspending
fluid. To prevent wall penetration, fluid particles as well as vertices of RBCs and
carriers are subject to reflection at the fluid-solid interface. We employed bounce-
back reflections, because they provide a better approximation for the no-slip
boundary conditions in comparison to specular reflection of particles. To ensure that
no-slip boundary conditions are strictly satisfied, we also add a tangential adaptive
shear force56 which acts on the fluid particles in a near-wall layer of a thickness hc 5 rc.

Coupling between solvent and cells/carriers. Coupling between the fluid flow and
cells/carriers is achieved through viscous friction55 between cell vertices and the
surrounding fluid particles, which is implemented via the DPD interactions FD and FR

for both 2D and 3D simulations. The strength c of the dissipative force FD for the
interaction between a fluid particle and a membrane vertex is computed such that no-
slip BCs are ensured. The derivation of c is based on the idealized case of linear shear
flow over a flat part of a membrane with area A. In a continuum hydrodynamics
description, the total shear force exerted by the fluid on the area A is equal to Ag _c,
where g is the fluid’s viscosity and _c is the local wall shear-rate. The same fluid force
has to be also transmitted onto a discrete membrane having NA vertices within the
area A. The force on a single membrane vertex exerted by the sheared fluid can be

found as Fv~

ð
Vh

ng rð ÞFDdV where n is the fluid number density, g(r) is the radial

distribution function of fluid particles with respect to the membrane particles, and Vh

is the half sphere volume of fluid above the membrane. Here, the total shear force on
the area A is equal to NAFv. The equality of NAFv~Ag _c results in an expression of the
dissipative force coefficient in terms of the fluid density and viscosity, wall density
NA/A, and rc. Under the assumption of linear shear flow the shear rate _c cancels out.
This formulation results in satisfaction of the no-slip BCs for the linear shear flow
over a flat membrane; however, it also serves as an excellent approximation for no-slip
at the membrane surface. Note that conservative interactions between fluid and
membrane particles are turned off, which implies that the radial distribution function
is structureless, g(r) 5 1. In 2D, the surface area is replaced by a line of length L with
NL particles, and the half sphere volume is replaced by the half circle area Av.

Gathering statistics. The center-of-mass distributions of particles were calculated on
the fly and were written to disk as sub-averages over short time intervals. Final
averaging of the data is done during post-processing. To make sure that the final
averaging of data starts from a time point which is sufficiently late for the system to be
independent of the initial conditions, we have tested the sensitivity of final
distributions to the choice of the starting time for averaging.

Measuring RBC-free-layer thickness. To determine the RBC-free-layer (RBCFL)
thickness, we measure the outer edge of the RBC core shown in Supplementary Fig.
S1, which is similar to RBCFL measurements in experiments37,57. The data are
averaged for many RBC snapshots at different times. In 3D, the RBC core edge is
measured by projecting RBC vertices onto the x-y plane, where curves of the RBC core
minimum and maximum are fitted similar to that in Supplementary Fig. S1. Here, we
also perform averaging over different angular orientations (to exploit the cylindrical
symmetry of the channel) in addition to the temporal averaging.
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Deformation and dynamics of red blood cells in
flow through cylindrical microchannels†

Dmitry A. Fedosov,* Matti Peltomäki and Gerhard Gompper

The motion of red blood cells (RBCs) in microcirculation plays an important role in blood flow resistance

and in the cell partitioning within a microvascular network. Different shapes and dynamics of RBCs in

microvessels have been previously observed experimentally including the parachute and slipper shapes.

We employ mesoscale hydrodynamic simulations to predict the phase diagram of shapes and dynamics

of RBCs in cylindrical microchannels, which serve as idealized microvessels, for a wide range of channel

confinements and flow rates. A rich dynamical behavior is found, with snaking and tumbling discocytes,

slippers performing a swinging motion, and stationary parachutes. We discuss the effects of different

RBC states on the flow resistance, and the influence of RBC properties, characterized by the Föppl–von

Kármán number, on the shape diagram. The simulations are performed using the same viscosity for both

external and internal fluids surrounding a RBC; however, we discuss how the viscosity contrast would

affect the shape diagram.

1 Introduction

The behavior of so mesoscopic particles (e.g., polymers, vesi-
cles, capsules, and cells) in ow has recently received enormous
attention due to the wide range of applications of such
suspensions and their rich physical properties.1 To better
control and/or manipulate the suspension's properties, for
example in lab-on-chip applications,2,3 a deeper understanding
of the interplay among ow forces, elastic response and
dynamics of so objects is required. An important example is
the motion of red blood cells (RBCs) in microcirculation, which
inuences many vital processes in microvasculature;4 however,
similar mechanisms and phenomena encompass a much wider
class of capsule suspensions.5,6 RBCs are extremely exible and
experience strong deformation in microcirculation due to the
ow and/or geometrical constraints. RBC deformation is
important for the reduction of blood ow resistance7–11 and for
ATP release and oxygen delivery.12,13

RBCs in microcirculation may attain various shapes
including parachutes and slippers.7,14–21 Parachutes are char-
acterized by a rather symmetric shape resembling a semi-
spherical cap and are located at a position near the tube center.
Slippers correspond to asymmetric RBC shapes, and therefore

their membranes are typically in motion (e.g., tank-treading).
Both non-centered slipper20 and centered slipper shapes17 have
been observed experimentally, where the latter may only differ
slightly from parachute shapes. The stable slipper shapes are
well established at higher hematocrits due to hydrodynamic
cell–cell interactions.14,15,19 However, it is still not fully clear
whether slippers are stable or transient states for single cells in
ow.7,9,17,20,21 The most convincing evidence so far comes from
simulations in two dimensions (2D).9,10,21

Simulations of 2D vesicles in slit channels have shown the
existence of stable parachutes, slippers, and a snaking dynamics
of discocytes9,10—where snaking refers to an oscillating RBC
dynamics near the tube center. A phase diagram of various
shapes was predicted, depending on relative connement and
ow rate. Simulations of single RBCs in three dimensions
(3D)7,8,11,18 have been restricted so far to a limited number of
studies, which only reveal (except for uctuations and transient
states) stationary parachutes and discocytes. It is important to
note that these shapes (averaged over thermal uctuations) are
characterized by different symmetry classes, ranging from cylin-
drical symmetry (parachutes) to a single mirror plane containing
the capillary axis and the RBC center (slippers). This raises several
important questions: are slipper shapes also stable in 3D capillary
ow? Is snaking dynamics around the center line possible in
cylindrical microchannels in 3D? Do thermal uctuations destroy
the regular snaking oscillations? What is the role of the
membrane shear modulus (absent in 2D) in the phase diagram?

In this paper, we present a systematic study of single RBCs
owing in microchannels. We construct diagrams of RBC
shapes for different ow conditions and analyze RBC defor-
mation. Changes in RBC properties (e.g., shear elastic modulus,
bending rigidity) are also considered, since they are of
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importance in various blood diseases and disorders.22 The
presented 3D shape diagrams describe RBC deformation in
microchannels, which mimic small vessels in microcirculation,
and show that the parachute shape occurs mainly in small
channels, while in large channels the slipper shape may occur.
All simulations assume the same viscosity for both cytosol and
suspending uid; however, we discuss how the viscosity
contrast would affect the shape diagram. We also compare the
3D results with the 2D shape diagrams in ref. 9 and 10 and
emphasize essential differences. For instance, due to
membrane shear elasticity, there exists a region of RBC
tumbling in 3D, which is absent in 2D. Finally, the simulation
results are compared to available experimental data.17,20,23

The article is organized as follows. In Section 2 we briey
describe the mesoscopic method employed for uid ow, a RBC
model, and simulation setup and parameters. In Section 3 we
rst present the shape diagram for cell parameters typical of a
healthy RBC. Then, RBC membrane properties are varied in
order to elucidate their effects on the RBC shape and dynamics
in microchannel ow. We also discuss the effect of viscosity
contrast between external and internal uids on the shape
diagram and the effects of different shapes on the ow resis-
tance. We conclude briey in Section 4.

2 Models & methods

To model tube ow, we employ the smoothed dissipative
particle dynamics (SDPD) method24 for the suspending uid.
SDPD is a particle-based mesoscopic simulation technique,
where each SDPD particle represents a small volume of uid
rather than individual atoms or molecules. The RBC membrane
is represented by a triangulated network model7,8,25,26 and
coupled to a uid through friction forces.

2.1 Red blood cell model

The RBC membrane is modeled by a triangulated network of
springs,7,8,25,26 which includes elastic, bending, and viscous
properties. A RBC is represented by a collection of Nv particles
connected by Ns ¼ 3(Nv � 2) springs with the potential

Usp ¼
X

j˛1.Ns

2
4kBTlm

�
3xj

2 � 2xj
3
�

4x
�
1� xj

� þ kp

lj

3
5; (1)

where lj is the length of the j-th spring, lm is the maximum
spring extension, xj ¼ lj/lm, x is the persistence length, and kp is
the spring constant. Note that this spring denition allows us to
dene a nonzero equilibrium spring length l0. Then, we employ
a stress-free model for the membrane8 so that each spring has
its own l0j set to the spring length of an initially triangulated cell
surface. In addition to the elastic contribution in eqn (1), each
spring may also have dissipative and random force terms8 in
order to incorporate membrane viscosity. The bending rigidity
of a membrane is modeled by the bending energy

Ubend ¼
X

j˛1.Ns

kb
�
1� cos

�
qj � q0

��
; (2)

where kb is the bending constant, qj is the instantaneous angle
between two adjacent triangles having the common edge j, and
q0 is the spontaneous angle, which is set to zero in all simula-
tions. Finally, to maintain a constant cell area and volume which
mimic area-incompressibility of the lipid bilayer and incom-
pressibility of the inner cytosol, we introduce two potentials

Uarea ¼ ka
ðA� ArÞ2

2Ar

þ
X
j

kd

�
Aj � A0

j

�2
2A0

j

;

Uvol ¼ kv
ðV � VrÞ2

2Vr

;

(3)

where ka, kd, and kv are the global area, local area, and volume
constraint coefficients, respectively. A and V are the instanta-
neous cell area and volume, while Aj is the instantaneous area of
an individual face within a triangulated network. Ar, A

0
j , and Vr are

the desired total RBC area, area of the j-th face (set according to
the initial triangulation), and total RBC volume, respectively.

To relate the model parameters in the spring potential (1)
(e.g., x, kp) and the bending potential (2) to the macroscopic
membrane properties (e.g., Young's modulus Yr, bending
rigidity kr), we use analytic relationships derived for a regular
hexagonal network.8,27 The ratio lm/l0 is set to 2.2 for all
springs.26 To relate simulation parameters to the physical
properties of RBCs, we need a basic length and energy scale.
Therefore, we dene an effective RBC diameter Dr ¼

ffiffiffiffiffiffiffiffiffiffi
Ar=p

p
with Ar being the RBC membrane area. From Ar we can also
calculate the average bond length l0 for a given number of
membrane vertices Ar=Nt ¼

ffiffiffi
3

p
l0

2=4 where Nt ¼ 2Nv � 4 is the
total number of triangular elements on a membrane. Experi-
mental results28 for the RBC area imply that Dr¼ 6.5 mm. Table 1
summarizes the parameters for the RBC model in units of Dr

and the thermal energy kBT, and the corresponding average
values for a healthy RBC in physical units. The global area (ka)
and volume (kv) constraint coefficients are chosen large enough
to approximate closely the area-incompressibility of the lipid
bilayer and incompressibility of the inner cytosol. Finally, a
relationship for time scale is based on the characteristic RBC
relaxation time, which is dened further below in the text.

2.2 Smoothed dissipative particle dynamics

SDPD24 is a mesoscopic particle method, which combines two
frequently used uid-dynamics approaches: the smoothed
particle hydrodynamics29,30 and dissipative particle dynamics31,32

methods. The SDPD system consists of N point particles of mass
mi, position ri and velocity vi. SDPD particles interact through
three pairwise forces: conservative (C), dissipative (D), and
random (R), so that the force on particle i is given by

FC
i ¼

X
j

 
pi

ri
2
þ pj

rj
2

!
wijrij ;

FD
i ¼ �

X
j

gij

�
vij þ

�
vij$eij

�
eij
�
;

FR
i ¼

X
j

sij

	
dW

S

ij þ
1

3
tr
�
dWij

�

$eij ;

(4)
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where eij¼ rij/|rij| and vij¼ vi� vj. pi and pj are particle pressures
assumed to follow the equation of state p ¼ p0(r/r0)

a � b, where
p0, r0, a, and b are selected parameters. The particle density is

calculated locally and dened as ri ¼
X
j

WLðrijÞ with weight

function WLðrÞ ¼ 105
16prc3

	
1þ 3

r
rc


	
1� r

rc


3

being the Lucy

function, where rc is the cutoff radius. Note thatVWL(r)¼�rw(r)

so that wðrÞ ¼ 315
4prc5

	
1� r

rc


2

and wij ¼ w(rij). The (distance-

dependent) coefficients gij and sij dene the strength of dissi-

pative and random forces and are equal to gij ¼
5h0
3

wij

rirj
and

sij ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTgij

p
, where h0 is the desired uid's dynamic viscosity

and kBT is the thermal energy unit. The notation tr[dWij]
corresponds to the trace of a random matrix of independent
Wiener increments dWij, and dW—S

ij is the traceless symmetric
part.

The time evolution of velocities and positions of particles is
determined by Newton's second law of motion

dri ¼ vi dt; dvi ¼ 1

mi

�
FC
i þ FD

i þ FR
i

�
dt: (5)

The above equations of motion are integrated using the velocity-
Verlet algorithm.

The SDPD uid parameters are given in Table 2. A natural
length scale in the uid is the cut-off radius rc; however, since
we investigate the dependence of uid properties on rc, we use
the membrane bond length l0 instead, which is very similar in
magnitude to rc. In addition, the exponent a in the equation of
state is chosen to be a ¼ 7, and r0 ¼ n, where n is the uid's
number density (in particles per l0

3). A relatively large value of a

provides a good approximation of uid incompressibility, since
even small changes in local density may lead to strong local
pressure changes. Furthermore, the speed of sound, c, for the
selected equation of state can be given as c2 ¼ p0a/r0. The cor-
responding Mach numbers have been kept below 0.1 in all
simulations providing a good approximation for an incom-
pressible uid ow.

To span a wide range of ow rates, we employed different
values of uid viscosities h in simulations with an input
parameter h0 ˛ [15; 120]

ffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
=l0

2 (m is the uid's particle
mass), since the uid viscosity modies linearly the RBC
relaxation time scale dened further below. Large values of
viscosity were used to model high ow rates of the physical
system in order to keep the Reynolds number in simulations,
based on characteristic RBC size, sufficiently low (see also an
argument at the end of Section 2.3). Even though we can directly
input the desired uid viscosity h0 in SDPD, the assumption
that h0 equals the actual uid viscosity h is reliable only when
each SDPD particle has large enough number of neighboring
particles, whichmay require a large enough cutoff radius and/or
a density of uid particles. Therefore, it is always advisable to
calculate the uid viscosity directly (e.g., in shear-ow setup) to
check validity of the approximation of the simulated uid
viscosity by h0. Note that for the uid viscosity we have always
used the precalculated values of h rather than input values of h0.

The tube wall has been modeled by frozen particles which
assume the same structure as the uid, while the wall thickness
is equal to rc. Thus, the interactions of uid particles with wall
particles are the same as the interactions between uid parti-
cles, and the interactions of a RBC with the wall are identical to
those with a suspending uid. The wall particles also provide a
contribution to locally calculated density of uid particles near
a wall, while the local density of wall particles is set to n. To
prevent wall penetration, uid particles as well as vertices of a
RBC are subject to reection at the uid–solid interface. We
employed bounce-back reections, because they provide a
better approximation for the no-slip boundary conditions in
comparison to specular reection of particles. To ensure that
no-slip boundary conditions are strictly satised, we also add a
tangential adaptive shear force33 which acts on the uid parti-
cles in a near-wall layer of a thickness rc.

Table 1 RBC parameters in units of the effective RBC diameter Dr and
the thermal energy kBT, and the corresponding average values for a
healthy RBC in physical units. Nv is the number of membrane vertices,
Ar is the RBC membrane area, l0 is the average bond length, Vr is the
RBC volume, T is the temperature, Yr is the membrane Young's
modulus, kr is the membrane bending rigidity, and kd, ka, and kv are the
local area, global area, and volume constraint coefficients, respec-
tively. In all simulations, we have chosen Ar ¼ 133.5 and kBT ¼ 0.4,
which implies that Dr ¼ 6.5 and l0 ¼ 0.4

RBC parameters Scaled units Physical units

Nv 1000
Ar 133.5 � 10�12 m2

Dr
ffiffiffiffiffiffiffiffiffiffiffi
Ar=p

p
6.5 � 10�6 m

l0 0.061Dr 3.93 � 10�7 m
Vr 0.34Dr

3 93 � 10�18 m3

T 310 K
Yr 1:82� 105

kBT

Dr
2

18.9 � 10�6 N m�1

kr 70kBT 3 � 10�19 J
kd 4:2� 104

kBT

Dr
2

4.3 � 10�6 N m�1

ka 2:1� 106
kBT

Dr
2

2.1 � 10�4 N m�1

kv 1:4� 107
kBT

Dr
3

220 N m�2

Table 2 SDPD fluid parameters in simulation and physical units. Mass
and length for the SDPD fluid are measured in units of the fluid particle
massm and the membrane bond length l0. p0 and b are parameters for
the pressure equation, and h is the fluid's dynamic viscosity. In all
simulations, we have setm ¼ 1, l0 ¼ 0.4, and the thermal energy kBT ¼
0.4

Fluid parameters Scaled units Physical units

p0 16
kBT

l0
3

1.07 Pa

b
12.8

kBT

l0
3

0.86 Pa

h
16� 122

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p

l0
2

1.2 � 10�3 Pa s

kBT 4.282 � 10�21 J
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Coupling between the uid ow and RBC deformation is
achieved through viscous friction between RBC nodes and
surrounding uid particles, which is implemented via dissipa-
tive particle dynamics interactions.8 Each membrane vertex
interacts with uid particles within a spherical volume with a
radius r 0

c using dissipative and random forces similar to those in
SDPD. The strength of dissipative (friction) coupling depends
on the uid viscosity and particle density as well as on the
choice of r 0

c. The RBC membrane also separates inner and outer
uids, which is implemented through bounce-back reections
of uid particles on a membrane surface.8 Finally, the local
density of uid particles near the membrane includes contri-
butions of both inner and outer uid particles.

2.3 Simulation setup

The simulation setup consists of a single periodic tube-like
channel characterized by a diameter D and the length L ¼ 10Dr,
lled with a uid and a single suspended RBC. For simplicity,
the uid viscosity inside a RBC is set to be the same as that of
blood plasma. The ow is driven by a constant force f applied to
each uid particle, which is equivalent to a constant pressure
gradient DP/L ¼ fn, where DP is the pressure drop. To charac-
terize the ow we dene a non-dimensional shear rate given by

cg* ¼ hDr
3 cg

kr
¼ s cg; (6)

where cg ¼ �v/D ¼ Dfn/(32h) is the average shear rate (or pseudo-
shear rate), �v ¼ Q/A is the average ow velocity with cross-
sectional area A ¼ pD2/4 and volumetric ow rate Q ¼ pD4fn/
(128h), and s¼ hDr

3/kr is a characteristic relaxation time of a RBC.
Note that we dene cg based on the Poiseuille ow solution for a
Newtonian uid without a RBC, since a single RBC does not
signicantly affect the total ow rate. This assumption for Q also
results in _g* to be proportional to the pressure drop, which
would be a convenient parameter to control in experiments.
Furthermore, the ow behavior is determined by the cell
connement c ¼ Dr/D and the Föppl–von Kármán number G ¼
YrDr

2/kr ¼ 2662 (average value for a healthy RBC), which charac-
terizes relative importance of cell elasticity to bending rigidity.

To interpret the non-dimensional shear rate with respect to
experimental measurements, we can compute the characteristic
RBC relaxation time from eqn (6) to be s ¼ 1.1 s. Thus, the
pseudo-shear rate cg used in experiments is roughly equivalent
in magnitude to _g* in inverse seconds. It is important to note
that since we employ distinct viscosity values in different
simulations, the RBC relaxation time in simulation units also
changes. Therefore, the same shear rate in simulations with
different viscosities corresponds to different shear rates in
physical units. This approach allows us to keep the Reynolds
number low in the simulations, while a large range of shear
rates in physical units can be spanned.

2.4 Sensitivity of simulation results to the discretization of
uid and RBC membrane

A too coarse discretization of uid and RBC membrane may
affect simulation results. To check whether our RBC

discretization is ne enough, a number of simulations have
been performed using signicantly different numbers of
membrane vertices, Nv ¼ 1000 and Nv ¼ 3000. The comparison
reveals that Nv ¼ 1000 is sufficient to obtain accurate results for
the investigated range of ow rates. Much larger ow rates may
require ner RBC discretization due to strong membrane
deformation.

Another potential source of error arises from the discretiza-
tion of uid ow. There are two main parameters here, which
are related to each other: the particle density n and the cutoff
radius rc within the SDPD uid. The value of rc cannot be
arbitrarily small, since the SDPD method properly functions
only if each particle has a large enough number of neighboring
particles. Thus, the choice of rc is directly associated with the
particle density and can be selected smaller in magnitude for
higher number densities. To study the sensitivity of the results
to uid discretization, the uid density has been varied between
n ¼ 0.2l0

�3 and n ¼ 0.8l0
�3, while the corresponding rc values

were between 3.8l0 and 2.3l0. Simulation results show that
values of rc ( 3l0 and n T 0.4l0

�3 are small and large enough,
respectively, to properly reproduce the ow around a RBC for
the studied ow rates. Note that the cutoff radius does not
directly reect strong local correlations, since local interactions
are scaled by the weights wij, which decay to zero at distance rc.

Finally, coupling between the RBC and uid ow is also
performed over a smoothing length r 0

c. Even though generally
there are no restrictions on the choice of r 0

c, it has to be small
enough to impose properly the coupling between RBC vertices
and local uid ow. To test the sensitivity of our simulation
results to the choice of this parameter, we varied the coupling
radius between 1.2l0 and 2.4l0. A comparison of simulation
results indicated that r 0

c ( 1.9l0 appears to be sufficient to
obtain results independent of r 0

c for _g* ( 100. All results in the
paper are obtained using the discretization parameters which
comply with the estimations made above.

3 Results and discussion
3.1 Shapes and dynamics of a healthy RBC

Fig. 1 shows several RBC shapes for c¼ 0.58 (corresponding to a
channel diameter D ¼ 1.72Dr), which are typically encountered
in microcirculatory blood ow; see also Movies S1–S4.† For slow
ows, see Fig. 1(a), the RBC shape is similar to the biconcave
discocyte shape in equilibrium. For higher ow rates, see
Fig. 1(b), a slipper shape may be observed, which is character-
ized here by an off-center position within the tube so that the
membrane displays a tank-treading motion due to local shear
gradients resembling the tank-treading in shear ow.34,35 At the
highest ow rate, see Fig. 1(c), a parachute shape is obtained,
where the cell ows at the channel center and the membrane is
practically not moving in the lab frame.

Fig. 2 presents our main result, the shape diagram for
different ow rates and connements, where the cell parame-
ters are similar to those of a healthy RBC. The parachute RBC
shape is predominantly observed in the region of strong
connements and high enough ow rates, where large ow
forces are able to strongly deform a RBC. Here, it should be
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noticed that parachutes are also stable for weak or no conne-
ment when the curvature of the parabolic ow in the center
exceeds a critical value.9,36 At weak connements, we nd off-
center slippers with tank-treading motion for higher ow rates,
and discocytes with tumbling motion for lower ow rates. Both
regions arise from the transition from strongly deformed
parachute to more relaxed (discocyte and slipper) shapes,
similar to the transition seen in the diagram for 2D vesicles.9,10

However, the boundary between slippers and discocytes is
governed by the critical shear rate _g*

ttt of the tumbling-to-tank-
treading transition of a RBC;37,38 tumbling occurs off the tube
center, when the local shear rate drops below _g*

ttt. In the case of
small viscosity contrast between inner and outer uids (equal to
unity here), the origin of the tumbling-to-tank-treading transi-
tion is the anisotropic shape of the spectrin network, which
requires stretching deformation in the tank-treading state,37,38

and therefore cannot be captured by simulations of 2D vesicles.
In addition, near the tumbling-slipper boundary, tumbling

motion of a RBC exhibits a noticeable orbital dri so that the
tumbling axis is not xed and oscillates in the vorticity direction
(see Movie S2†). This effect is qualitatively similar to a rolling
motion (also called kayaking) found in experiments39 and in
simulations40 of a RBC in shear ow. Orbital oscillations of a
tumbling RBC are attributed to local membrane stretching
deformation due to small membrane displacements whose
effect becomes reduced if a RBC transits to a rolling motion.39

At small shear rates _g*, there also exists a so-called snaking
region, rst observed for 2D vesicles in ref. 9 and 10, where a
RBC performs a periodic oscillatory motion near the center line.
In contrast to snaking in 2D, the snaking motion in 3D is fully
three dimensional and exhibits an orbital dri (see Movie S1†),
which is similar to that for a RBC rolling motion in shear ow
occurring in a range of shear rates between RBC tumbling and
tank-treading.39,40 The origin of orbital oscillations in the
snaking regime might be similar to that for a rolling RBC;
however, this issue requires a more detailed investigation. Note
that at very low _g* ( kBT/kr, the rotational diffusion of RBCs
becomes important, and RBC dynamics is characterized by
random cell orientation. Another striking difference between
the phase diagrams in Fig. 2 and in ref. 9 and 10 is that at high
connements the “conned slipper” found in the 2D vesicle
simulations is suppressed in 3D. The conned slipper in 2D
found for c T 0.6 is qualitatively similar to a slipper at low
connements, which is also called “unconned slipper” in ref. 9
and 10, since this vesicle state exists in unbound parabolic ow.
Note that the regions of conned and unconned slippers in 2D
have no common boundary. The absence of slippers at high
connements in 3D is due to the cylindrical shape of a channel,
which would cause the conned slipper to conform to the wall
curvature, which is energetically unfavorable.

To better understand the differences between various RBC
states, we now analyze the cell orientational angle, displace-
ment from the channel center, and asphericity. The RBC
orientational angle is dened as an angle between the eigen-
vector of the gyration tensor corresponding to the smallest
eigenvalue (RBC thickness) and the tube axis. The RBC
displacement r is computed as a distance between the RBC
center of mass and the tube center. The RBC asphericity char-
acterizes the deviation of a cell from a spherical shape and is
dened as [(l1 � l2)

2 + (l2 � l3)
2 + (l3 � l1)

2]/(2Rg
4), where l1 #

l2 # l3 are the eigenvalues of the gyration tensor and Rg
2 ¼ l1 +

Fig. 1 Simulation snapshots of a RBC in flow (from left to right) for c ¼ 0.58. (a) A biconcave RBC shape at _g* ¼ 5; (b) an off-center slipper cell
shape at _g* ¼ 24.8; and (c) a parachute shape at _g* ¼ 59.6. See also Movies S1–S4.†

Fig. 2 A phase diagram for G ¼ 2662 (Yr ¼ 18.9� 10�6 N m�1, kr ¼ 3�
10�19 J), which mimics average membrane properties of a healthy
RBC. The plot shows various RBC dynamics states depending on the
flow strength characterized by _g* and the confinement c. The symbols
depict performed simulations, with the RBC states: parachute (green
circles), slipper (brown squares), tumbling (red diamonds) and snaking
(blue stars) discocytes. The phase-boundary lines are drawn sche-
matically to guide the eye.
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l2 + l3. The asphericity for a single RBC in equilibrium is equal
to 0.15. Fig. 3 presents the temporal dependence of these
properties for different RBC states, including snaking and
tumbling discocyte, slipper, and parachute. For the snaking
dynamics, the orientational angle oscillates between 40 and 90
degrees (Fig. 3(a)), the cell remains close to the channel center
(Fig. 3(b)), and it shows only slight deformation compared to
the equilibrium shape (Fig. 3(c)). The parachute shape is char-
acterized by a small orientational angle (aligned with the tube
axis), a cell position right in the tube center, and a small
asphericity which indicates that the RBC shape attains a more
spherical shape. Both tumbling discocytes and tank-treading
slippers are displaced further from the channel center (Fig. 3(b))
than snaking discocytes and parachutes, and show an oscil-
lating orientational angle. However, tumbling discocytes clearly
show cell rotations, while slippers display a swinging motion
characterized by small orientational oscillations around the
tank-treading axis.37 Moreover, a tumbling RBC does not expe-
rience strong deformation (Fig. 3(c)), while a slipper shows large
oscillations in cell asphericity. Note that to determine the RBC
shape under given conditions, we used both visual assessment
of the corresponding RBC shapes in ow and the analysis of the
characteristics discussed above.

3.2 Comparison with experiments

There exist several experimental studies of a RBC in micro-
channel ow.17,20,23,41 In the experiments of ref. 23, the rotation
of single RBCs and of their rouleaux structures in tube ow with
radii ranging from 30 mm to 100 mmhas been investigated. Even
though the tube diameters in the experiments were larger than
those used in our simulations, these experiments provide direct
evidence of the existence of RBC off-center tumbling dynamics
for low connements and low ow rates with cg ( 50 s�1, in
agreement with the simulation results in Fig. 2.

In the experiments of ref. 17, the imposed ow velocities
were very large, ranging from 1 cm s�1 to 30 cm s�1 in a capillary
with the diameter of 9 mm. This is much faster than the typical
ow velocities in microcirculation, where for venules and

arterioles with a similar diameter ow velocities are in the range
of 0.2–7 mm s�1.4,42 The range of ow velocities we span in our
simulations is about 0.2–1.0 mm s�1, and is therefore compa-
rable with that in microcirculation. The results in ref. 17 show
the existence of parachute and slipper shapes, where a weak
connement favors non-centered slipper shapes, which is in
qualitative agreement with the simulations in Fig. 2. Further-
more, a good agreement between experiments and simulations
is found for low connements, where parachute shapes are
observed for ow rates with the velocities lower than 4–
7 cm s�1.17 At ow velocities larger than approximately 7 cm s�1

and at low connements, centered slippers are observed which
resemble parachutes, but become slightly asymmetric.17 Recent
2D simulations10 have also found that at high enough ow rates
centered slippers and parachutes may coexist. Currently, we are
not able to reach such high ow rates in 3D simulations due to
numerical limitations. In addition, this region might be of
limited interest, since the corresponding ow rates are far
beyond the physiologically relevant values.

Experimental data in ref. 20 were obtained for narrow
capillaries with diameters ranging from 4.7 mm to 10 mm;
however, the ow velocities are considerably smaller than those
in ref. 17, in the range of 1–40 mm s�1. For strong connements
cT 1, centered bullet-like shapes are observed which resemble
an elongated cylindrical shape with a semi-spherical cap at the
front end and a semi-spherical dip at the rear end. A compar-
ison with our simulation results for the weaker connement of
c ¼ 0.65 shows a good agreement since centered parachute
shapes are found in both experiments and simulations. The
transition to the parachute shape for c ¼ 0.65 occurred at the
RBC velocity of about 0.5 mm s�1 in the experiments,20

while our simulations predict the transition velocity of about
0.45 mm s�1.

3.3 The effects of membrane properties on the shape
diagram

In order to investigate the effects of membrane elastic param-
eters on the RBC phase diagram in capillary ow, we calculated

Fig. 3 Characteristics of different RBC states: blue triangle – snaking discocyte ( _g* ¼ 9.9, c ¼ 0.72), red diamond – tumbling discocyte ( _g* ¼
14.9, c ¼ 0.44), brown square – slipper ( _g* ¼ 49.7, c ¼ 0.44), and green circle – parachute ( _g* ¼ 64.6, c ¼ 0.65). (a) Cell orientational angle
between the eigenvector of the gyration tensor corresponding to the smallest eigenvalue (RBC thickness) and the tube axis. (b) Distance between
the RBC center of mass and the tube center normalized by Dr. (c) RBC asphericity, which characterizes the deviation from a spherical shape. The
asphericity is defined as [(l1� l2)

2 + (l2� l3)
2 + (l3� l1)

2]/(2Rg
4), where l1# l2# l3 are the eigenvalues of the gyration tensor and Rg

2¼ l1 + l2 +
l3. The asphericity for a single RBC in equilibrium is equal to 0.15. See also Movies S1–S4.†
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phase diagrams for both reduced Young's modulus and
increased bending rigidity. The state diagram for membrane
bending rigidity increased by a factor of ve, which leads to kr ¼
1.5 � 10�18 J and G ¼ 532, is shown in Fig. 4. We expect a
dependence of the transition lines on the membrane parame-
ters and geometry of the channel to be of the form _g*

c ¼ ~U(G, c,
kr/kBT), where ~U is a universal function for each transition. In
addition, a more general form of _g*c should also include the
strength of thermal uctuations characterized by ambient
temperature as an independent variable. As an example,
different temperatures would affect the rotational diffusion of
RBCs, which may become important at very low _g* and lead to
random cell orientation modifying potentially a snaking region.
Also, recent experiments on vesicles43 and a corresponding
theory44 suggest that the transition lines might be affected by
thermal noise due to the sensitivity of a nonlinear dynamics to
small perturbations near transition lines. A comparison of the
results of Fig. 4 with those of Fig. 2 shows that for stiffer cells,
the parachute and slipper/tumbling regions shi to lower
values of _g*. This behavior is consistent with the roughly linear
dependence of the shear rate cg at the parachute-to-discocyte
transition on RBC bending rigidity and shear modulus reported
in ref. 7, which is equivalent to _g*¼ c1(c) + c2(c)G. Similarly, the
snaking region shrinks towards lower _g* values.

Fig. 5 shows the state diagram for a RBC in tube ow with the
membrane Young's modulus reduced by the factor of three
(Yr ¼ 6.3 mN m�1) in comparison to that of a healthy RBC. This
diagram should be compared with Fig. 2 and 4, which are for
healthy RBCs and cells with an increased bending rigidity,
respectively. In Fig. 5, the transition from snaking discocytes
and swinging slippers to the parachute shape, as well as the
transition from tumbling discocytes to swinging slippers occur

at lower ow rates than those for a healthy RBC (Fig. 2). As a
consequence, the snaking region shrinks substantially and is
observed primarily at very low _g*. Another feature is that the
tumbling region is signicantly reduced in comparison to that
in the diagram for healthy cells (Fig. 2). These results are
consistent with the fact that the transition from discocyte to
parachute shapes in Poiseuille ow depends roughly linearly on
the RBC elastic properties and bending rigidity,7 as well as that
the tumbling-to-tank-treading transition of a RBC in shear ow
depends nearly linearly on the RBC elastic properties such as
Young's modulus.37,38 This implies that the transition lines for a
xed ambient temperature are linear functions of the Föppl–
von Kármán number G, as discussed above. A comparison with
the results of ref. 7 for RBCs with considerably smaller bending
and shear rigidities indicates that strong thermal uctuations
destroy the regular snaking oscillations.

Correspondence of different systems with a xed Föppl–von
Kármán number G is also supported by the argument that the
RBC relaxation time s is a linear function of RBC membrane
elastic parameters (kr or equivalently Yr for a xed G). Thus, a
simulation with the parameters {Dr, Yr, skr, _g*} should lead to
identical results as those obtained from a simulation with
{Dr, Yr/s, kr, _g*/s}, where s is a scaling constant. Even though this
argument is quite general, other characteristics of a system also
need to be properly considered including thermal uctuations
and Reynolds number of the ow. Finally, the assumption of
linear dependence of s on the membrane properties may
become invalid for strong enough ow rates, which may lead to
non-linear membrane deformation. A semi-quantitative
comparison of cell shape regions can be done by looking at the
state diagram of Fig. 5 for the reduced membrane Young's
modulus and the state diagram of Fig. 4 for an increased

Fig. 4 A phase diagram for G¼ 532 (Yr ¼ 18.9� 10�6 Nm�1, kr ¼ 1.5�
10�18 J) such that the bending rigidity of a cell membrane is five times
larger than kr ¼ 3� 10�19 J of a healthy RBC. The diagram depicts RBC
behavior in tube flow with respect to the dimensionless shear rate _g*

and confinement c. The symbols correspond to performed simula-
tions and RBC states are the parachute (green circles), slipper (brown
squares), tumbling (red diamonds) and snaking (blue stars) discocytes.
The phase-boundary lines are drawn schematically to guide the eye.

Fig. 5 A phase diagram for G ¼ 887 (Yr ¼ 6.3 � 10�6 N m�1, kr ¼ 3 �
10�19 J) where the Young's modulus of a cell membrane is three times
lower than that assumed for a healthy RBC. The plot shows different
RBC dynamical states in tube flow with respect to the non-dimen-
sional shear rate _g* and the confinement c. The symbols depict per-
formed simulations and RBC states include the parachute (green
circles), slipper (brown squares), tumbling (red diamonds) and snaking
(blue stars) discocytes. The phase-boundary lines are drawn sche-
matically to guide the eye.
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membrane bending rigidity. The corresponding Föppl–von
Kármán numbers are not the same, but similar in magnitude
and both are considerably smaller than those for healthy RBCs.
Thus, we expect that the two state diagrams for G ¼ 532 (Fig. 4)
and G¼ 887 (Fig. 5) should be similar, and show the same trends
in comparison with the diagram for healthy cells (Fig. 2). This
comparison further supports our argument about the existence
of universal functions _g*

c to describe the transition lines.

3.4 The effect of cytosol viscosity on the shape diagram

We have focused in our simulations on the investigation of the
effect of membrane elasticity on RBC dynamics in micro-
capillary ow, and have therefore employed same viscosity for
the suspending uid and RBC cytosol. For a healthy RBC, the
viscosity contrast l, dened as the ratio of cytosol over blood
plasma viscosity, is approximately l ¼ 5. Therefore, we want to
discuss briey the possible effect of the viscosity contrast on the
dynamical states. Clearly, cytosol viscosity only plays a role
when the internal uid (or equivalently membrane) is in
motion, i.e., only when the cell tank-treads in the slipper state.
Thus, we mainly need to discuss how the slipper region will be
modied. Recent experiments45 and simulations46 indicate that
the viscosity contrast indeed strongly affects the tumbling-to-
tank-treading transition characterized by _g*

ttt.
An increase in l is known to shi _g*

ttt of the tumbling-to-tank-
treading transition to higher shear rates.46 Therefore, we expect
that the boundary between the tumbling and slipper regions in
Fig. 2 would shi to higher values of _g* for a real RBC leading to
the expansion of the tumbling region. A very large viscosity of
either RBCmembrane or cytosol, which may occur in some blood-
related diseases or disorders,22 may also lead to a complete
disappearance of the slipper region, which would be replaced by
the RBC tumbling state. Recent simulations of 2D vesicles with l¼
1 in ref. 9 and l ¼ 5 in ref. 10 have shown an expansion of the
snaking region toward the slipper region, since the RBC tank-
treading becomes less favorable. Note that since RBC tumbling due
to membrane elastic anisotropy is not possible in 2D, the snaking
region in ref. 9 and 10 has a large common boundary with the
slipper region, while in 3D the snaking region has practically no
boundary with the dynamical slipper region and is mainly con-
nected to the tumbling region (Fig. 2). Thus, no signicant changes
in the snaking region due to the viscosity contrast is expected in
3D. In analogy with the expansion of the snaking region in 2D, an
expansion of the tumbling region in 3D can be expected.

An effect of the viscosity contrast on the boundary between
the slipper and parachute regions is not obvious. 2D simula-
tions for different viscosity contrasts9,10 indicate that the
boundary is slightly altered that makes the slipper region get
mildly expanded. Thus, it is plausible to expect a similarly weak
effect in 3D; however, a denite statement on this issue is only
possible aer a systematic numerical investigation of the effect
of viscosity contrast has been performed in 3D.

3.5 Snaking, tumbling, and swinging frequencies

The simulations also provide interesting information about the
dependence of the snaking, tumbling (both in the discocyte

state) and swinging (in the slipper state) frequencies u on shear
rate, as shown in Fig. 6 for three different connements
extracted from the state diagram of Fig. 4. In all regimes, the
frequencies increase linearly with shear rate. However, the
prefactors of this linear dependence are very different. The
strongest dependence is found in the swinging regime, some-
what larger than that in the snaking regime, while the frequency
is almost independent of _g* in the tumbling regime. Increasing
connement signicantly reduces the snaking, tumbling and
swinging frequencies. Note that the swinging frequencies are
likely to be overpredicted in Fig. 6 in comparison with those of
real RBCs due to the assumption of having the same viscosity of
the suspending medium and RBC cytosol.

3.6 Flow resistance

Fig. 7 presents the volumetric ow rate QRBC with a RBC
measured in simulations and normalized by the ow rate Q
without a RBC. Data are shown for different _g* for the case of G
¼ 2662, corresponding to the shape diagram in Fig. 2. The
volumetric ow rate at low connements remains essentially
unaffected by the presence of a RBC. As the connement is
increased, the ow rate decreases and the effect of a RBC on the
ow rate appears to be stronger at low _g* values. Note that Fig. 7
also presents the change in ow resistance, since the apparent
viscosity is inversely proportional to the volumetric ow rate.
Thus, the apparent viscosity increases with increasing
connement. A reduction in the ow resistance with the
increase of _g* (represented by different curves in Fig. 7) is due to
the transition from discocyte to parachute and slipper shapes,

Fig. 6 Normalized snaking, tumbling, and swinging (slipper state)
frequencies u of RBCs as a function of the dimensionless shear rate _g*.
The elastic membrane parameters are the same as in Fig. 4 (Yr¼ 18.9�
10�6 N m�1, kr ¼ 1.5 � 10�18 J), i.e. the bending rigidity is five times
larger than that used for a healthy RBC, and G ¼ 532. Three confine-
ments are shown, as indicated. The symbols depict simulation results
for various confinements. The regions of _g* corresponding to different
RBC states can be distinguished in the plot by colors and line types –
swinging (brown, dashed line), tumbling (red, dotted line), and snaking
(blue, solid line).
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since for large enough _g* no signicant further changes in ow
resistance occur.

Even though Fig. 7 shows the effect of connement on QRBC,
the ow resistance for different c may be also affected by the
change in hematocrit. In all simulations, the length of the
channel was kept the same, while the tube diameter was varied,
which means that the tube hematocrit (Ht), calculated as the
ratio of the RBC volume to total tube volume, is inversely
proportional to D2. For the strongest connement c ¼ 0.79 (D ¼
8.2 mm) Ht is equal to 0.027, while for the lowest connement c
¼ 0.37 (D ¼ 17.8 mm) Ht ¼ 0.0057.

4 Conclusions

Even though the phase diagrams of RBC shapes show some
qualitative similarities with the corresponding diagram of 2D
vesicles,9,10 there are several qualitative and quantitative differ-
ences. In 3D, slippers are essentially absent at high conne-
ments (c T 0.7) and low ow rates due to the cylindrical
channel geometry, which requires the RBC slipper to comply
with the channel wall curvature and cannot be captured by a 2D
model. Therefore, parachute shapes are preferred at high c – in
agreement with the 3D results of ref. 7. At even higher
connements than those in this study, RBCs are expected to
attain bullet shapes.20 Another evident difference between RBCs
in 3D and vesicles in 2D9,10 is the existence of a RBC tumbling
region, which appears in 3D due to anisotropic elastic proper-
ties of RBCs.37,38 For vesicles in 2D, the only possibility to
include tumbling is to introduce a high enough viscosity
contrast between the uids inside and outside a RBC.

The calculated state diagrams in 3D provide a better
description of RBC shapes and dynamics in microvascular ow
than the previous 2D results. The ow resistance is affected only
weakly by the transition from discocyte to parachute and slipper
shapes, most signicantly at high connements (c T 0.6). The

geometrical complexity of microvasculature induces non-trivial
partitioning of RBCs, which oen leads to very low cell volume
fractions within various vessel structures, so that our simula-
tion results provide an important step towards an under-
standing of blood ow and RBC behavior in microcirculation.
Finally, similar physical mechanisms are expected for capsule
suspensions.
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White blood cell margination in microcirculation†

Dmitry A. Fedosov* and Gerhard Gompper

Proper functioning of white blood cells is not possible without their ability to adhere to vascular

endothelium, which may occur only if they are close enough to vessel walls. To facilitate the adhesion,

white blood cells migrate toward the vessel walls in blood flow through a process called margination.

The margination of white cells depends on a number of conditions including local hematocrit, flow rate,

red blood cell aggregation, and the deformability of both red and white cells. To better understand the

margination process of white blood cells, we employ mesoscopic hydrodynamic simulations of a three-

dimensional model of blood flow, which has been previously shown to capture quantitatively realistic

blood flow properties and rheology. The margination properties of white blood cells are studied for a

wide range of hematocrit values and flow conditions. Efficient white blood cell margination is found in

an intermediate range of hematocrit values of Ht z 0.2–0.4 and at relatively low flow rates,

characteristic of the venular part of microcirculation. In addition, aggregation interactions between red

blood cells lead to enhanced white-blood-cell margination. This simulation study provides a quantitative

description of the margination of white blood cells, and is also highly relevant for the margination of

particles or cells of similar size such as circulating tumor cells.

1 Introduction

Leukocytes or white blood cells (WBCs) defend our body from
various viral and bacterial infections and other foreign
substances. They are normally located in the blood stream and
in the lymphatic system, where they are able to monitor various
chemical signals or stimuli. Once WBCs have detected a
problem, e.g., an inammation, their cellular machinery is able
to facilitate transmigration into a surrounding tissue,1 which is
necessarily preceded by their adhesion to vascular endothe-
lium.2,3 However, the possibility of WBC interactions with a
vessel wall, and therefore adhesion, is directly associated with
the probability of being close enough to a vessel wall in blood
ow. A number of experimental observations4–6 suggest that
WBCs migrate toward vessel walls in blood ow, a process
which is called margination. Thus, the WBC margination prob-
ability, which characterizes the fraction of time a WBC spends
near a wall, directly affects the frequency of WBC adhesion.

A number of experimental observations7,8 and simula-
tions9–12 of owing blood have shown that red blood cells (RBCs)
concentrate in the vessel center leading to a layer free of RBCs
next to a wall. The migration of RBCs toward the vessel center

has been attributed to a li force,13–15 which arises from cell-wall
hydrodynamic interactions in ow due to the non-spherical
discocyte shape and high deformability of RBCs. Therefore, the
migration effect for various cells is different due to the differ-
ences in size, shape, and deformability of blood cells, for
instance between RBCs and WBCs. Different cell-wall hydrody-
namic interactions of RBCs and WBCs lead to their segregation
in ow such that WBCs are likely to be present near a wall. In
fact, the li force on WBCs is expected to be much lower than
that on RBCs, since WBCs have a near-spherical shape and are
not very deformable. This argument supports the fact that RBCs
populate the vessel center, while WBCs may get marginated to
the RBC free layer. Therefore, WBCmargination in blood ow is
mediated by RBCs.

Existing experimental4,6,16–18 and simulation19–21 studies have
shown that WBC margination has a non-trivial dependence on
various blood ow properties including hematocrit Ht, (i.e. RBC
volume fraction), ow rate, vessel geometry, and RBC aggrega-
tion. Early in vivo experiments on WBC adhesion6 have shown a
high WBC adhesion rate at low ow rates characteristic of
venular blood ow and high Ht > 0.45. In vitro experiments on
WBC adhesion in glass tubes17 suggested a similar dependence
of WBC adhesion on the ow rate; however, they reported no
signicant dependence of WBC adhesion on Ht. One of the rst
simulation studies in two dimensions (2D)20 has also reported
no signicant effect of Ht on WBC margination. In contrast,
WBCmargination inmicrouidic experiments18 has been found
to be pronounced within an intermediate range of Htx 0.2–0.3,
while at both lower and higher Ht values WBC margination has
been reduced. Recent simulation work in 2D21 was able to
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reconcile the existing contradicting observations of WBC
margination dependence on Ht, showing that a strong
margination effect is achieved for an intermediate range of Ht

values. At low Ht, WBC margination is weak due to a low
concentration of RBCs, while at high Ht WBC margination is
attenuated due to interactions of marginated WBCs with RBCs
near a wall, which signicantly limit the time WBCs spend near
a wall. The apparent inconsistency with experiments17 and
simulations,20 which suggests no dependence of WBC margin-
ation on Ht, has been reconciled due to the fact that the Ht

values used in these studies fall almost entirely into the region
of a strong WBC margination predicted in ref. 21. Furthermore,
RBC aggregation has been found to result in an enhanced WBC
margination and adhesion in both experiments6,16–18 and
simulations.21

Even though the 2D simulations20,21 provide a qualitative
picture of WBC margination, it is not clear whether WBC
margination would display substantial changes in 3D. Another
evident difference between 2D and 3D is that 2D simulations
mimic blood ow in a slit geometry, while WBC margination in
a tube geometry is of great interest, since it mimics an idealized
blood vessel in microcirculation. To investigate WBC margin-
ation in idealized microvessels, we employ a particle-based
mesoscopic simulation technique. WBC margination is inves-
tigated in 3D for a wide range of blood ow conditions
including hematocrit, ow rate, and RBC aggregation,
providing a quantitative description of WBC margination in
microvessels. Our simulation results in 3D show a qualitatively
similar dependence of WBC margination on Ht as in 2D, pre-
dicting a strong margination effect within an intermediate
range of Ht values. Furthermore, WBC margination appears to
be pronounced only for low enough ow rates characteristic of
venular blood ow, consistent with existing experimental
observations.6,16,17 In addition, we estimate the forces on a
marginatedWBC in the normal direction to the wall, which may
aid in WBC adhesion.

2 Methods and models

To model blood ow we use a particle-based mesoscopic
simulation technique called the smoothed dissipative particle
dynamics (SDPD) method.22 Blood cells are represented by a
network membrane model, since triangulated surfaces with
curvature and stretching elasticity provide a very versatile
approach to model the shapes and deformation of vesicles and
cells in three dimensions.12,23–27 Cell membranes are coupled to
a background uid (i.e., blood plasma) through viscous friction.
We briey describe the employed cell model and the SDPD
method.

2.1 Blood cell model

2.1.1 Membrane network model. In simulations, a cell
membrane is represented by a collection of Nv particles with
coordinates {xi¼1.Nv} interconnected by viscoelastic
springs.27,28 The network of springs has a xed connectivity and
is characterized by the following energy

U({xi}) ¼ Us + Ub + Ua+v, (1)

where Us is the elastic spring energy, Ub imposes membrane
bending resistance, and Ua+v denes the area and volume
conservation constraints. The spring's contribution Us mimics
membrane elasticity, which is, for instance, supplied by a
spectrin network for a RBC membrane. In addition, each spring
may contain a friction term in order to incorporate a non-zero
membrane viscosity similar to that of a lipid bilayer. The term
Ub implies bending resistance of a cell membrane, while the
area and volume conservation constraints mimic area-incom-
pressibility of the lipid bilayer and incompressibility of a
cytosol, respectively.

The vertices on a cell membrane are connected by Ns springs
with the potential energy

Us ¼
X

j˛1:::Ns

2
4kBTlm

�
3xj

2 � 2xj
3
�

4p
�
1� xj

� þ kp

lj

3
5; (2)

where lj is the length of the spring j, lm is the maximum spring
extension, xj¼ lj/lm, p is the persistence length, kBT is the energy
unit, and kp is the spring constant. Note that each spring
consists of the attractive wormlike chain potential and a
repulsive potential such that a non-zero equilibrium spring
length can be imposed. For the performance of different spring
models for a RBC membrane, we refer to ref. 28.

The membrane viscosity can be modeled by a viscous force
assigned to each spring. Thus, we introduce dissipative and
random forces for each spring FDij and FRij, respectively, similar to
those in the theoretical framework of the uid particle model.29

This force pair satises the uctuation–dissipation balance in
order to maintain a consistent membrane temperature and is
given by

FD
ij ¼ �gTvij � gC(vij$eij)eij, (3)

FR
ij dt ¼

ffiffiffiffiffiffiffiffiffiffiffi
2kBT

p � ffiffiffiffiffiffiffiffi
2gT

p
dWS

ij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3gC � gT

p tr
�
dWij

	
3

1



$eij ; (4)

where gT and gC are dissipative parameters and the superscripts
T and C denote the “translational” and “central” components,
vij is the relative velocity of spring ends, tr[dWij] is the trace of a
random matrix of independent Wiener increments dWij, and
dWS

ij ¼ dWS
ij � tr½dWS

ij �1=3 is the traceless symmetric part. Note
that the condition 3gC � gT $ 0 has to be satised.

The bending energy of the RBC membrane is dened as

Ub ¼
X

j˛1:::Ns

kb
�
1� cos

�
qj � q0

�	
; (5)

where kb is the bending constant, qj is the instantaneous angle
between two adjacent triangles with the common edge j, and q0

is the spontaneous angle. The area and volume conservation
constraints are given by

Uaþv ¼
X

j˛1:::Nt

kd

�
Aj � At

�2
2At

þ kaðA� A0Þ2
2A0

þ kvðV � V0Þ2
2V0

; (6)

where Nt is the number of triangles in the network, At is the
triangle area, and kd, ka and kv are the local area, global area and
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volume constraint coefficients, respectively. The terms A and V
are the total cell area and volume, while A0 and V0 are the
desired total area and volume, respectively. More details of the
RBC model can be found in ref. 27 and 28.

2.1.2 Membrane elastic properties. A linear analysis of a
regular hexagonal network27,28 leads to relations between the
model parameters and the membrane's macroscopic properties
(e.g., shear, area-compression, and Young's moduli). For
example, the membrane shear modulus is given by

m0 ¼
ffiffiffi
3

p
kBT

4plmx0

 
x0

2ð1� x0Þ3
� 1

4ð1� x0Þ2
þ 1

4

!
þ 3

ffiffiffi
3

p
kp

4l0
3

; (7)

where l0 is the equilibrium spring length and x0 ¼ l0/lm ¼ 2.2.
Furthermore, the area-compression K and Young's Y moduli
can be computed as 2m0 + ka + kd and 4Km0/(K + m0), respectively.
The model bending coefficient kb can be related to the macro-
scopic bending rigidity k of the Helfrich curvature–elasticity
model30 by k ¼ ffiffiffi

3
p

kb=2.23,31 Finally, the membrane shear
viscosity is equal to hm ¼ ffiffiffi

3
p ðgT þ gC=4Þ.

Cell macroscopic properties (m0, K, Y, k, and hm) are selected
as input variables, while the mesoscopic model parameters are
calculated from the above equations without any further
adjustment. For instance, the spring parameters can be
uniquely computed for a given m0 using eqn (7) and the fact
that the spring force vanishes at l0. We also assume that x0 ¼
2.2 is a constant (see ref. 28), since it affects only non-linear
cell deformation. The membrane bending rigidity and
viscosity relations are rather straightforward, while the area
and volume constraint coefficients are set large enough to
properly approximate the incompressibility of the membrane
and inner cytosol. We also employ a “stress-free” membrane
model27,28 obtained by computational annealing, which
assumes that the equilibrium length l0

i of each spring is equal
to the edge length aer initial triangulation for i¼ 1,.,Ns. The
“stress-free”model provides a membrane network free of local
stress anomalies.

2.1.3 Inter-cell aggregation interactions. The cell–cell
aggregation interactions between RBCs32 are modeled
phenomenologically using the Morse potential

UM(r) ¼ De[e
2b(r0�r)�2eb(r0�r)], (8)

where r is the separation distance, r0 is the zero-force distance,
De is the well depth of the potential, and b characterizes the
interaction range. The Morse potential interactions are imple-
mented between every two vertices of separate RBCs if they are
within a dened potential cutoff radius rM. The Morse interac-
tions consist of a short-range repulsive force when r < r0 and of a
long-range attractive force for r > r0. However, such repulsive
interactions cannot prevent two RBCs from an overlap. To
guarantee no overlap among cells we also employ specular
reections of cell vertices on membranes of other cells.

The model for the above aggregation interactions describes
only RBC–RBC interactions and is aimed to reproduce normal
(healthy) RBC aggregation properties. RBC aggregation may
change in several hematologic diseases and disorders (e.g., sickle-
cell anemia, Gaucher's disease),33,34 which can be captured by

proper tuning of the Morse potential strength. In some diseases
(e.g., sickle-cell anemia) aggregation between RBCs andWBCsmay
also exist,35 where a similar modeling strategy can be employed.
Finally, WBCs may adhere to vascular endothelium due to specic
interactions between receptors on a WBC and ligands at a vessel
wall.1 Tomodel such interactions, the adhesive dynamicsmodel of
ref. 36 can be employed, which is based on the stochastic bond
formation/dissociation strategy. Note that in this paper only the
effect of RBC–RBC aggregation interactions is included.

2.2 Smoothed dissipative particle dynamics

SDPD22 is a particle-based mesoscale hydrodynamic simulation
technique, which combines two frequently employed
approaches: smoothed particle hydrodynamics37,38 and dissi-
pative particle dynamics.39,40 The advantage of the SDPD
approach is that the dynamic viscosity of a uid and its equa-
tion of state can be input directly. Thus, the uid compress-
ibility can be well controlled. Nevertheless, the approximation
for the simulated uid viscosity is precise only if the cutoff
radius and/or particle density are large enough. Therefore, it is
always advisable to verify the value of the uid viscosity inde-
pendently in simulations.

The SDPD system consists of N point particles of mass mi,
position ri and velocity vi. SDPD particles interact through three
pairwise forces: conservative (C), dissipative (D), and random
(R), such that the force on particle i is given by

FC
i ¼

X
j

 
pi

ri
2
þ pj

rj
2

!
wijrij ;

FD
i ¼ �

X
j

gij

�
vij þ

�
vij$eij

�
eij
�
;

FR
i ¼

X
j

sij

�
dW

S

ij þ
1

3
tr
�
dWij

	

$eij ;

(9)

where eij¼ rij/|rij| and vij¼ vi� vj. pi and pj are particle pressures
assumed to follow the equation of state p¼ p0(r/r0)

a� bwith p0,
r0, a, and b being model parameters, see Table 1. The particle

density is calculated locally and dened as ri ¼
X
j

WðrijÞ with

WðrÞ ¼ 105
16prc3

�
1þ 3

r
rc


�
1� r

rc


3

being the Lucy function,

where rc is the cutoff radius. Note that W(r) is chosen such that

VW(r) ¼ �rw(r) with wðrÞ ¼ 315
4prc5

�
1� r

rc


2

. The coefficients gij

and sij dene the strength of dissipative and random forces and

are equal to gij ¼
5h
3

wij

rirj
and sij ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTgij

p
, respectively. The

Table 1 SDPD fluid parameters used in simulations. n is fluid's number
density and h is the dynamic viscosity. In the simulation parameters,
mass is given in units of fluid particle mass m¼1, length in units of
r'¼2rc/3, and energy in units of E ¼ 2.5kBT, where rc and kBT values are
given in the table

p0 r0 a b rc h0 n kBT h

100 3.0 7 80 1.5 100.0 3 0.4 107.6
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notation tr[dWij] corresponds to the trace of a randommatrix of
independent Wiener increments dWij, and d �WS

ij is the traceless
symmetric part.

The time evolution of velocities and positions of particles is
determined by Newton's second law of motion

dri ¼ vidt, (10)

dvi ¼ 1

mi

ðFC
i þ FD

i þ FR
i Þdt: (11)

The above equations of motion are integrated using the
velocity–Verlet algorithm.

2.3 Simulation setup and parameters

The solvent is represented by a collection of particles with the
parameters outlined in Table 1. Note that the dynamic viscosity
h is slightly larger than the desired viscosity h0, which has been
computed from a Couette ow simulation. h will converge to h0

if we increase rc and/or n, which would also lead to a larger
computational cost.

To dene the cell shapes and the ow geometry, we intro-
duce an effective RBC diameter Dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
A0r=p

p
, which is based on

the RBC membrane area A0r (the subscript ‘r’ corresponds to the
red cell). Similarly, we dene an effective WBC diameter
Dw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

A0w=p
p

(the subscript ‘w’ corresponds to the white cell).
The cell shapes (biconcave for a RBC and spherical for a WBC)
are imposed by a combination of the cell area A0 and volume V0,
which can be described by a reduced volume for both cells as
V0r/(pDr

3/6) ¼ 0.642 and V0w/(pDw
3/6) ¼ 1.02. Note that the

imposed WBC volume is 2% larger than the volume of a cor-
responding sphere, which leads to weak membrane tension and
reduces WBC deformability, similar to a realistic WBC.41–43 The
other cell membrane properties and parameters are given in
Table 2. The blood cells are suspended in a Newtonian uid
(plasma), which is represented by a collection of SDPD particles.
The cells are coupled to the uid by friction which includes only
dissipative and random forces.27,28

We simulate blood ow in a tube of diameter Dt ¼ 3.08Dr,
which is driven by a constant force applied to the solvent
particles, equivalently to a constant pressure gradient. To
characterize the ow, we dene a dimensionless shear rate as

cg* ¼ hDr
3 cg

kr
¼ s cg; (12)

where cg ¼ 4Q=ðpDt
3Þ is the average shear rate (or pseudo-shear

rate), Q is the volumetric ow rate, h is the solvent viscosity, and
s ¼ hDr

3/kr is a characteristic cell relaxation time. For

comparison in physical units, we assume cell diameters Dr¼ 6.5
mm and Dw ¼ 10 mm, which implies that Dw x 1.54Dr, tube
diameter Dt ¼ 20 mm, plasma viscosity h ¼ 1.2 � 10�3 Pa s,
temperature T ¼ 37 �C, membrane Young's modulus Yr ¼ 18.9
mN m�1, and bending rigidity kr ¼ 70kBT ¼ 3 � 10�19 J. Then,
the characteristic RBC relaxation time is s¼ 1.1 s and therefore,
the pseudo-shear rate cg is roughly equivalent in magnitude to
_g* in inverse seconds.

RBC aggregation interactions, if used, were mediated by the
Morse potential (eqn (8)). The Morse potential parameters were
set to De ¼ 0.75kBT, r0 ¼ 0.046Dr, b ¼ 9.75Dr

�1, and rM ¼ 0.17Dr.
For more details see ref. 32.

3 Results and discussion

In the presentation of WBC margination results, for conve-
nience, we schematically divide ow rates and Ht values in
several groups. In the subsequent discussion, low ow rates are
referred to as the rates of _g*( 20, intermediate ow rates are in
the range of 20( _g*( 90, and high ow rates are for _g*T 90.
Physiologically, the high shear rates correspond to the rates in
the arteriolar part of microcirculation, while low and interme-
diate shear rates are characteristic of venular blood ow.44,45

Similarly, we dene low hematocrits as Ht ( 0.2, intermediate
hematocrits as 0.2 ( Ht ( 0.4, and high hematocrits as Ht T

0.4. Intermediate Ht values are specically relevant for micro-
circulatory blood ow, while low Ht values may still be present
in some parts of microcirculation.44 HighHt values are not likely
to occur in healthy microvascular blood ow, but they are
relevant within tumor microvasculature, since it is oen subject
to hemo-concentration due to plasma leakage.46

3.1 Physical basis of WBC margination

Fig. 1 shows sample snapshots from simulations for two
different ow conditions. In the case of Ht ¼ 0.3 and an inter-
mediate ow rate _g* ¼ 32, as displayed in Fig. 1a, a WBC is
clearly marginated (i.e. located next to the wall), while for Ht ¼
0.2 and a high ow rate _g* ¼ 115, as shown in Fig. 1b, a WBC
remains in the vessel center. To characterize the WBC position
within the tube, we measure its center-of-mass distribution over
time, which reects the probability of a WBC to be at a certain
position r in the tube, as shown in Fig. 2. A peak near the
position of 2r/Dt z 0.5 (or r z 5 mm) indicates that the WBC is
marginated with high probability. At low Ht, WBC margination
is weak, since the volume fraction of RBCs is not high enough to
effectively push the WBC close to the wall; however, at low ow
rates ( _g* z 15), a WBC might still get marginated, as shown in
Fig. 2a. It is noteworthy that even at low Ht a WBC is expelled

Table 2 Model parameters of red (RBC) and white (WBC) blood cells

Type Nv

k

kBT

YDr
2

kBT

KDr
2

kBT

kdDr
2

kBT

kaDr
2

kBT

kvDr
3

kBT

gTDr
2

skBT

RBC 500 70 1.8 � 105 2.2 � 106 4.2 � 104 2.1 � 106 1.4 � 107 66.44
WBC 1000 1300 7.8 � 106 2.6 � 107 4.2 � 105 2.1 � 107 1.4 � 108 66.44

2964 | Soft Matter, 2014, 10, 2961–2970 This journal is © The Royal Society of Chemistry 2014

Soft Matter Paper
Pu

bl
is

he
d 

on
 2

4 
Ja

nu
ar

y 
20

14
. D

ow
nl

oa
de

d 
on

 0
6/

04
/2

01
4 

20
:5

4:
31

. 
View Article Online

Soft Matter, 10:2961-2970, 2014 129



from the tube center by RBCs. As hematocrit is increased, we
observe stronger margination as being most efficient within the
range of Ht ¼ 0.2–0.4. However, at even higher Ht ¼ 0.5 WBC
margination seems to be attenuated, in particular, for low ow
rates ( _g* z 15). The mechanism for the margination attenua-
tion phenomena at high Ht has been previously discussed in 2D
simulations.21 It arises due to interactions of a WBC with RBCs
in ow. In ref. 21 it has been shown that for low enough Ht the
region in front of a marginated WBC remains virtually free of
RBCs, which could otherwise interfere with the WBC and li it
off the wall. However, at large enoughHt due to RBC crowding, a
marginated WBC may oen encounter RBCs in front, which
helps to effectively displace it away from the wall, leading to a
lower margination probability than for lower Ht. The effect of
hematocrit becomes weaker for higher ow rates ( _g* z 60), as
seen in Fig. 2b(b), and a WBC is found to be marginated for
essentially all investigated Ht values, but again most signi-
cantly in the range Ht ¼ 0.2–0.4.

To verify this mechanism in 3D, we plot in Fig. 3 the prob-
ability of RBCs to be around a marginated WBC for different Ht

values, which is proportional to the local RBC volume fraction.
The RBC distribution is calculated in a co-moving coordinate
system of the WBC center-of-mass and with the condition that
the WBC center is less than 0.5Dw (5 mm) away from the wall.
This condition is equivalent to the WBC nearly touching the
wall. An increase of Ht from 0.4 to 0.5 results in a substantial
increase of RBC crowding in the region in front of a WBC, while
for Ht # 0.4 this region remains virtually void of RBCs. To
demonstrate the quantitative differences in RBC crowding, one-
dimensional cuts along the y-axis at an x position of 8 mm away
from the WBC center are displayed in Fig. 4. At Ht ¼ 0.5 a strong
increase of the RBC presence in the region in front of a
marginated WBC is clearly observed. This margination–

attenuation mechanism at high Ht does not contradict the main
hypothesis that WBC margination arises from a competition of
li forces on RBCs and WBCs and their interactions in ow,
which would imply that margination should become even
stronger at high Ht. We hypothesize that even at high hematocrit
WBCs are constantly marginated due to the differences in li
forces and RBC–WBC interactions; however, WBCs are almost
immediately sent back to the vessel center due to local interac-
tions with RBCs near the wall. As a result, the time a WBC is
marginated at high Ht can be short, which is reected in the
center-of-mass probability distribution. Finally, RBC aggregation
interactions can improve WBC margination at higher Ht values,
since the core of the ow consisting mainly of RBCs remains
more compact due to inter-cell attractive interactions, which is
consistent with ndings in ref. 21. However, such an effect can
only occur at low ow rates, because RBC aggregate structures are
fragile and break up at high enough ow rates.

Fig. 2 WBC center-of-mass distribution with respect to the vessel
position r normalized by Dt for various Ht values. (a) _g* z 15, (b) _g* z
60. The center of the vessel is at 2r/Dt¼ 0, while the wall is at 2r/Dt¼ 1.

Fig. 1 Simulation snapshots of RBCs (red) and aWBC (white). The flow
is from the left to the right. (a)Ht ¼ 0.3 and _g*¼ 32; (b) Ht ¼ 0.2 and _g*

¼ 115. See also movies in the ESI.†
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3.2 WBC margination diagrams

To present our simulation data for a wide range of Ht values and
ow rates, we construct WBC margination diagrams, which are
based on a margination probability. The margination proba-
bility is dened as the probability of a WBC center-of-mass to be
within a certain distance away from the wall, i.e., for rw < d,
where rw is the distance of the WBC center-of-mass from the
wall and d is a selected value. In principle, the margination

probability is an integral of the WBC center-of-mass probability
distribution from 0.5Dt � d to 0.5Dt. Fig. 5 shows two margin-
ation diagrams for d ¼ 5 mm (i.e. the WBC membrane is nearly
touching the vessel wall) and d ¼ 5.5 mm (i.e. a distance of 0.5
mm between the WBC membrane and wall) without RBC
aggregation interactions. Both diagrams show that WBC
margination occurs in a certain range of Ht and _g* values. In
terms of hematocrit, the margination is mainly observed for Ht ˛
(0.2,0.4), which is consistent with hematocrit values in our
microcirculatory system, whereHt magnitudes are lower than the
systemic hematocrit of Ht ¼ 0.4–0.45. As we mentioned before,
margination at low Ht does not occur due to a low volume frac-
tion of RBCs, since they are responsible for WBC margination,
while at high Ht the margination effect also vanishes due to
WBC–RBC interactions discussed above. With respect to the ow
rate, we found WBC margination to occur mainly for _g* ( 130.
This range of _g* covers mainly the ow rates encountered in the
venular part of microcirculation, which is consistent with
experimental observations that WBC margination and adhesion
primarily occurs in venules and not arterioles.6,16,18 As an esti-
mation, the ow rates in the venular part of microcirculation
correspond to the range of _g* ( 90, while in arteriolar part the
ow rates are higher with _g* T 120.44,45

To study the effect of RBC aggregation on WBCmargination,
we have also performed a set of simulations, where RBC
aggregation has been explicitly included following the RBC
aggregation model of ref. 32, which has been shown to repro-
duce the viscosity and shear-thinning behavior of whole blood
very well. Fig. 6 presents the corresponding WBC margination
diagrams for simulations where RBC aggregation interactions
are included. The main effect of RBC aggregation is that the
WBC margination region expands along the Ht axis such that
RBC aggregation enhances WBC margination at high Ht values
as well as at low hematocrit. As expected, a stronger effect of
RBC aggregation is found at low _g* leading toWBCmargination
even at very low ow rates. Thus, RBC aggregation presents an
additional force that expels WBCs from the RBC core due to
attractive interactions between RBCs. At high enough ow rates,
RBC aggregation does not play a signicant role,32 and therefore
there is no substantial change in the margination diagram at
high _g*. The RBC aggregation effect on WBC margination is
qualitatively similar to that observed in simulations of 2D
model systems.21 The comparison of Fig. 5 and 6 indicates that
WBC margination could still be possible in the limit of _g* /

0 for the case of RBC aggregation.

3.3 Deformation of a marginated WBC

A marginated WBC is subject to ow-induced deformation,
since it experiences high shear stresses due to near wall uid
ow and RBCs. To quantify deformation of a marginated WBC
we compute the ratios Dxw/D

0
w and Drw/D

0
w (shown in Fig. 7),

which describe WBC deformation along the tube axis x and
along the radial direction, respectively. Note that we use the
notation Dw

0 here, which is the WBC diameter calculated in
equilibrium; it may slightly differ from Dw since the imposed
WBC volume is 2% larger than the volume of a sphere with the

Fig. 3 Local RBC probability to be around a marginated WBC for Ht ¼
0.4 and Ht ¼ 0.5 at _g* z 60. The probability is calculated in a co-
moving coordinate system of the WBC center-of-mass and only for
time instances, when the WBC center is within 0.5Dw (5 mm) from the
wall. The black circle schematically shows a WBC. Only a part of the
vessel is shown. No RBC aggregation is present.

Fig. 4 Local RBC distribution cuts from the plots in Fig. 3 along the y-
axis and 8 mm away from theWBC center. Both cases with and without
RBC aggregation are shown.
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diameter Dw. The WBC deformation does not seem to be very
signicant and lies within approximately 5%. Deformation of
adhered WBCs in ow has been measured both experimen-
tally6,47 and in simulations;48,49 these studies indicate a WBC
deformation up to about 20–30% along the ow for comparable
ow rates. The deformation of a WBC in shear ow is expected
to be signicantly lower than that of an adheredWBC due to cell
spreading on the wall in the latter case. Thus, our modeledWBC
approximates a nearly non-deformable sphere in ow, which is
similar to observed shapes of owingWBCs in experiments. The
mechanical properties of WBCs have been measured in a
number of experiments,41–43 which estimate cell stiffness and its
cortical tension. A direct comparison of WBC mechanical

properties is currently difficult, since our WBC model does not
consider an inner cytoskeleton; however, the membrane
tension of the modeled WBC has the right order of magnitude.
The effect of WBC deformation on margination properties has
been investigated for 2D model systems21 showing that a more
deformable WBC exhibits a reduction in its margination at high
ow rates, since the WBC shape may signicantly depart from a
sphere. In 3D, a similar trend is expected.

3.4 Force on a marginated WBC

WBC deformation in the radial direction appears to be stronger
than that along the ow, see Fig. 7, which points to the existence

Fig. 5 WBCmargination probability diagrams calculated for (a) rw < 5 mm and (b) rw < 5.5 mm, where rw is the distance of the WBC center-of-mass
from the wall. The small white circles in the diagrams indicate performed simulations. No aggregation interactions between RBCs are imposed here.

Fig. 6 WBC margination probability diagrams calculated for (a) rw < 5 mm and (b) rw < 5.5 mm for the case of RBC aggregation. The small white
circles in the diagrams indicate performed simulations.
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of a compressive force normal to the wall. Similar conclusion
can be drawn from the uid ow, since blood plasma and RBCs
have to go past a marginated WBC. We have measured the
maximum force on a marginated WBC normal to the wall,
dened as a cumulative force due to interactions with the
blood plasma and RBCs, which is shown in Fig. 8. The positive
force values indicate that a WBC is pushed towards the wall
along the radial direction. The normal force on a marginated
WBC is also expected to aid efficient WBC adhesion to the wall,
which is important for proper WBC functioning.2,3 A recent
simulation study50 has attempted to estimate the maximum
pressure normal to the wall on a xed spherical-like obstacle
in blood ow, which mimics an adhered WBC. The reported
values for the normal pressure are up to approximately 30 Pa.
If we convert our maximum force of about 130 pN to a normal
pressure by dividing the force by the area pDw

2/4 we obtain the
value of about 2 Pa. This pressure is much smaller than that

predicted in ref. 50, which is expected to be due to the xed
obstacle position and a much stronger WBC connement
Dw/Dt ¼ 0.75 used in ref. 50 in comparison to our simulations
with Dw/Dt ¼ 0.5.

3.5 Effect of WBC margination on the ow resistance

We have also examined the effect of a marginated WBC on the
blood ow resistance in a microvessel. To characterize the ow
resistance, we dene an apparent viscosity (or average blood
ow viscosity), which is calculated by tting the Poiseuille law to
the measured ow rate. In order to quantify the effect of a WBC
on the ow resistance, we present in Fig. 9 the relative ow
resistance dened as the ratio of the computed apparent
viscosity of blood with aWBC to the apparent viscosity without a
WBC. At high ow rates ( _g* z 120), the relative ow resistance
is smaller than that for low ow rates. This is consistent with
the observation in Fig. 5 that the WBC is poorly marginated at
high ow rates and therefore, the resistance values mainly
reect the effect of an increased total volume fraction of cells
due to the presence of a WBC. At intermediate and low ow
rates, the presence of a WBC results in an increase of ow
resistance by 10–30%. The relative resistance is clearly corre-
lated with WBC margination such that WBC margination leads
to a larger ow resistance. At low Ht, a WBC is not strongly
marginated, and therefore the ow resistance is not signi-
cantly affected. At intermediate Ht values, where a WBC gets
strongly marginated, the ow resistance reaches its maximum,
while at high Ht the resistance due to a WBC slightly decreases,
since WBCmargination becomes less pronounced. The effect of
RBC aggregation on the ow resistance due to a WBC is
pronounced mainly at low ow rates, which is consistent with
the RBC aggregation effect on WBC margination. Also, we
expect that an increase in the ow resistance due to a margin-
ated WBC will be smaller than 10–30% in larger vessels in
comparison with the studied tube diameter of Dt ¼ 20 mm.

Fig. 7 Deformation of a marginated WBC (a) along the tube axis –
Dxw/D

0
w and (b) along the radial direction – Drw/D

0
w. D

0
w denotes the

WBC diameter in the absence of flow.

Fig. 8 Maximum force on amarginatedWBC normal to the wall (radial
direction). Positive force values indicate that a WBC is pushed toward
the wall.
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3.6 Translational and rotational velocities of a marginated
WBC

The WBC translational velocity can be used as an indicator for
WBC margination, since the velocity of a marginated WBC is
signicantly lower than that in the vessel center, as has been
pointed out in ref. 21. 3D simulation results for the trans-
lational velocity of a WBC for different ow rates and Ht values
are shown in Fig. 10. A drop in WBC velocity is clearly observed
when a WBC is marginated for the intermediate values of Ht ¼
0.2–0.4. Also, we notice that there is no signicant dependence
of the normalized translational velocity on the ow rate, so that
this criterion can be universally applied for WBC margination
detection. The opposite trend is found for the WBC angular
velocity u in blood ow, which is shown in Fig. 11. Here, u
increases with increasing Ht in the range Ht ¼ 0.2–0.4, indi-
cating that the rotational velocity of a marginated WBC is larger

than that in the vessel center. Such an effect is expected due to
larger shear rates near the wall than in the tube center. WBC
rotational velocity is likely to be difficult to measure in experi-
ments, so that this property cannot be employed easily for WBC
margination detection. Finally, the rescaled angular velocity
uDw/(2ū) shows only a very weak dependence on _g*, which
indicates that the scale factor 2ū/Dw captures the essential
dependence of the angular velocity on the ow rate.

4 Summary and conclusions

In blood ow, RBCs migrate toward the vessel center, while
WBCs migrate or marginate to the walls. WBC margination is
governed by ow-induced hydrodynamic cell-wall interactions
(i.e., li forces) and interactions among blood cells. We employed
3D mesoscopic simulations of blood ow to predict WBC
margination for a wide range of Ht values and ow rates. WBC
margination occurs mainly within a region of intermediate
hematocrits, Ht ¼ 0.2–0.4, and for relatively low ow rates, _g* (

130. This range of ow rates is characteristic of the venular part of
microcirculation. RBC aggregation slightly enhances WBC
margination, especially at high Ht values. The deformation of
marginatedWBCs appears to be rather small, remaining within a
few percent of the undisturbed shape. The force on marginated
WBCs is directed in the normal direction toward the wall, can
reach a value of several hundred pico-newtons, and might aid in
better WBC adhesion to the wall. Marginated WBCs also
contribute to an increase in ow resistance with up to approxi-
mately 30% for vessel diameters of 20 mm. The effect of WBC
margination on the ow resistance is expected to subside as the
tube diameter is increased to values several times larger than the
WBC diameter. Finally, we also presented translational and
rotational WBC velocities, which might be used for the detection
of WBC margination in experiments.

The WBC margination results can be also used to predict
margination of other micro-particles and cells in blood ow, if

Fig. 9 Relative flow resistance for blood flow in a vessel with a WBC. It
is defined as the ratio of calculated apparent viscosity with a WBC to
the apparent viscosity of blood flow without a WBC.

Fig. 10 Translational velocity of a WBC normalized by the average
flow velocity for different flow rates and Ht values.

Fig. 11 Angular velocity of aWBC for different flow rates andHt values.
The angular velocity is directed perpendicular to the plane going
through the tube axis and WBC center-of-mass.
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their size and mechanical properties are similar to those of
WBCs. For instance, many circulating tumor cells have a similar
size and are also rather stiff.43,51 Thus, the margination of many
tumor cells is also expected primarily in the venular part of
microcirculation, which would imply that the tissue invasion by
tumor cells present in blood largely occurs from venules. The
WBC margination results can be also employed in microuidic
devices for the separation of WBCs or circulating tumor cells
from whole blood. In the future, we also plan to include adhe-
sion of WBCs explicitly in order to study their adhesive inter-
actions with vessel walls in blood ow.
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Abstract—Hematologic disorders arising from infectious
diseases, hereditary factors and environmental influences
can lead to, and can be influenced by, significant changes in
the shape, mechanical and physical properties of red blood
cells (RBCs), and the biorheology of blood flow. Hence,
modeling of hematologic disorders should take into account
the multiphase nature of blood flow, especially in arterioles
and capillaries. We present here an overview of a general
computational framework based on dissipative particle
dynamics (DPD) which has broad applicability in cell
biophysics with implications for diagnostics, therapeutics
and drug efficacy assessments for a wide variety of human
diseases. This computational approach, validated by inde-
pendent experimental results, is capable of modeling the
biorheology of whole blood and its individual components
during blood flow so as to investigate cell mechanistic
processes in health and disease. DPD is a Lagrangian method
that can be derived from systematic coarse-graining of
molecular dynamics but can scale efficiently up to arterioles
and can also be used to model RBCs down to the spectrin
level. We start from experimental measurements of a single
RBC to extract the relevant biophysical parameters, using
single-cell measurements involving such methods as optical
tweezers, atomic force microscopy and micropipette aspira-
tion, and cell-population experiments involving microfluidic
devices. We then use these validated RBC models to predict
the biorheological behavior of whole blood in healthy or
pathological states, and compare the simulations with exper-
imental results involving apparent viscosity and other relevant
parameters. While the approach discussed here is sufficiently
general to address a broad spectrum of hematologic disorders
including certain types of cancer, this paper specifically deals
with results obtained using this computational framework for
blood flow in malaria and sickle cell anemia.

Keywords—Hematologic disorders, Dissipative particle

dynamics, Coarse-graining, Malaria, Sickle cell anemia.

INTRODUCTION

Parasitic infections or genetic factors can drastically
change the viscoelastic properties and the biconcave
(discocyte) shape of red blood cells (RBCs).36 For
example, the parasite Plasmodium falciparum that
invades the RBCs (Pf-RBCs) of most malaria patients
markedly affects the RBC membrane properties
resulting in up to a ten-fold increase of its shear
modulus and a spherical shape in the later stages of the
intra-cell parasite development.36 Sickle cell anemia is
another blood disorder caused by the polymerization
of the hemoglobin inside the RBCs, which, in turn,
leads to dramatic changes in their shape and defor-
mability. These changes combined with the increased
internal viscosity affects the flow of sickled RBCs
through the post-capillary venules leading to flow
occlusion.36,77 Other hereditary diseases with similar
effects are spherocytosis and elliptocytosis.14 In the
former, RBCs become spherical with reduced diameter
and carry much more hemoglobin than their healthy
counterparts. In the latter, RBCs are elliptical or oval
in shape and exhibit reduced deformability.

These hematologic disorders, despite their differing
origins as infectious diseases arising from external
vectors or as hereditary abnormalities ascribed to
genetic defects, also reveal some common characteris-
tics in terms of the remodeling of cytoskeleton. Such
molecular remodeling of the spectrin cytoskeleton
induces a change in the structure and viscoelastic
properties of individual RBCs. Therefore, studying the
rheological properties of blood and its components
such as the RBC can aid greatly in the understanding
of many major diseases. To this end, new advanced
experimental tools are very valuable in obtaining the
biophysical properties of single RBCs in health and
disease, which are required in formulating multiscale
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methods for modeling blood flow in vitro and in vivo.
Specifically, advances in experimental techniques now
allow measurements down to the nanometer scale, and
include micropipette aspiration,39,159 RBC deforma-
tion by optical tweezers,21,76,147 optical magnetic
twisting cytometry,131 three-dimensional measurement
of membrane thermal fluctuations,118,124 and observa-
tions of RBCs immersed in both shear and in pressure-
driven flows.2,66,135,148,154 Micropipette aspiration and
optical tweezers techniques tend to deform the entire
RBC membrane directly, while optical magnetic
twisting cytometry and measurements of membrane
thermal fluctuations probe the membrane response
locally.

Several numerical models have been developed re-
cently including a continuumdescription46,52,69,125 and a
discrete approximation on the spectrin molecular
level38,96 as well as on the mesoscopic scale.42,44,115,122

Some of the models suffer from the assumption of a
purely elastic membrane, and are able to capture only
the RBC mechanical response, but cannot quantita-
tively represent realistic RBC rheology and dynamics.
Fully continuum (fluid and solid) models often suffer
from non-trivial coupling between nonlinear solid
deformations and fluid flow with consequential com-
putational expense. Semi-continuum models46,125 of
deformable particles, which use immersed boundary or
front-tracking techniques, can be quite efficient. In these
models, a membrane is represented by a set of points
which are tracked in Lagrangian description and are
coupled to an Eulerian discretization of fluid domain.
However, these models employ the same external and
internal fluids and do not take into account the existing
viscosity contrast between them. In addition, continuum
models omit some mesoscopic and microscopic scale
phenomena such as membrane thermal fluctuations,
which affect RBC rheology and dynamics.114 On the
microscopic scale, detailed spectrin molecular models of
RBCs are limited by the demanding computational
expense. Therefore, we will focus here on an accurate
mesoscopic modeling of RBCs.

There exist a few mesoscopic methods42,44,115,122 for
modeling deformable particles such as RBCs. Dzwinel
et al.44 model RBCs as a volume of elastic material
having an inner skeleton. This model does not take
into account the main structural features of the RBC,
namely a membrane filled with a fluid, and therefore it
cannot accurately capture the dynamics of RBCs, such
as the observed tumbling and tank-treading behavior
in shear flow.2,142 Three other methods42,115,122 employ
a conceptually similar approach to the method we will
present here, where the RBC is represented by a net-
work of nonlinear viscoelastic springs in combination
with bending rigidity and constraints for surface-area

and volume conservation. Dupin et al.42 coupled the
discrete RBC to a fluid described by the Lattice
Boltzmann method145 obtaining promising results.
However, this model does not consider external and
internal fluids separation, membrane viscosity, and
thermal fluctuations. Noguchi and Gompper115 em-
ployed Multiparticle Collision Dynamics102 and pre-
sented encouraging results on vesicles and RBCs;
however, they do not use realistic RBC properties and
probe only very limited aspects of RBC dynamics.
Pivkin and Karniadakis122 used dissipative particle
dynamics (DPD)79 for a multiscale RBC model which
will be the basis of the general multiscale RBC (MS-
RBC) model we will present here, following the earlier
versions developed in Fedosov et al.56 The MS-RBC
model described here is able to successfully capture
RBC mechanics, rheology, and dynamics. Potential
membrane hardening or softening as well as the effects
of metabolic activity can also be incorporated into the
model leading to predictive capabilities of the pro-
gression of diseases such as malaria. Theoretical ana-
lysis of the hexagonal network yields its mechanical
properties, and eliminates the need for ad hoc adjust-
ments of the model parameters. Such models can be
used to represent seamlessly the RBC membrane,
cytoskeleton, cytosol, the surrounding plasma and
even the parasite.

This paper is organized as follows: In ‘‘Materials
and Methods’’ section, we review the basic DPD the-
ory and the MS-RBC models. In ‘‘Healthy Blood
Flow’’ section, we present rheology results of healthy
blood flow in capillaries and arterioles, and compari-
sons with available experimental observations. In
‘‘Diseased Blood Flow’’ section, we review recent re-
sults on modeling blood flow in malaria and in sickle
cell anemia. We conclude in ‘‘Discussion’’ section with
a brief summary and a discussion on the potential of
multiscale modeling in predicting the onset and pro-
gression of other hematologic disorders.

MATERIALS AND METHODS

Fluid Flow Modeling

Fluid flow modeling is referred here to the modeling
of the Newtonian solvent flow, which mimics blood
plasma. In particle-based methods a fluid is repre-
sented by a collection of interacting particles, which
recovers hydrodynamics on the length scales several
times larger than the particle size. Examples include
molecular dynamics,6 DPD,51,75,79 multi-particle colli-
sion dynamics,74,102 and smoothed particle hydrody-
namics (SPH).99,110 The DPD system consists of
N point particles, which interact through three pairwise
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forces—conservative (C), dissipative (D), and random
(R)—such that the force on particle i is given by

Fi ¼
X

j

Fij ¼
X

j

FC
ij þ FD

ij þ FR
ij

� �
; ð1Þ

where the sum runs over all neighboring particles j
within a certain cutoff radius. The conservative force
mainly controls fluid compressibility, while the dissi-
pative force governs fluid viscosity. In addition, the
pair of dissipative and random forces forms a ther-
mostat such that an equilibrium temperature can be
imposed.51

Recently, the smoothed dissipative particle dynamics
(SDPD)method50 has been proposed, which has several
advantages over the conventional DPD. The SDPD
method is derived from SPH in combination with a
thermostat similar to that used in DPD. In comparison
to DPD, the SDPDmethod allows one to directly input
fluid transport coefficients (e.g., viscosity) and to select
an arbitrary equation of state, and therefore to have full
control over fluid compressibility. Other methods for
fluid flowmodeling include continuum approaches such
as theNavier–Stokes equation or itsmodifications.161 In
addition, the other twomethodswhich are quite popular
for fluid flowmodeling are the lattice Boltzmannmethod
(LBM) method145 and Brownian dynamics.49

Modeling Blood Cells

Blood cells are modeled by a flexible membrane with
constant area and volume. As an example, the RBC
membrane is represented by a network of springs,
which corresponds to a triangulation on the membrane
surface.34,38,43,56,57,96,113,122 The free energy for each
cell is given by

Vcell ¼ Vs þ Vb þ Vaþv; ð2Þ

where Vs is the spring’s potential energy, Vb is the
bending energy, and Va+v corresponds to the area and
volume conservation constraints. The Vs contribution
supplies proper cell membrane elasticity. A ‘‘dashpot’’
is attached to each spring, and therefore, the spring
forces are a combination of conservative elastic forces
and dissipative forces, which provide membrane vis-
cous response similar to a membrane viscosity. The
bending energy mimics the bending resistance of the
cell membrane, while the area and volume conserva-
tion constraints mimic area-incompressibility of the
lipid bilayer and incompressibility of a cytosol,
respectively. More details on the cell model can be
found in Fedosov et al.56,57

Linear analysis for a regular hexagonal network
allows us to relate the model parameters uniquely with

the network macroscopic properties, see Fedosov
et al.56,57 for details. Thus, in practice, the given mac-
roscopic cell properties serve as an input to be used to
calculate the necessary mesoscopic model parameters
without any manual adjustment. We also employ a
‘‘stress-free’’ model,56,57 which eliminates existing
artifacts of irregular triangulation. It is obtained by
computational annealing such that each spring
assumes its own equilibrium spring length adjusted to
be the edge length after triangulation. Both internal
and external fluids are simulated by a collection of free
DPD particles and are separated by the cell membrane
through bounce-back reflections at the membrane
surface. Moreover, a dissipative force between fluid
particles and membrane vertices is set properly to
account for the no-slip boundary conditions at the
membrane surface. More details on boundary condi-
tions can be found in Fedosov et al.56,57

The other class of methods for cell membrane
modeling corresponds to a continuum representation.
Thus, cells are modeled using some type of a consti-
tutive equation from solid mechanics. Examples here
include boundary-integral formulation125,165 and finite
element discretization.100 More details on RBC and
blood flow modeling can be found in recent
reviews.62,85,97

HEALTHY BLOOD FLOW

Blood flow in microcirculation123 affects a number
of vital processes in the human body including oxygen
delivery to tissues, removal of waste products, immune
response, haemostasis, etc. Detailed experimental
measurements of blood flow in vivo down to a cell level
are very difficult and often not feasible. This has
motivated a large worldwide scientific effort to derive
reliable numerical models of blood flow in order to
study blood hydrodynamics in vessel networks, its
rheology, and the effect on various blood-affected
processes. Here, we will mainly focus on mesoscopic
modeling of blood flow down to the single blood cell
level; see also a recent review.62 We also present typical
average plasma and RBC properties in Table 1.

Blood Flow in Tubes

Blood flow in tubes or rectangular channels is a
relatively simple problem which mimics the main
characteristics of blood flow in a in vivo vessel. It
allows the quantification of blood flow resistance for
various conditions by estimating such factors as the
hematocrit, flow rate, and RBC aggregation. This
model also permits quantitative simulation of such
processes as the migration, deformation, and dynamics
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of single cells within the flow. As an example, Fig. 1
shows a snapshot of flow of blood in a tube with
diameter D = 20 lm.

Fahraeus Effect

Fahraeus performed in vitro experiments on blood
flowing through glass tubes53 and found an elevated
value of discharge hematocrit (Hd), defined as the RBC
volume fraction exiting a tube per unit time, in com-
parison with the RBC concentration within a tube
called tube hematocrit (Ht). This finding, which is
called the Fahraeus effect, is a consequence of the
cross-stream migration of RBCs in tube flow. RBCs in
blood flow migrate away from the vessel walls towards
the centerline28,72 due to hydrodynamic interactions
with the walls and their deformability4,19,40,108; such
interactions are also referred to as lift force. Crowding
of RBCs around the tube center results in their faster
motion along the tube with respect to the average
blood flow velocity, thus leading to an increased Hd

value measured experimentally.
The Fahraeus effect is one of the standard tests for

any blood flow model, and has been modeled in sim-
ulations of blood flow in rectangular channels43 and in
tubes.59,93 In contrast to experiments,53,128 where Hd is
the main controlled parameter and Ht has to be mea-
sured, in simulations Ht is an input and corresponds to
the volume fraction of RBCs placed within the chan-
nel, while Hd is computed. In order to compute the

ratio Ht/Hd in simulations a simple mass balance can
be employed in flow, which yields

Ht

Hd
¼ �v

vRBC
; ð3Þ

where �v is the average flow velocity and vRBC is the
average velocity of red cells. Figure 2a shows the ratio
Ht/Hd for two hematocrits and various tube diameters
D. The simulation results93 are compared with the
empirical fits to experimental data on blood flow in
glass tubes.128 A strong effect of RBC migration to the
tube center on the discharge hematocrit is observed for
tubes with diameters of up to about 200 lm. For larger
tube diameters, the layer next to the wall void of
RBCs, called the cell-free layer (CFL), becomes rather
small in comparison with D, and therefore the Fah-
raeus effect is negligible.

Fahraeus–Lindqvist Effect

Another phenomenon directly related to RBC
migration towards a vessel centerline and the forma-
tion of a CFL next to the wall is the Fahraeus–
Lindqvist effect,55 describing a decrease in blood flow
resistance with decreasing tube diameter.128 The flow
resistance is affected by the CFL, which serves as an
effective lubrication layer for relatively viscous flow at
the core consisting primarily of RBCs. For large tube
diameters the CFL thickness is small with respect to
D, and therefore the bulk blood viscosity is essentially
measured. As the tube diameter is reduced, the CFL
thickness becomes more significant with respect to D
leading to an effective decrease in flow resistance. The
blood flow resistance in glass tubes is quantified by an
effective viscosity, termed the apparent blood viscosity,
using the Poiseuille law in tubes

gapp ¼
pDPD4

128QL
; ð4Þ

where DP=L is the pressure drop along the tube length
L and Q is the volumetric flow rate. For convenience,
experimental results128 are presented in terms of the
relative apparent viscosity defined as

grel ¼
gapp
g0

; ð5Þ

where g0 is the blood plasma viscosity. Thus, grel
characterizes the effective viscosity of blood with
respect to that of plasma.

Similar to the Fahraeus effect, the Fahraeus–
Lindqvist effect also serves as a standard validation
test for any blood flow model. Figure 2b shows the
relative apparent viscosity for different Ht values and
tube diameters, where the solid curves are the fits to
experimental measurements128; the symbols correspond

TABLE 1. Typical average plasma and RBC properties in
health.

Plasma viscosity 0.0012 Pa � s
RBC cytosol 0.006 Pa � s
Temperature 37 �C
RBC membrane Young’s modulus 18.9 9 1026 N/m

RBC membrane bending rigidity 3.0 9 10219 J

RBC membrane viscosity 2:2� 10�8 Pa � s �m

FIGURE 1. A simulation snapshot of blood flow (RBCs only)
in a tube of a diameter D 5 20 lm and at tube hematocrit
Ht 5 0.45. The thin layer between the RBC core and the tube
walls is the cell-free layer.
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to simulation results.93 The minimum value of grel is
found for the tube diameter of Dm = 7–8 lm. In tubes
with diameters smaller than Dm, RBCs have to
strongly deform and squeeze through the tubes
attaining bullet-like shapes,3,140,155 which leads to a
steep increase in the relative apparent viscosity. On the
other hand, when D>Dm, the thickness of the CFL in
comparison with the tube diameter becomes smaller,
leading to an effective viscosity increase.

The Fahraeus–Lindqvist effect has been quantita-
tively captured in 3D blood flow models in cylindrical
vessels5,59,68,93 as well as in rectangular channels.41,43

Furthermore, this effect has also been quantitatively
predicted by 2D blood flow models9 and by the sim-
plified blood models,84,105,116 which do not properly
capture RBC membrane deformability. This clearly
indicates that the deformability and dynamics of
individual cells do not significantly affect the flow
resistance. Thus, it appears computationally advanta-
geous to divide blood flowing in tubes into two
regions: (i) a relatively viscous flow core consisting
mainly of cells, and (ii) the CFL region devoid of
RBCs. This assumption leads to the so-called two-
phase model28,71,93,138 for blood flow in tubes or ves-
sels, where the flow is divided into core and near-wall
regions having different viscosities. Although such
models describe well the flow resistance in straight
tubes, they might not provide realistic simulations in
complex geometries (e.g., vessel networks) due to
spatial variability of the CFL88 and non-trivial parti-
tioning of RBCs within the network.130

Finally, the blood flow resistance depends on flow
rate and aggregation interactions between RBCs.
Experimental data compiled in Pries et al.128 and
simulations of blood flow in small tubes68 suggest that
the dependence of flow resistance on flow rate disap-
pears at sufficiently high flow rates exceeding the

pseudo-shear rate _c ¼ �v=D of approximately 50 s21. In
fact, fits to experimental data presented in Fig. 2 are
based solely on experimental studies, where the pseu-
do-shear rates are higher than 50 s21.128 As the flow
rate is decreased such that _c< 50 s�1; the blood flow
resistance increases for RBC suspensions68,134 without
aggregation interactions between cells. RBC aggrega-
tion in whole blood occurs in equilibrium or at suffi-
ciently low shear rates. Viscometric measurements of
whole blood viscosity25,106,141 have shown a steep vis-
cosity increase for shear rates below 10 s21 due to RBC
aggregation in comparison with analogous non-
aggregating RBC suspension. Thus, the flow resistance
of blood in tubes is not affected by RBC aggregation
for sufficiently high flow rates, and this has been con-
firmed experimentally28,134 and in simulations.93 At
sufficiently low flow rates, experimental stud-
ies28,54,111,134 report a decrease in the relative apparent
viscosity due to RBC aggregation, but this has not
been yet explored in simulations.

Cell-Free Layer

The CFL is a layer of blood plasma near the wall
that is devoid of RBCs due to their migration to the
vessel center. The viscosity in the CFL region is equal
to that of blood plasma, while the viscosity in the tube-
core region populated with RBCs is several times lar-
ger. Hence, the formation of CFL leads to a better
efficiency for the RBC core to flow resulting in the
aforementioned Fahraeus and Fahraeus–Lindqvist
effects. The thickness of CFL d may serve as an
alternative indicator for blood flow resistance. In
in vitro17,134 and in vivo88,101,163 experiments, the outer
edge of the RBC core has been tracked to calculate
its average position and deduce the CFL thickness.
A similar approach has also been employed in
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simulations43,59,93,116 and a comparison of CFL
thicknesses measured experimentally and in simula-
tions is shown in Fig. 3. The simulations predict an
increase in d with tube diameter. However, the ratio of
d/D in fact decreases,41,93 which is consistent with the
Fahraeus and Fahraeus–Lindqvist effects. The simu-
lated CFLs show only partial agreement with the
corresponding experimental data in Fig. 3. The
agreement is good when compared with in vitro
experiments on blood flow in glass tubes,17,134 while
for the in vivo experimental data88,101 noticeable dis-
crepancies exist especially at low Ht values. The vari-
ability in CFL thicknesses also exists across various
CFL experimental measurements,88,101,163 so the
agreement of the simulation results with in vivo data is
expected to be qualitative. Several factors may con-
tribute to the variability of in vivo measurements of
CFL and the discrepancies with simulations including
the glycocalyx layer at vessel walls, variations in vessel
diameter and length, close proximity of the site of CFL
measurements to vessel bifurcations, vessel elasticity,
and spatial resolution of the recorded data.47,59,88,127

An alternative means to compute the thickness of
CFL in simulations is to analyze the local hematocrit
distribution (see Fig. 4a), which drops quickly as we
exit the RBC core region and enter the CFL moving
along the tube radial direction.9,41,68 The simulation of
non-aggregating RBC suspension in tube flow68

showed that d increases as the pseudo-shear rate is
increased from 0 to approximately 50 s21. This result
indicates that the flow resistance is decreasing in
agreement with the experimental measurements in

Reinke et al.134 For flow rates above 50 s21, the CFL
thickness remains nearly constant,68 which supports
the argument that the flow resistance becomes inde-
pendent of the flow rate as discussed in ‘‘Fahraeus–
Lindqvist Effect’’ section. In contrast to a constant d
for high flow rates, in vivo experiments88 and 3D sim-
ulations59 have shown a mild decrease in the CFL
thickness with increasing flow rate. Finally, the effect
of RBC aggregation, which is important only at low
shear rates, leads to an increase in the CFL thickness
as the flow rate is reduced due to the possibility to form
a more compact RBC core of the flow.89,134 Conse-
quently, RBC aggregation results in a lower flow
resistance as the flow rate is decreased. Note that RBC
aggregability reverses the trend of the flow resistance
for low flow rates in comparison with a non-aggre-
gating suspension; the RBC aggregation effect has not
been yet investigated by simulations.

RBC Distribution and Deformation in Flow

Migration of RBCs in blood flow leads to a variation
in local RBC density and hematocrit. Departures from
normal blood flow characteristics are potential indica-
tors of disease pathology. For tube flow, the local
hematocrit H(r) is defined as the volume fraction of
RBCs within an annular region with the radius r and
thickness Dr: Figure 4a presents the local hematocrit
distributions for various Ht values and tube diameters.
For small tube diameters, H(r) in the tube center is
significantly larger than Ht in agreement with the sim-
ulation results in Freund and Orescanin68 Thus, RBCs
are mainly located at the tube center, however their
dynamics and structure depend on Ht.

93 At low
Ht, RBCs attain a parachute shape and move in a train-
like arrangement, which has been also reported in
McWhirter et al.104 In contrast, at high Ht, RBCs
arrange into the so-called zig-zag mode found experi-
mentally in Gaehtgens et al.70 and in simulations.104 As
the tube diameter is increased, the local hematocrit
converges towards the Ht value. However, for low Ht a
peak in H(r) may still exist around the tube center due
to close packing of RBCs within the centerline region
where local shear rates are small. For tube diameters
DJ200 lm a nearly homogeneous distribution of RBCs
is expected, and therefore a continuum approximation
for blood flow in large tube is appropriate.93

Quantitative analysis of local RBC deformation in
tube flow can be conveniently performed using the
RBC gyration tensor.103 Eigenvalues of the gyration
tensor characterize cell shape along the directions
defined by the tensor eigenvectors. The distributions of
the largest eigenvalue kmax for the RBC across the tube
are shown in Fig. 4b indicating that RBCs are slightly
compressed in the tube center and get stretched more
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and more by the flow as we approach the CFL region.
The kmax distributions can be qualitatively divided into
the three regions: i) a centerline region, where kmax is
nearly constant; ii) the region between the tube center
and CFL, where kmax slowly increases; iii) a region next
to the CFL, where kmax steeply increases. Similar
conclusions for RBC deformation in tube flow have
also been reported in Alizadehrad et al.5 Finally, for
sufficiently large D the function of kmax(r) converges to
a common curve, and therefore the dependence on
tube diameter disappears.

Blood Rheology

A major aim of computational cell biorheology is to
predict the macroscopic flow properties of a suspen-
sion (e.g., shear viscosity, yield stress) from the meso-
scopic properties of the constituent particles (e.g., size,
deformability, inter-particle interactions). Bulk blood
properties under shear have been measured in a num-
ber of laboratories25,106,121,137,141,150 predicting a non-
Newtonian shear thinning behavior. Here, we draw
attention to two different sets of viscometric mea-
surements. The first set corresponds to whole blood,
where no significant changes are introduced to freshly
drawn blood except for a necessary initial stabilization
with an anti-coagulant. Such procedure for sample
preparation leaves the aggregation properties among
RBCs virtually unaffected, and therefore cell aggre-
gates, known as rouleaux, can be observed.23,24,106,107

The second set of viscometric measurements corre-
sponds to the so-called non-aggregating RBC suspen-
sions, where RBCs are washed and re-suspended into a
neutral solvent. RBC aggregation interactions strongly
depend on the nature and concentration of available

proteins or polymers24,107 and can be triggered by
adding them to non-aggregating RBC suspen-
sions.107,126,144 Whole blood is also known to exhibit a
yield stress27,29,106 defined as a threshold stress that
must be exceeded for flow to begin.

Reversible Rouleaux Formation

Aggregation interactions among RBCs lead to the
formation of rouleaux structures in equilibrium or in
relatively weak flows. A rouleaux resemble stacks of
coins as illustrated in Fig. 5 showing a simulation
snapshot in equilibrium. There exist two different
hypotheses for the RBC aggregation in polymer or
protein solutions: (i) the bridging model, which sug-
gests that cross-linking between cells may be achieved
by polymer adsorption or adhesion on a cell sur-
face,16,22 and (ii) the depletion model, which suggests
that RBC aggregation arises from depletion interac-
tions.13,112 In equilibrium, rouleaux formation con-
sisting of a few RBCs is first observed, followed by
further coalescence into branched rouleaux net-
works.106,136,137 In flow, the large rouleaux break up
into smaller ones. However, at sufficiently high shear
rates, rouleaux structures no longer exist.168 The
aggregation process is reversible once the shear rate is
decreased.

RBC aggregation has been simulated in 2D,11,158,164

where aggregation and disaggregation of several cells
in shear flow has been studied. The effect of RBC
aggregation on blood rheology has also been investi-
gated in 3D simulations.98 However, the marked vis-
cosity increase at low shear rates has not been captured
due to the very small size of a simulated system with
only six RBCs. Finally, recent 3D simulations63 led to
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quantitative predictions for the strength of RBC
aggregation and its effect on blood viscosity.

Blood Viscosity and Yield Stress

As noted earlier, the viscosity of whole blood is
strikingly different from that of non-aggregating RBC
suspension due to aggregation interactions between
RBCs. Figure 6 presents the relative viscosity of blood,
defined as the ratio of RBC suspension viscosity to the
solvent viscosity, vs. shear rate at Ht = 0.45. The
blood viscosity was calculated in shear flow63 using the
MS-RBC model.56 The model results compare very
well with the experimental viscometric measure-
ments.25,106,141 The correct predictions of viscosity by
the model facilitates calculation of the strength of
aggregation forces between two RBCs, which appears
to be in the range of 3.0 pN to 7 pN. Note that these
forces are much smaller than those used in single RBC
stretching tests with optical tweezers.147

Whole blood is considered a fluid with a yield stress
(a threshold stress for flow to begin),27,29,106,121 which
is usually calculated by extrapolation of available vis-
cometric data to the zero shear rate. For blood the
Casson’s equation20 is often used

s1=2xy ¼ s1=2y þ g1=2 _c1=2; ð6Þ

where sxy is the shear stress, sy is a yield stress and g is the
suspension viscosity at large _c:TheCasson’s relation has
been used to compute yield stress for pigment-oil sus-
pensions,20 Chinese ovary hamster cell suspensions,81

and blood.107 Figure 7 shows the simulation results
fromFedosov et al. 63where computed shear stresses are
extrapolated to the zero shear rate using a polynomial fit

in Casson coordinates. The extrapolated sy values are
virtually zero for non-aggregating RBC suspensions,
while the presence of RBC aggregation leads to a non-
zero yield stress. The simulation results support the
hypothesis that whole blood has a non-zero yield stress
due to aggregation interactions between RBCs.27,29,106

Moreover, the simulated values of sy lie within the range
of 0.0015 Pa and 0.005 Pa for yield stress measured
experimentally.106

Another aspect which has been discussed in Fedosov
et al.,63 is a link between RBC suspension macroscopic
properties and itsmicroscopic characteristics such as cell
structure, deformation, and dynamics. The analysis of
the suspension’s structure has confirmed that a steep rise
in viscosity for the aggregating RBC suspension at low
shear rates is due to the existence of small aggregates
consisting of 2–4 RBCs. As the shear rate is increased,
the suspension’s structure completely disappears, and
therefore the viscosity at high shear rates becomes
independent of RBC aggregation. Furthermore, the
shear-thinning property of a non-aggregating RBC
suspension is strongly associated with the transition of
RBCs from tumbling to the tank-treading dynamics2,142

and the alignment of tank-treading RBCs with the shear
flow. Simulations of a single elastic oblate-shape capsule
in shear flow,10 which mimic a dilute solution, have also
shown a shear thinning behavior which mainly occurs

FIGURE 5. A simulation snapshot showing sample RBC-
rouleaux structures in equilibrium.
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within the capsule tank-treading regime. Another sim-
ulation study of dense near-spherical capsules26 have
also shown a slight shear-thinning behavior due to the
deformation of capsules in shear flow. In addition,
normal stress differences have been computed for the
capsule suspensions.

Numerical studies of the rheology of dense suspen-
sions of deformable particles and cells are still rather
limited. Such simulations can be used to investigate a
wide class of complex fluids (e.g., cell, vesicle, and
capsule suspensions) and to tune their properties to
modulate cell behavior. In addition, such 3D high-
fidelity simulations will allow one to study in detail the
connection between macroscopic and microscopic
properties of such suspensions.

Margination of White Blood Cells and Platelets

Margination of different solutes (e.g., white blood
cells, platelets, drug carriers) in blood flow is the
migration process of the solutes towards vessel walls.
The margination process is essential for many blood
solutes in order to perform their function, as they come
into contact with vessel walls when necessary. For
example, white blood cells (WBC) have to marginate
towards the walls12,65,73 in order to be able to efficiently
adhere to vascular endothelium and eventually trans-
migrate into the surrounding tissues.143 The margin-
ation mechanism is mediated by RBCs, which migrate
towards the vessel center28,72 due to the hydrodynamic
lift force,4,19,40,108 and effectively push out various sol-
utes from the central region into the CFL. More pre-
cisely, the margination mechanism is a consequence of

the competition between lift forces on RBCs and blood
solutes, and their interactions in flow. Recently, a mar-
gination theory for binary suspensions90,91 has been
proposed through two mechanisms: (i) wall-induced
particle migration due to lift force, and (ii) particle dis-
placement due to pair collisions of different solutes or
their interactions in flow; the latter mechanism is also
often referred to as shear-induced diffusion.

White Blood Cell Margination

WBC margination has been studied in a number of
experiments1,12,65,73,83,119 and simulations.61,67,146 Sev-
eral blood and flow properties contribute to WBC
margination including Ht, flow rate, RBC aggregation,
and vessel geometry. In vivo experiments on mesenteric
venules of rat65 showed an increase of WBC adhesion
rate (and consequently margination) for high HtJ0:45
as the flow rate was decreased. A recent microfluidics
study83 concluded that the most efficient WBC mar-
gination occurs within intermediateHt . 0.2–0.3, while
at lower or higher Ht values WBC margination is
attenuated. In contrast, in vitro experiments in glass
tubes1 and2Dsimulations67 have reportedno significant
sensitivity of WBC margination on blood hematocrit.
The effect of flow rate onWBCmargination is consistent
across various studies,61,65,67,83,119 which show strong
WBC margination at low flow rates, characteristic for
venular blood flow. Furthermore, RBC aggregation
leads to an enhancement of WBC margin-
ation,1,61,65,83,119 while the effect of complex geometries
(e.g., vessel contraction, expansion, and bifurcation) on
WBC margination has a very limited interpretation so
far. The 2D simulation study146 and microfluidic
experiments83mimicking a vessel expansion suggest that
the WBC margination is enhanced in post-capillary
venular expansions. Finally, a combined in vitro and
in vivo study of blood flow around bifurcations156 have
shownpreferential adhesion ofWBCs near bifurcations.

Recent 2D simulations61 provided a systematic study
of WBC margination for various conditions including
flow rate, Ht, WBC deformability, and RBC aggrega-
tion, and attempted to reconcile existing contradicting
observations. Using blood flow simulations, WBC cen-
ter-of-mass distributions were computed for various
flow rates and Ht values with an example shown in
Fig. 8. Clearly, the strongestWBCmargination is found
within a range of intermediateHt = 0.25–0.35, while at
lower and higher Ht values WBC margination is atten-
uated. The weak WBC margination at low Ht has been
expected due to low concentration of RBCs. Surpris-
ingly, however, no significantWBCmargination at high
Ht was observed. The mechanism of WBC margination
attenuation at highHt appeared to be also related to the
presence of RBCs in flow. Thus, at low enough Ht the
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region in front of a marginated WBC in blood flow
remains virtually void of RBCs as they pass above the
slowly moving WBC. As we increase Ht to a certain
value, RBCsmay often enter that region due to high cell
crowding, and effectively lift off theWBCaway from the
walls.61 This lift-off mechanism is different from the lift
force due to cell-wall hydrodynamic interactions and is
governed by the particulate nature of blood.

Having calculated WBC distributions, one can de-
fine a WBC margination probability by integrating the
probability distributions, for instance, up to a distance
of 1.1RWBC away from the walls, where RWBC is the
WBC radius. Figure 9 presents a WBC margination
diagram for a wide range of flow rates and hema-
tocrits. It shows that efficient WBC margination occurs
only within intermediate ranges of flow rates and Ht

values. These results are consistent with experimental
observations, which report WBC adhesion mainly in
venular (not arteriolar) part of microcirculation, since
the characteristic values of _c� in venules of a compa-
rable diameter are in the range _c� ¼ 1�25; while in
arterioles _c�J30.61,123,129 The simulation results also
agree with in vitro experiments on WBC margination,83

which identified optimal WBC margination in the
range Ht = 0.2–0.3. The discrepancies with previous
simulations67 and experiments,1 which found WBC
margination and adhesion to be independent of
Ht, can also be rationalized by noting that the studied
flow rates and Ht values in Abbitt and Nash1 and
Freund67 fell almost entirely into the region of strong
WBC margination.

The effect of WBC deformability has also been
explored in Fedosov et al.,61 where the region of strong
WBC margination shrinks substantially as a WBC
becomes more deformable. This is due to an increase of
the lift force on a deformed WBC, since it may

significantly depart from a spherical shape, which leads
to a reduction in its margination. RBC aggregation has
also been shown to enhance WBC margination.61 In
particular, no significant differences in WBC margin-
ation between aggregating and non-aggregating RBC
suspensions have been found for high flow rates similar
to the effect of RBC aggregation on blood viscosity
discussed in ‘‘Blood Rheology’’ section. However,
WBC margination becomes more pronounced at high
Ht values due to RBC aggregation. Here, RBC
aggregation interactions lead to a less dispersed flow
core, and therefore the shedding of RBCs into the re-
gion in front of a marginated RBC is much reduced.
Future studies of WBC margination will likely focus
on 3D realistic models, and WBC margination and
adhesion in complex microvascular networks.

Similar margination mechanisms are of importance
in a number of diseases. For instance, margination of
circulating tumor cells, which affects their adhesion to
vascular endothelium, is expected to resemble that of
WBCs due to the similarities in cell shapes and sizes.
The WBC margination results are also relevant in
spherocytosis disorder and in malaria, where spheri-
cally-shaped cells are expected to be mainly present
near vessel walls resulting in an increased blood flow
resistance and an enhanced cell adhesion when possi-
ble. Furthermore, the margination effect directly ap-
plies to segregation of various cells and particles in
flow due to the differences in their deformability and
shape. Recent numerical and theoretical investiga-
tions90,91 have shown that less deformable cells or
capsules are preferably segregated toward channel
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walls. Such an effect is expected to play a role in ma-
laria and sickle-cell anemia, where margination of stiff
cells (e.g., Pf-RBCs) contributes to their adhesive
potential. On the other hand, margination and segre-
gation properties of different cells in blood flow can be
exploited in diagnostics and treatment which might
require rare cell detection and separation.15,78,80

Finally, solutes smaller than WBCs (e.g., platelets,
large globular proteins such as von Willebrand factor)
are also subject to margination in blood flow, which is
relevant for margination (and therefore adhesion) of
micro- and nano-carriers used for drug delivery. Next,
the margination effect for platelets is discussed.

Margination of Platelets

Preferential migration of platelets towards the vessel
walls in blood flow is critical for haemostasis and
thrombosis, sincemarginatedplatelets canbetter respond
to injuries at the vessel wall. Margination of platelets as
well as of WBCs is strongly affected by local hematocrit,
flow rate, vessel geometry, and RBC aggregation prop-
erties. These characteristics might be significantly altered
in different diseases in comparison with a healthy state
leading to irreversible changes in cell margination prop-
erties which might affect their proper function. An
increased concentration of platelets near the walls has
been confirmed in in vitro45,151,157 and in vivo149,162

experiments. Experiments in glass channels with a sus-
pension of RBCs and latex beads mimicking plate-
lets45,151 for different Ht values have shown strong bead
margination at highHtJ0:3 values. The experiments for
various flow rates45,151 demonstrated a non-trivial bead
margination dependence. At low shear rates platelet
margination was weak and it increased with increasing
flow rates, while the margination decreased again at very
high shear rates; this behavior is qualitatively similar to
that of WBCs. In vivo experiments162 have found that
platelet margination is different in arterioles and venules
confirming the effect of shear rate on margination. In
viewof theseobservations, it is plausible to expect that the
mechanism of platelet margination is similar to that for
WBCs described above, however its detailed
understanding is still an open question.

There exist a number of numerical studies of platelet
margination and its mechanisms.7,32,33,133,152,153,166,167

The 2D simulations of blood flow using ellipsoid-like
RBCs and circular platelets7 have shown an increased
platelet margination with increasing Ht as well as with
an increase of shear rate in agreement with the exper-
imental observations. The other set of 2D simula-
tions32,33 has led to similar conclusions for the effects
of Ht and shear rates on platelet margination. The
local drift and diffusion of platelets have also been
measured32,33 in an attempt to describe the platelet

margination process using the continuum drift-diffu-
sion equation. The drift-diffusion equation results in a
good qualitative description of platelet margination,
where the drift can be hypothesized to arise from wall-
platelet hydrodynamic interactions (i.e., lift force),
while the shear-induced diffusivity of platelets is due to
their collisions (or interactions) with RBCs in blood
flow. Recent 3D simulations on platelet margin-
ation166,167 have found the margination process to be
diffusional, which fits well into the drift-diffusion
mechanism. Another 3D simulation study133 have
confirmed the effect of Ht on platelet margination,
and, in addition, reported that spherical platelets
marginate better than those having an ellipsoidal
shape. Although the drift-diffusion mechanism for
platelet margination seems to provide plausible
explanation, it is still not clear whether it will lead to a
universal description of the margination process. For
instance, a recent theoretical model152 for platelet
adhesion in blood flow suggests a rebounding collision
mechanism for platelets due to their interactions with
the flow core consisting primarily of RBCs.

DISEASED BLOOD FLOW

Rheology in Malaria

Red blood cells parasitized by the malaria-inducing
Plasmodium falciparum (Pf) parasites, referred to here
as Pf-RBCs, are subject to changes in their mechanical
and rheological properties as well as in their mor-
phology30,139,147 during intra-erythrocytic parasite
development, which includes three intra-erythrocytic
stages that span the 48-h asexual cycle: from ring fi
trophozoite fi schizont stages. Gradual progression
through these stages leads to considerable stiffening of
Pf-RBCs as found in optical tweezers stretching
experiments35,109,147 and in diffraction phase micros-
copy by monitoring the membrane fluctuations.37,118

Pf development also results in vacuoles formed inside
of RBCs possibly changing the cell volume. Thus, Pf-
RBCs at the final stage (schizont) often show a ‘‘near
spherical’’ shape, while in the preceding stages maintain
their biconcavity. These changes greatly affect the rheo-
logical properties and the dynamics of Pf-RBCs, and
may lead to obstruction of small capillaries139 impairing
the ability of RBCs to circulate.

In this section, we present results of the application
of the computational framework we discussed for
healthy RBCs to Pf-RBCs. In particular, we first
consider single RBCs for validation purposes and
subsequently we present simulations for whole infected
blood as suspension of a mixture of healthy and Pf-
RBCs in order to investigate its rheological behavior.
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In Bow et al.15 a new microfluidic device with
periodic obstacles to red blood cell flow was employed
to perform experiments for the late ring-stage P. fal-
ciparum-infected RBCs that are infected with a gene
encoding green fluorescent protein (GFP). This device
consisted of triangular obstacles (in converging and
diverging form). For both the converging and diverg-
ing geometries infected RBCs exhibit lower average
velocities than healthy RBCs (see Fig. 10a). In the
DPD simulations, the infected cells are modeled with
increased shear modulus and membrane viscosity val-
ues obtained from optical tweezers experiments. The
parasite was modeled as a rigid sphere of two microns
in diameter48 placed inside the cell. Time lapse images
from the simulations showing passage of an infected
RBC through the periodic obstacles with converging
and diverging opening geometries are shown in
Fig. 10b.

The DPD model is able to capture the effect of
changes of RBC properties arising from parasitization
on the movement of healthy RBCs and Pf-RBCs quite
accurately. A quantitative comparison of the simula-
tion results with experimental data for the average
velocity of uninfected RBCs and Pf-RBCs as a func-
tion of applied pressure gradient is shown in Fig. 11.

In order for the DPD simulation to provide insights
into the design of microfluidic devices that are poten-
tially capable of diagnosing disease states, it is essential
to develop computational capabilities for the biorheol-
ogy of whole blood (containing multiple components)
where only a small volume fraction of the total cell
population contains diseased cells. Next we present
simulation results of blood flow in malaria as a suspen-
sion of healthy and Pf-RBCs at the trophozoite stage
and hematocrit Ht = 0.45. Several realistic (low para-
sitemia levels) and hypothetical parasitemial levels
(percentage of Pf-RBCswith respect to the total number
of cells in a unit volume) from 5 to 100% are considered

in vessels with diameters 10 and 20 lm. The inset of
Fig. 12a shows a snapshot of RBCs flowing in a tube of
diameter 20 lm at a parasitemia level of 25%.

The main result in Fig. 12a is given by the plot of
the relative apparent viscosity in malaria obtained at
different parasitemia levels. The effect of parasitemia
level appears to be more prominent for small diameters
and high Ht values. Thus, at Ht = 0.45 blood flow
resistance in malaria may increase up to 50% in vessels
of diameters around 10 lm and up to 43% for vessel
diameters around 20 lm. These increases do not in-
clude any contributions from the interaction of Pf-
RBCs with the glycocalyx123,160; such important
interactions are complex as they may include cytoad-
hesion.

In Fig. 12b we also present the bulk viscosity of
infected blood (schizont stage) simulated in a Couette
type device at shear rate _c ¼ 230 s�1. The DPD sim-
ulations compare favorably with the experimental data
obtained with a corresponding rheometer in Raventos-
Suarez et al.132 These validated predictions were
obtained without an explicit adhesion model between
Pf-RBCs. It seems that such cell-cell interactions are
not important at this high shear rate value.

With regards to the cytoadherence of Pf-RBCs,
microfluidic experiments have been conducted in Antia
et al.8 to investigate the enhanced cytoadherence of Pf-
RBCs in flow chambers. These experiments revealed
that the adhesive dynamics of Pf-RBCs can be very
different than the well-established adhesive dynamics
of leukocytes. For example, the adhesive dynamics of
Pf-RBCs on purified ICAM-1 is characterized by sta-
ble and persistent flipping (rolling) behavior for a wide
range of wall shear stresses (WSS)8 but also by inter-
mittent pause and sudden flipping due to the parasite
mass inertia. This interesting adhesive dynamics was
simulated in Fedosov et al.60 where a systematic study
was conducted to estimate the magnitude of the

FIGURE 10. (a) Experimental images of ring-stage P. falciparum-infected (red arrows) and uninfected (blue arrows) RBCs in the
channels at a pressure gradient of 0.24 Pa/lm. The small fluorescent dot inside the infected cell is the GFP-transfected parasite. At
8.3 s, it is clear that the uninfected cell moved about twice as far as each infected cell. (b) DPD simulation images of P. falciparum-
infected RBCs traveling in channels of converging (left) and diverging (right) opening geometry at 0.48 Pa/lm. The figure is
reproduced with permission from Bow et al.15
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adhesion force. It was found to be in agreement with
the adhesion force measured in related experiments by
Cravalho et al.31 using an atomic force microscope
(AFM). A Pf-RBC may exhibit firm adhesion at a
WSS lower than a certain threshold and can com-
pletely detach from the wall at higher WSS. At low
WSS, adhesion forces are strong enough to counteract
the stress exerted on the cell by the flow resulting in its
firm sticking to the wall. On the contrary, at high WSS
existing bonds do not provide sufficiently strong
adhesive interactions which yields RBC detachment
from the wall. RBC visualizations showed that its

detachment at high WSS occurs during the relatively
fast motion of RBC flipping, since the contact area at
that step corresponds to its minimum.58 However, in
experiments8 Pf-RBCs which moved on a surface
coated with the purified ICAM-1 showed persistent
and stable rolling over long observation times and for
a wide range of WSS values. This suggests that there
must be a mechanism which stabilizes rolling of in-
fected RBCs at high WSS. This fact is not surprising
since, for example, leukocyte adhesion can be actively
regulated depending on flow conditions and biochem-
ical constituents present.64,143
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Rheology in Sickle Cell Anemia

The abnormal rheological properties of sickle cell
RBCs (SS-RBCs) are correlated with the changes in
their shapes and with the stiffened cell membrane. This
was measured by micropipette experiments in Itoh
et al.82 at different deoxygenated stages. The shear
modulus of the full deoxygenated sickle cell falls within
a wide range of values depending on the intracellular
sickle hemoglobin HbS polymerization and it is more
than 100 times the value of healthy cells. In the simu-
lation studies in Lei and Karniadakis,94 the shear
modulus of the full deoxygenated sickle cell was set at
very high value, e.g., 2000 times the value of the
healthy cells to ensure a fully rigid SS-RBC. The
bending rigidity of sickle cells under different deoxy-
genations was also set to be 200 times the value of the
healthy RBC as no detailed values are available in the
literature. In Lei and Karniadakis94 sickle blood was
modeled by a suspension of SS-RBCs in a solvent,
which is represented by a collection of coarse-grained
particles with DPD interactions. Different sickle cell
morphologies were obtained based on a simulated
annealing procedure and medical image analysis of
clinical data.94

To investigate the relationship between the effect of
the rate of deoxygenation and the rheology of sickle
blood, Kaul et al.87 examined the shear viscosity of
sickle blood subjected to both fast and gradual deox-
ygenation procedures. Sickle blood subjected to grad-
ual deoxygenation procedure showed monotonic
elevation of shear viscosity and the formation of the
sickle shape of blood cells over a period of 30 minutes
until the full deoxygenated state was achieved. On the
contrary, sickle blood subjected to the fast deoxygen-
ation procedure exhibits two distinct phases. The shear
viscosity of the sickle blood showed fast elevation
within the first 7 minutes of deoxygenation accompa-
nied with the cell morphology transition to granular
shape. However, the shear viscosity decreased gradu-
ally during further deoxygenation. A large portion of
cells appears extremely elongated with the intracellular
HbS fibers aligned in one direction. To study the
morphology effect on the rheological behavior of the
sickle blood, in Lei and Karniadakis94 simulation re-
sults were presented for shear flow of the sickle blood
with the three distinct types of sickle cell reported in
the experiment (Hct = 40%). Figure 13 plots the shear
viscosity of the deoxygenated sickle blood; the shear
modulus of the cell membrane is the same for all the
three types. The sickle blood shows elevated and shear-
independent viscosity values for all three types.
Moreover, the sickle blood with granular and sickle
morphology shows larger viscosity compared with the
elongated shape, which explains the progressive

decrease of the viscosity value with further deoxygen-
ation, since a large portion of granular cells transforms
into the elongated shape during the procedure. This
result is probably due to the different effective volume
for each type of the sickle blood in the shear
flow system,87 which affects the momentum transport
ability between the cells.

The hemodynamics of sickle blood was studied in an
isolated vasculature in Kaul et al.86 While the oxygen-
ated sickle blood exhibits hemodynamics similar to
healthy blood, the deoxygenated sickle blood shows
distinctive dynamic properties for different RBC types.
In the simulation, sickle blood in a tube flow system
with Hct = 30% was considered similar to the experi-
ment although precise morphology details are difficult
to extract from the experiments. The deoxygenated
sickle blood flow was represented by a suspension of
RBCs with sickle and granular shapes. Blood plasma
and cytosol are explicitly represented by DPD, and they
are separated by the cell membrane through the bounce-
back reflection on membrane surface. The viscosity of
the cytosol is set to 4g0 and 50g0 for the healthy and
deoxygenated blood flow, where g0 is the viscosity of the
blood plasma. Figure 14 plots the increase of the flow
resistance with different oxygen tension for the sickle
and granular shapes. While both types of blood flow
show further increase in flow resistance at deoxygenated
state, the granular type of blood flow shows a more
pronounced elevation compared with the sickle shape.
One possible explanation proposed by the Kaul et al.86

is the different distribution of SS-RBCs in the capillary.
The inset plot of Fig. 14 shows the snapshots of the
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sickle and granular cells in the tube flow. The cells of
sickle shape tend to flow along the axis of the tube as
observed in experimental studies in LaCelle92; specific
distributions of SS-RBC orientation were presented in
Lei and Karniadakis.94

In this section we presented DPD simulations of
sickle blood flow and compared them with existing
experimental results primarily on flow resistance. New
microfluidic experiments, like the ones presented in the
previous section onmalaria, will be very useful in further
validationof theDPDmodels, especially as a functionof
deoxygenation rate. Such experiments on a microfluidic
cytometer are currently under way by the MIT co-
author of this paper. In addition, quantifying—both
experimentally and through DPD simulations—the SS-
RBCmembrane fluctuations will characterize better the
precise state of the SS-RBCs. In a recent study in Byun
et al.,18 it was found that the membrane fluctuations are
significantly reduced for SS-RBCs taken from a sickle
cell disease patient at ambient oxygen concentration.
Careful analysis identified that high cytoplasmic vis-
cosity is primarily responsible for the decreased mem-
brane fluctuations, while irreversibly sickled cells were
found to have higher membrane stiffness than that from
other types of RBCs in sickle cell disease. Similarly, new
microfluidic experiments are needed, in addition to the
published results,77 to elucidate the mechanism of
cytoadhesion and occlusion in sickle cell blood flow, and
to validate the recent findings of Lei and Karniadakis95

on the precise mechanisms of vaso-occlusion in post-
capillaries.

DISCUSSION

We have presented a new computational framework
for simulating hematologic disorders based on DPD,

derived from the molecular dynamics method. This is a
Lagrangian mesoscopic approach that can model
seamlessly blood cells, proteins, plasma, and arterial
walls, and can predict accurately blood flow in health
and disease. To make this approach patient-specific we
rely on single-RBC experiments, e.g., using optical
tweezers, atomic force microscopy, etc., and novel
microfluidic devices in order to obtain data from which
we can extract the macroscopic parameters of the
model, which, in turn, can be related to the micro-
scopic parameters required in DPD modeling. More-
over, these single-RBC data sets can serve as a
validation testbed over a wide range of operating
conditions. The utility of the DPD models is then to
predict whole blood behavior in health or disease
without any further ‘‘tuning’’ of the models’ parame-
ters. We demonstrated that this is indeed the case for
healthy and malaria-infected as well as sickle whole
blood. We can also employ the DPD models for sen-
sitivity studies, hence interacting more meaningfully
with the experiments, and suggest specific measure-
ments or parameter variations or even probe certain
biophysical interactions, e.g., the interaction of the
lipid bilayer with the cytoskeleton in a RBC,120 not
accessible with experimental techniques alone.

The two diseases we studied have some common
biophysical characteristics, however, their biorheology
is distinctly different. Hence, combining computational-
experimental studies, as we have been pursuing in our
research groups, can help greatly in quantifying fun-
damental biophysical mechanisms and possibly identi-
fying unique biomarkers for these diseases. Our
computational framework is general and employs
patient-specific model input, hence it can be also used
for other hematologic diseases, such as diabetes, HIV,
and even in cancer metastasis. In the flow resistance
results we presented in the current paper, we modeled

FIGURE 14. Increase of the flow resistance induced by the sickle blood flow for both sickle (left) and granular (right) shapes. The
inset plot shows a snapshot of the sickle cells in the tube flow. The figure is reproduced with permission from Lei and Karni-
adakis.94
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whole blood as suspension of RBCs in plasma, hence
ignoring the effect of white cells (about 0.7%) and
platelets (less than 0.5%), also the effect of other pro-
teins in the plasma, or the interaction with the endo-
thelial surfaces of the blood vessel walls. From the
numerical modeling standpoint, there is no particular
difficulty in also modeling these other cells as we
have done for margination studies in the subsection
‘‘Margination of White Blood Cells and Platelets’’, or
modeling the endothelium, which may contribute sig-
nificantly in specific biomedical studies, e.g., in throm-
bosis, immune response. From the biorheological view
point, however, as we demonstrated for both malaria
and sickle cell anemia, the presence of the other cells is
not important unlike the endothelium that can modify
significantly the blood flow resistance.
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Abstract Mesoscale simulations of blood flow, where the
red blood cells are described as deformable closed shells with
a membrane characterized by bending rigidity and stretch-
ing elasticity, have made much progress in recent years to
predict the flow behavior of blood cells and other compo-
nents in various flows. To numerically investigate blood flow
and blood-related processes in complex geometries, a highly
efficient simulation technique for the plasma and solutes is
essential. In this review, we focus on the behavior of sin-
gle and several cells in shear and microcapillary flows, the
shear-thinning behavior of blood and its relation to the blood
cell structure and interactions, margination of white blood
cells and platelets, and modeling hematologic diseases and
disorders. Comparisons of the simulation predictions with
existing experimental results are made whenever possible,
and generally very satisfactory agreement is obtained.
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1 Introduction

Blood performs a large variety of essential functions in
our body, ranging from the transport of oxygen to immune
response and wound healing. Therefore, blood diseases have
severe consequences for our health. Prominent examples are
plaque formation in arteries which may lead to heart attacks,
diabetes as a cause of reduced microcirculation and tissue
damage, excessive blood clotting leading to stroke, reduced
blood clotting which causes excessive bleeding, etc. There-
fore, blood and blood flow have attracted the interest of nat-
ural and medical scientists for centuries. With modern tools
of chemical analysis, diagnostics, and simulation, the field
has made considerable progress in recent years.

The second important motivation for a detailed under-
standing of the dynamical behavior of blood and its com-
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Fig. 1 A scanning electron micrograph of blood cells. From left to
right red blood cell (red), activated platelet (yellow), and white blood
cell (cyan). Source The National Cancer Institute at Frederick (NCI-
Frederick)

ponents is the advent of modern microfluidic devices and
techniques. Not only such knowledge is essential for the
design of new devices with unprecedented functions, but also
such devices allow the control and manipulation of blood
on the level of single cells, which are illustrated in Fig. 1.
Here, advanced simulation techniques can provide insight
into the flow behavior on the cellular level, as well as into the
emergence of macroscopic flow properties from the structure,
deformability, dynamics, and interactions of single cells.

From a simulation point of view, already the dynamics
of model fluids consisting of a solvent and various solutes
such as different molecules, colloidal particles, and cells is a
difficult problem. There exist a large gap in the length- and
time-scales between the atomistic scale of the solvent and
the mesoscopic scale of the suspended particles, which typi-
cally ranges from tens of nanometers to tens of micrometers.
Furthermore, many physical mechanisms are also important
including the deformability of the particles, the hydrody-
namic interactions between them and with walls, and thermal
fluctuations.

In order to surmount the numerical problems, several
mesoscale hydrodynamics simulation techniques have been
developed in the last decade. The Lattice Boltzmann method
(LBM) (Succi 2001), dissipative particle dynamics (DPD)
(Hoogerbrugge and Koelman 1992; Espanol and Warren
1995), and multi-particle collision dynamics (MPC) (Male-
vanets and Kapral 1999; Kapral 2008; Gompper et al. 2009)
have shown a rapid advancement in recent years, and are now
well-established techniques for the numerical investigation
of the dynamics of complex fluids.

We focus in this review on the application of mesoscale
hydrodynamics approaches to studies of blood flow. Since
red blood cells are much more abundant by volume than
other cells and solutes, they determine the flow behavior and
rheology of blood. Nevertheless, it is also essential to under-

stand the behavior of other cells such as white blood cells and
platelets under flow conditions, because their physiological
role as part of the immune system and of wound healing is
strongly affected by flow.

Mesoscale hydrodynamics have been employed in two
(2D) and three dimensions (3D) to model giant unilamellar
vesicles (GUVs) and red blood cells (RBCs) in flow. From
a mechanical point of view, RBCs are distinguished from
vesicles by their nonzero shear elasticity. This distinction can
only be made in 3D, since shear elasticity does not exist for
membranes (i.e., lines) in 2D. It is interesting to study both
GUV in 3D and model cells in 2D, because a comparison
of the results helps to elucidate the importance of specific
material properties of the cells for their flow behavior. Due
to the large size, GUVs and RBCs have to be modeled on
a mesoscopic level, for instance by triangulated surfaces in
3D (Gompper and Kroll 1997, 2004; Noguchi and Gompper
2005b; Fedosov et al. 2010a) and by polyhedral lines in 2D
(Finken et al. 2008; Messlinger et al. 2009). For fluid vesicles,
a phase-field approach has also been employed (Du et al.
2004; Biben et al. 2005), where a scalar “concentration” field
is used to define the interior and exterior of the vesicle, and
thereby the membrane in-between.

In 2D, individual vesicles and cells have been investigated
in shear flow to study the effect of flow on the spectrum
of undulation modes (Finken et al. 2008), which changes
with the flow strength inducing membrane tension. Tank-
treading and tumbling behavior of 2D vesicles and cells in
shear flow (Messlinger et al. 2009; Beaucourt et al. 2004;
Kaoui et al. 2012) has been extensively investigated with the
main finding that the transition between these two modes
can be induced by a viscosity contrast between external and
internal fluids as well as by vesicle confinement. Using the
2D studies on shear and Poiseuille flow, the lift force on a
vesicle near a wall (Messlinger et al. 2009) has also been
measured, which governs the migration of vesicles and cells
away from the walls (Kaoui et al. 2008, 2009, 2011). Sim-
ulations of 2D systems with many cells in flow through
small vessels and the rheology of cell suspensions (Sun
and Munn 2005; Bagchi 2007; Freund 2007; Fedosov et al.
2012) predict cell migration, distributions, and interactions
in flow. In 3D, single GUVs under flow have been studied to
investigate their tank-treading, tumbling, and swinging (also
called vacillating-breathing or trembling) dynamics, in sim-
ple shear flow (Noguchi and Gompper 2005b; Biben et al.
2005; Noguchi and Gompper 2004; Misbah 2006; Noguchi
and Gompper 2007; Zhao et al. 2010; Zhao and Shaqfeh
2011a) as well as in capillary flow in both homogeneous
(Noguchi and Gompper 2005a) and structured microchannels
(Noguchi et al. 2010). In these simulations, detailed informa-
tion has been obtained on the transitions between different
flow behavior modes of vesicles as well as on vesicle defor-
mation.
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Here, our main aim is to provide an overview of recent
work on the deformation, dynamics, and rheology of RBC
suspensions in 3D. Flow of single RBCs (or of periodic arrays
of RBCs) in capillaries has first been investigated with the
assumption of axisymmetric shapes by the boundary inte-
gral method (Pozrikidis 2005). Using efficient mesoscale
hydrodynamics simulation techniques, the assumptions of
symmetric shapes are no longer required. For a single RBC
in capillary flow, simulations have predicted a symmetry
breaking with a perpendicular orientation of the RBC axis
to the flow direction for small flow rates and a transition
from discocyte to parachute shapes for larger flow rates
(Fedosov et al. 2010a; Noguchi and Gompper 2005a; Rea-
sor et al. 2012). Simulations of several RBCs in a narrow
microchannel showed cell clustering at low hematocrits (the
volume fraction of RBCs) (McWhirter et al. 2009, 2011),
while at higher hematocrits, RBCs displayed several dif-
ferent arrangements including a zigzag structure of slipper-
shaped cells (McWhirter et al. 2009). Numerical investiga-
tions of flow behavior of many RBCs in wider channels (Rea-
sor et al. 2012; Dupin et al. 2007; Doddi and Bagchi 2009;
Fedosov et al. 2010b; Freund and Orescanin 2011; Krüger
et al. 2011) demonstrate the existence of a cell-free layer
near the walls and crowding of RBCs in the channel center
due to their migration away from the walls. Finally, simu-
lations of blood rheology in simple shear flow have shown
that the large increase in the apparent viscosity at low shear
rates is due to a small attraction (RBC aggregation) between
cells and the resulting rouleaux formation (Fedosov et al.
2011b).

In order to perform simulations with a much larger num-
ber of RBCs, which may be required to study larger parts
of the circulatory system, simplified RBC models have been
developed. The existing models range from hard oblate ellip-
soids (Janoschek et al. 2010) and deformable ellipsoids with a
rotational degree of freedom for the membrane (Melchionna
2011) to a ring-like arrangement of a few connected spheres
(Pan et al. 2010). In the latter case, the simplified model has
been shown to capture the rheological behavior of the fully
deformable RBC model very well (Fedosov et al. 2011b; Pan
et al. 2011).

The rapid progress in the development of numerical meth-
ods to study blood flow already allows to go beyond sim-
ple RBC suspensions and to investigate more complex sys-
tems. Simulations of malaria-infected cells show a flipping
motion of adhered cells at the wall (Fedosov et al. 2011c,d).
Simulations of RBCs affected by sickle cell anemia show
abnormal cell shapes and an increased hydrodynamic resis-
tance in tube flow (Lei and Karniadakis 2012a,b). Simula-
tions of mixtures of RBCs and platelets under flow in 3D
microvessels demonstrate the migration of platelets to the
vessel wall (Zhao and Shaqfeh 2011b). A similar behav-
ior is predicted for white blood cells (WBCs) in blood flow

(Freund 2007; Fedosov et al. 2012) in 2D. In both cases,
the lift force (Messlinger et al. 2009; Cantat and Misbah
1999; Sukumaran and Seifert 2001; Abkarian et al. 2002)
on highly non-spherical RBCs directed away from the vessel
wall is responsible for expelling the other cells from the ves-
sel center. However, it is important to note that platelets are
much smaller than RBCs, while WBCs are somewhat larger
(see Fig. 1); also, platelets are at least an order of magnitude
more numerous than WBCs. Thus, the detailed mechanisms
of margination as well as the margination dependence on
hematocrit, flow rate, and RBC aggregation are expected to
be different.

This review is organized as follows. In Sect. 2, we briefly
introduce the most frequently used models for RBCs and
blood flow. In Sect. 3, single RBC mechanics and dynamics
are investigated. Section 4 presents results on blood rheol-
ogy and its relation to the suspension structure and single
cell deformation and dynamics. In Sect. 5, we will show
results on blood flow simulations in tubes or microvessels,
while in Sect. 6, we will briefly review margination of white
blood cells and platelets in blood flow. Section 7 provides
several examples of modeling hematologic diseases and dis-
orders. Finally, we conclude in Sect. 8 with a brief discus-
sion.

2 Methods and models

A variety of methods to model cells and vesicles in flow has
been recently applied and developed. These methods are gen-
erally mesoscopic, because microscopic modeling of cells
is not feasible computationally; here, microscopic modeling
refers to a representation on the scale of single atoms and
molecules. Furthermore, a flow of cells and vesicles often
cannot be described on a macroscopic level, since the prop-
erties and dynamics of single cells play an important role in
the flow, but enter into macroscopic methods only approxi-
mately via constitutive equations.

To make an overview of different methods, it is convenient
to divide methodological challenges into the three groups: (1)
modeling fluid flow, (2) modeling deformable cells, and (3)
coupling between the fluid flow and cell deformation. Below
we briefly review different methods which can be employed
for each modeling task.

2.1 Modeling Newtonian solvent

Modeling fluid flow of a Newtonian solvent is probably
the most developed methodological area out of the three
groups identified above. Continuum fluid flow modeling
is often performed using the Navier–Stokes equation or
its modifications, which has resulted into the development
of the computational fluid dynamics (CFD) field (Wendt
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2009). Generally, fluid flow is described by a set of par-
tial differential equations and satisfies the conservation laws
and continuum assumption. The equations can be solved
numerically using various discretization techniques (e.g.,
finite difference, finite element), initial and boundary con-
ditions. The advantages of continuum modeling include
speed and robustness of methods and rather well-established
numerical techniques and codes. However, in these meth-
ods, it may be non-trivial to include some features present
at the micro- and mesoscale, for instance thermal fluctua-
tions.

Another class of efficient numerical techniques to model
fluid flow comprises particle-based methods, which will be
the main focus of this review article. Examples are mole-
cular dynamics (MD) (Allen and Tildesley 1987), dissi-
pative particle dynamics (DPD) (Hoogerbrugge and Koel-
man 1992; Espanol and Warren 1995), multi-particle colli-
sion dynamics (MPC) (Malevanets and Kapral 1999; Kapral
2008; Gompper et al. 2009), and smoothed particle hydro-
dynamics (SPH) (Lucy 1977; Monaghan 2005). Generally,
MD is considered to be a microscopic method and the oth-
ers to be mesoscopic; however, they all recover macroscopic
hydrodynamic behavior at large enough length scales. In
these methods, a fluid is modeled by a collection of parti-
cles which interact with each other through specified forces
or collisions. Theoretical foundations of these methods are
well established, and it has been shown that they are able
to recover proper hydrodynamic behavior. In comparison
with the continuum techniques, particle-based simulations
are generally more expensive computationally; however,
desired micro- and mesoscopic features can be included here
rather straightforwardly. Therefore, particle-based methods
are very popular in modeling complex fluids at the micro- and
mesoscale.

There also exist several other numerical methods, which
do not strictly belong to the continuum or particle-based
method groups, but they can be used to efficiently model fluid
flow. These include the Lattice Boltzmann method (LBM)
(Succi 2001) and Brownian dynamics (Ermak and McCam-
mon 1978), which are often considered to be mesoscopic. In
LBM, the Boltzmann equation is solved on a pre-defined lat-
tice leading to proper fluid hydrodynamics. In BD, hydrody-
namic interactions between suspended objects are described
by the Oseen or Rotne–Prager tensors, which describe hydro-
dynamic interactions without explicit fluid modeling. In com-
parison with conventional CFD methods, LBM has several
advantages such as modeling complex boundaries and meso-
scopic features, since the method has local interactions sim-
ilar to particle-based techniques. The locality of interactions
also allows for an efficient parallelization of the algorithm.
The BD algorithm is very fast for a small number of sus-
pended entities; however, the cost increases substantially as
the number of solutes becomes large.

2.2 Red blood cell model

Human red blood cells (RBCs) are biconcave with a diam-
eter of about 8 µm and a thickness of about 2 µm. A RBC
is comprised of a membrane filled with a viscous cytosol
(hemoglobin solution), which is usually assumed to be a
Newtonian fluid with a viscosity several times larger than
that of blood plasma under physiological conditions. The
RBC membrane consists of a lipid bilayer re-enforced by
two-dimensional spectrin–protein cytoskeleton attached to
the back side of the bilayer. The lipid bilayer is fluidic and
area-preserving (Fung 1993), while the spectrin network sup-
plies RBC elastic resistance, which is required to sustain large
deformations when passing through relatively narrow capil-
laries with the diameter down to 3 µm.

Motivated by the RBC biological structure, a realistic
RBC membrane model has to take into account elastic and
viscous properties of a RBC membrane, its bending resis-
tance, and the viscosity contrast between the blood plasma
and cytosol. There exist essentially two types of RBC mod-
els, a continuum approach and a network model. In a con-
tinuum model, RBC membrane properties are described by
a set of constitutive equations. For instance, RBC membrane
elasticity can be defined by Hookean or neo-Hookean law
(Doddi and Bagchi 2009; Liu and Liu 2006), while RBC
bending rigidity is often modeled by the Helfrich’s curva-
ture elasticity model (Helfrich 1973). Such constitutive laws
are implemented through various discretizations including
finite-element (Liu and Liu 2006) and boundary integral (Fre-
und and Orescanin 2011; Pozrikidis 1989) methods. Further
information about continuum cell modeling can be found,
e.g., Pozrikidis (2005), MacMeccan et al. (2009), Doddi and
Bagchi (2009).

The network model of a RBC is built by a set of points
which form a two-dimensional triangulated network on a
RBC surface (Fedosov et al. 2010a; Noguchi and Gomp-
per 2005a; Dupin et al. 2007; Discher et al. 1998; Li et al.
2005; Pivkin and Karniadakis 2008; Fedosov et al. 2010c),
see Fig. 2. The vertices of a network are connected by springs,
and the potential energy of the system is defined as

U ({xi }) = Us + Ub + Ua + Uv, (1)

where Us is the spring’s potential energy, Ub is the bend-
ing energy, and Ua and Uv correspond to the area and vol-
ume conservation constraints, respectively. The Us part of
the total RBC energy mimics membrane elasticity similar to
that of a spectrin network. It is also possible to attach a dash-
pot to each spring in order to capture viscous response of the
network similar to RBC membrane viscosity. The curvature
energy term supplies bending resistance of the lipid bilayer,
while the area and volume conservation constraints mimic the
area incompressibility of the lipid bilayer and incompress-
ibility of a cytosol, respectively. The RBC biconcave shape is
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Fig. 2 Mesoscopic representation of a RBC membrane by a triangular
network of bonds

also characterized by the reduced volume V ∗ = V0/(
4
3π R3

0),
where V0 is the RBC volume and R0 = √

A0/(4π) = 3.25
µm, with A0 being the area of a RBC. The reduced volume
of a healthy RBC is about V ∗ = 0.6; at this reduced volume,
the discocyte shape minimizes the curvature energy of a fluid
lipid vesicle (Deuling and Helfrich 1976).

We consider two types of network models. The first model
is a generic model of two composite membranes with bend-
ing and stretching energies (Noguchi and Gompper 2005a).
It consists of a dynamically triangulated network, which
describes the fluidic lipid bilayer, connected at the vertices to
another elastic network of fixed connectivity. In this model,
the dynamic network supplies viscous response of a RBC
membrane, while the fixed mesh of springs provides cell
elastic properties. The second model is designed more specif-
ically for RBCs. It is build as a single network of fixed con-
nectivity, which simultaneously includes membrane elastic-
ity and viscous dissipation (Fedosov et al. 2010a,c).

In continuum models, the membrane macroscopic prop-
erties (e.g., shear and bending moduli, membrane viscos-
ity) are a direct input. The network model parameters (e.g.,
spring constant, bending constant) can be related to the net-
work macroscopic properties through a linear analysis of the
deformation of regular hexagonal or random triangular net-
works (Gompper and Kroll 2004; Fedosov et al. 2010a,c;
Seung and Nelson 1988; Gompper and Kroll 1996; Dao et
al. 2006; Schmidt and Fraternali 2012). Thus, in practice,
the given macroscopic RBC properties may serve as an input
for calculating the necessary mesoscopic model parameters
without any ad hoc adjustment.

Numerical studies of the RBC equilibrium shape (Li et al.
2005; Fedosov et al. 2010c) have found that the use of a uni-
form equilibrium length for all springs leads to non-vanishing
intra-membrane stresses depending on triangulation quality
and the reference shape chosen for initial triangulation. Such
stresses may lead to an irregular or even non-biconcave RBC
shape in equilibrium. To eliminate the artifacts of irregular
triangulations, a stress-free membrane model (Fedosov et al.
2010a,c) has been proposed. The model is obtained by com-
putational annealing, such that each spring assumes its own

equilibrium spring length adjusted to be the edge length after
triangulation.

In this review, various biological structures including
blood cells and vessels are described on a mesoscopic level.
On the one hand, these are distinguished from the microscale,
reaching up to several nanometers such that atomistic and
molecular details are present. On the other hand, macroscopic
description of blood flow is only possible in vessels with the
diameters larger than approximately 100 microns. Mesoscale
simulation techniques are therefore optimally suited to study
blood flow in microcirculation.

2.3 Coupling between the fluid flow and cell deformation

There exist several strategies on how RBC deformation can
be coupled to fluid flow. Full continuum representation (fluid
flow and cells) is very complex, since cell motion and defor-
mation require frequent mesh adaptation for the fluid flow.
Therefore, other algorithms have been developed, which
model fluid flow in an Eulerian framework (fixed mesh),
while cells move in a Lagrangian fashion and are coupled
to fluid flow through the immersed boundary method (IBM)
(Bagchi 2007; Liu and Liu 2006) or front tracking method
(FTM) (Doddi and Bagchi 2009). The IBM assumes that cell
vertices move with the local fluid velocity, while in return,
they exert a force on the fluid flow, which is similar to the
FTM. The IBM coupling strategy might be quite stiff lim-
iting the time step in simulations, since a solid structure is
advected with the fluid motion. Another method is to intro-
duce viscous coupling of cell vertices to the fluid flow, which
applies frictional forces on both the fluid and cells in order
to match their local velocities (Ahlrichs and Dünweg 1999).
This coupling technique is usually less prohibitive in terms
of numerical stability and time step; however, it may lead to
a partial slip at fluid–cell interface. The separation of exter-
nal/internal fluids (for instance, needed when their viscosities
are different) requires tracking of the fluid mesh nodes inside
and outside a cell, respectively.

In particle-based methods, the internal and external fluids
are modeled by a number of free particles. External/internal
fluid separation (non-mixing) is achieved through bounce-
back reflections of fluid particles at a moving membrane
surface. In addition, the no-slip boundary conditions at the
membrane surface are enforced through viscous force cou-
pling in DPD (Fedosov et al. 2010a) or collisions in MPC
(Noguchi and Gompper 2005a) between fluid particles and
membrane vertices, which is similar to the viscous coupling
mentioned above.

Another consideration, which has to be taken into account,
is the resolution used for modeling fluid flow and mem-
brane, respectively. For the fluid component, it is important to
employ a sufficiently fine grid in case of a continuum solver
or a sufficiently large particle density in case of particle meth-
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Fig. 3 Stretching response of the modeled RBC for different coarse-
graining levels compared with the optical tweezers experiments (Suresh
et al. 2005). Simulation data are shown for different numbers Nv of
membrane vertices in the RBC representation, as indicated in the legend.
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ods in order to properly resolve fluid flow around and inside
deformable cells. Similarly, the cell membrane network has
to be fine enough to adequately resolve membrane deforma-
tions in fluid flow. In general, these considerations are prob-
lem dependent and ideally have to be tested for grid/particle
density refinement. As a rule of thumb, we generally assume
similar length-scale resolution for both cell membrane and
suspending fluid.

3 Single cell properties and dynamics

3.1 RBC mechanics

RBC elasticity has been probed by micropipette aspiration
(Waugh and Evans 1979; Discher et al. 1994; Mohandas and
Evans 1994), atomic force microscopy (Scheffer et al. 2001),
and in optical tweezers experiments (Henon et al. 1999;
Suresh et al. 2005). In particular, a RBC was stretched by
a force applied by laser tweezers to two silica microbeads
attached at the opposite sides of the RBC (Suresh et al.
2005). To mimic this experiment in simulations (Fedosov et
al. 2010a; Dupin et al. 2007; Pivkin and Karniadakis 2008;
Fedosov et al. 2010c; Dao et al. 2006; Noguchi 2009a; Vaziri
and Gopinath 2008), a total stretching force f is applied to
N− and N+ vertices (N− = N+ = εNv) along opposite
directions, as indicated in Fig. 3. Here, Nv is the number of
vertices in the membrane representation, which can vary from
Nv = 27344 (spectrin-level) to the highly coarse-grained

network of Nv = 500, while ε = 0.02 corresponding to
the contact diameter of the attached silica bead with diam-
eter 2 µm used in experiments (Suresh et al. 2005). Fig-
ure 3 compares the simulated axial and transverse diameters
of a stretched RBC with the experimental data (Suresh et
al. 2005). Good agreement between simulations and experi-
ments is found for the shear modulus of 6.3 µN/m indepen-
dently of Nv. This value also falls within the range of 4–9
µN/m obtained in RBC micropipette aspiration experiments
(Waugh and Evans 1979; Discher et al. 1994).

3.2 RBC dynamics in shear flow

Single RBCs in shear flow show tumbling at low shear rates
and tank-treading at high shear rates as observed in a num-
ber of experiments (Tran-Son-Tay et al. 1984; Fischer 2004,
2007; Abkarian et al. 2007). A RBC marked by several
attached microbeads, subjected to tank-treading motion for
several hours, was found to relax back to its original state
after the shear flow has been stopped (Fischer 2004). Thus,
the tumbling-to-tank-treading transition is attributed to the
existence of a RBC minimum energy state, such that the RBC
has to exceed a certain energy barrier in order to transit to
the tank-treading motion. In addition, a tank-treading RBC
also swings around the preferred inclination angle of tank-
treading with a certain frequency and amplitude (Fedosov et
al. 2010a; Abkarian et al. 2007; Skotheim and Secomb 2007;
Noguchi 2009b; Yazdani et al. 2011).

Figure 4 shows tumbling and tank-treading frequencies of
a simulated RBC in shear flow in comparison with experi-
ments (Tran-Son-Tay et al. 1984; Fischer 2007). Here, ηo and
ηi denote the external and internal fluid viscosities, while
ηm is the RBC membrane viscosity. Comparison of simu-
lations and experiments reveals that a purely elastic RBC
with or without internal fluid is not able to correctly pre-
dict cell tank-treading frequencies, because such a membrane
model lacks viscous dissipation. Addition of the membrane
viscosity decreases the tank-treading frequencies leading to
a good agreement with experiments for the membrane vis-
cosity ηm = 22 × 10−3 Pa s. In all cases, a finite region
of intermittent dynamics is observed around the tumbling-
to-tank-treading transition, where a RBC experiences strong
deformations and shows partially both tumbling and tank-
treading dynamics. Also, the intermittent region is found to
become wider for a nonzero internal fluid and membrane vis-
cosity and shifts to higher shear rates. The degree of RBC
deformations in the intermittent region depends on the Föppl-
von Kármán number γ = 4μR2

0/κ , where μ is shear elas-
tic modulus and κ is the bending rigidity. As an example,
an increase in the RBC bending rigidity by a factor of five
implies that the aforementioned shape deformations are con-
siderably reduced, while the factor of ten in κ value leads
to virtually no shape deformations in the intermittent region.
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Finally, the swinging frequency of a RBC is equal to twice the
tank-treading frequency, because the spectrin network has to
perform two ‘flipping’ motions to make a full rotation.

The dynamics of fluid vesicles in shear flow is quanti-
tatively predicted by the Keller–Skalak (KS) theory (Keller
and Skalak 1982). Recently, the KS theory was extended
to capsules with fixed ellipsoidal shapes in order to account
for a free-energy barrier, which affects the transition between
three modes: tumbling, intermediate (intermittent), and tank-
treading (Skotheim and Secomb 2007). When cell shape
deformation is also taken into account, two types of swinging
oscillation modes coexist: one induced by the shape defor-
mation similar to fluid vesicles and the other induced by
the tank-treading energy barrier (Noguchi 2010a). For typi-
cal quasi-spherical synthetic microcapsules, where no local
energy minimum exists for shape deformation, these two
modes are always synchronized and no intermediate modes
appear. For RBCs and other capsules accompanied by a local
energy minimum, coupling of these two modes generates a
more complicated phase behavior. In oscillatory shear flow,
RBCs (Noguchi 2010b) and fluid vesicles (Noguchi 2010c)
exhibit various types of oscillatory dynamics such as the
coexistence of two or more limit-cycle oscillations at high
shear frequencies.

3.3 RBC dynamics in capillary flow

RBC dynamics in Poiseuille flow in tubes with a diameter
comparable with the RBC diameter was the subject of inves-
tigation in several experiments (Suzuki et al. 1996; Abkarian
et al. 2008; Tomaiuolo et al. 2009). The main feature of this

Fig. 5 Simulation snapshot of the parachute shape of a RBC in a
microchannel of radius Rcap = 4.6 µm, which forms when a thresh-
old flow rate is exceeded

flow is the transition from the biconcave RBC shape at rest
to a parachute-like shape or bullet shape depending on the
flow rate and confinement. A RBC may attain the parachute
shape when it is deformed by the flow at the tube center. Slip-
per shapes, which are characterized by a non-axisymmetric
shape, are also observed for high flow rates. However, it is
not yet entirely clear, whether these states are transient (e.g.,
determined by the conditions at inflow into the capillary) or
stationary. The transition to the parachute shape of a RBC in
Poiseuille flow has been simulated in a tube with a radius in
the range Rcap = 4–6 µm (Fedosov et al. 2010a; Noguchi and
Gompper 2005a; McWhirter et al. 2011; Pivkin and Karni-
adakis 2008); a typical conformation of the parachute shape
at flow rates just above the transition velocity is shown in
Fig. 5. Poiseuille flow can be characterized by the mean flow
velocity defined as v̄ = ∫

v(r)d A/A, where A is the area of
the tube cross-section, and v(r) is the axial flow velocity.

At small flow velocities, isolated fluid vesicles and mod-
eled RBCs assume a discoidal shape at a reduced volume
V ∗ = 0.59 with a non-axial symmetry, where the symmetry
axis of the discocyte is oriented perpendicular to the cap-
illary axis. In addition, the perfect rotationally symmetric
shape of the discocyte is somewhat distorted, such that the
rim is pulled backwards near the walls, and pushed forward
in the center. As the flow velocity increases, a RBC exhibits
a shape transition from discocyte to parachute shape, while a
fluid vesicle of the same reduced volume and bending rigid-
ity transforms into a prolate shape, see the inset of Fig. 6(a)
(Noguchi and Gompper 2005a). Since the transformation to
a prolate shape implies a much larger in-plane deformation
of the membrane than to a parachute, the shear elasticity of
RBCs suppresses a prolate shape.

An interesting aspect is the dependence of the transition
velocities on the bending rigidity κ and shear elastic modu-
lus μ of model RBCs. In both cases, the dependence of the
transition velocity on the elastic parameters is linear shown
in Fig. 6. This behavior can be traced back to the balance of
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Rcap/R0 = 1.4. (a) Transitions of model RBCs (withμR2

0/kBT = 110)
from discocyte to parachute (circles), as well as transitions of fluid vesi-
cles from discocyte to prolate (squares) are shown. Solid and broken
lines are linear fits to the data. The sliced snapshots for κ/kBT = 20
show model RBCs at vmτ/Rcap = 52 and 107 (top row), and fluid vesi-
cles at vmτ/Rcap = 41 and 69 (bottom row). (b) Transition velocities
of elastic vesicles for κ/kBT = 10, at the discocyte-to-parachute tran-
sition (top curve) and at the parachute-to-discocyte transition (bottom
curve). The time unit τ = η0 R3

cap/kBT is the longest relaxation time
of a quasi-spherical fluid vesicle with a reference bending rigidity kBT .
Reused with permission from Noguchi and Gompper (2005a)

elastic and flow forces at the transition, and the linear depen-
dence of these forces on the elastic moduli and the aver-
age flow velocity, respectively. For large Föppl- von Kármán
numbers γ , a shape hysteresis appears, which implies differ-
ent transition velocities with increasing or decreasing flow
rates, as indicated in Fig. 6(b). With decreasing flow veloc-
ity, fluid vesicles transform from prolate to discocyte shape
via an intermediate banana shape. The transition velocity at
other combinations of elastic parameters can be estimated
from the linear dependence on κ and μ; in particular, the
discocyte–parachute transition of RBCs is predicted to occur
at 0.2 mm/s for Rcap = 4.6 µm under physiological condi-
tions. This is consistent with experimental results (Suzuki et
al. 1996) and is in the range of velocities of microcirculation
in the human body.

Transition to the slipper shape in Poiseuille flow has been
numerically investigated for vesicles in 2D (Kaoui et al. 2009,
2011), where it has been found that the slipper shape for
vesicles occurs at strong enough confinements as well as at
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Fig. 7 Flow velocity vm dependence of (a) hematocrit ratio HT/HD =
vm/vves and (b) flow resistance �Pves/vm per vesicle, in the dilute sus-
pension for κ/kBT = 20, μR2

0/kBT = 110, and Rcap/R0 = 1.4.
The solid and broken lines correspond to model RBCs and fluid vesi-
cles, respectively. Reused with permission from Noguchi and Gompper
(2005a)

low confinements. This shape transition also leads to a slight
decrease in the flow resistance similar to the parachute transi-
tion. New simulations of RBCs in 3D cylindrical capillaries
are needed to investigate the possible region of flow proper-
ties and confinements, where stable slipper shapes exist.

The ratio HT/HD of tube hematocrit (HT) of RBCs in
a microcapillary and discharge hematocrit (HD) decreases
with increasing flow velocity. This effect was first observed
in 1929 and is called the Fahraeus effect (Fahraeus 1929).
Simulation results for the hematocrit ratio HT/HD and the
pressure drop �Pves per vesicle/cell for both fluid vesicles
and model RBCs are shown in Fig. 7. The hematocrit ratio
is given by the ratio of vesicle velocity vves and mean flow
velocity vm as

HT/HD = vm/vves. (2)

The pressure drop �Pves per vesicle is calculated by

�Pves = 8η0(v0 − vm)Lves/R2
cap, (3)

where v0 is the mean velocity of fluid flow without vesicle
presence for the same pressure gradient, and Lves is the cap-
illary length per vesicle/cell. Since vesicles/cells are more
deformed and feel a stronger lift force away from the walls
at higher flow velocity, they occupy a narrower region in the
center of the capillary, and thereby flow faster than the sur-
rounding fluid/plasma (which implies the Fahraeus effect)
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Fig. 8 Rouleaux structures formed in equilibrium at Ht = 0.1. The
aggregation forces between RBCs are modeled using the Morse poten-
tial (Fedosov et al. 2011b)

and disturb the original Poiseuille flow less (which implies a
reduction in the pressure drop).

4 Blood rheology and structure

Rheological properties of blood are governed by RBCs due to
their high volume fraction. RBCs in whole blood are able to
form aggregate structures called “rouleaux,” which resemble
stacks of coins (Merrill et al. 1963, 1966; Chien et al. 1970).
The RBC aggregation is associated with the plasma proteins
(Merrill et al. 1966; Chien et al. 1970) such that an increase
in fibrinogen concentration leads to a significant increase in
blood viscosity (Merrill et al. 1966). Moreover, whole blood
appears to exhibit a yield stress (a threshold stress for flow
to begin) (Merrill et al. 1963; Cokelet et al. 1963; Copley et
al. 1973). In simulations, blood is modeled as a suspension
of RBCs, which is characterized by a bulk hematocrit Ht .

Rouleaux structures in blood are formed at rest or at suf-
ficiently small shear rates. As the shear rate is increased, the
rouleaux structures break up into smaller ones, while at high
shear rates, the RBCs are fully dispersed (Zhao et al. 1998).
The aggregation process is reversible, and rouleaux can re-
form if the shear rate is decreased or flow is stopped. The
formation–destruction behavior of rouleaux is well repro-
ducible in simulations (Fedosov et al. 2011b), and Fig. 8
shows simulated rouleaux structures in equilibrium.

4.1 Blood viscosity and RBC aggregation forces

The viscosity of whole blood and of non-aggregating RBC
suspension has been measured at physiological temperature

Fig. 9 Simulation of blood under shear flow. RBCs are shown in red
and in orange, where orange color depicts the rouleaux structures
formed due to aggregation interactions between RBCs. The image also
displays several cut RBCs with the inside drawn in cyan to illustrate
RBC shape and deformability

37 ◦C for different Ht values in several rheological experi-
ments (Merrill et al. 1963; Chien et al. 1966; Skalak et al.
1981). The blood viscosity in simulations (Fedosov et al.
2011b) has been obtained from a RBC suspension in sim-
ple shear flow, as shown in Fig. 9. The blood viscosity was
computed over a wide range of shear rates γ̇ from 0.01 s−1

to approximately 1,200.0 s−1 and is presented in Fig. 10, in
comparison with experimental measurements (Merrill et al.
1963; Chien et al. 1966; Skalak et al. 1981) at Ht = 0.45. The
plot shows the relative viscosity—the RBC suspension vis-
cosity normalized by the viscosity of the suspending media—
for aggregating and non-aggregating RBC suspensions. The
model predictions are in excellent agreement with the exper-
imental data, and the model clearly captures the effect of
aggregation on the viscosity at low shear rates. Other attempts
in modeling (Bagchi et al. 2005; Wang et al. 2009) of two-cell
and of multiple-cell aggregates (Liu and Liu 2006) focused
mainly on their flow behavior. For instance, Liu and Liu
(2006) studied the dependence of viscosity on RBC aggre-
gation in simulations of up to ten aggregated RBCs in shear
flow; however, the viscosity predictions did not reproduce
the steep increase in viscosity at low shear rates.

The strength of RBC aggregation in simulations was cal-
ibrated based on the viscosity value for a single shear rate,
since exact RBC aggregation forces are not known (Fedosov
et al. 2011b). The correct model predictions for whole blood
with RBC aggregation shown in Fig. 10 allow an estimate
of the maximum force required to break up two aggre-
gated RBCs. The breakup force in the normal direction
was found to be in the range 3.0–7 pN, where the lower
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shear rate at Ht = 0.45 and 37 ◦C: simulation results Fedosov et
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aggregating RBC suspension: red circles—Chien et al. (1966); red
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value corresponds to a peeling breakup. Tangential or slid-
ing breakup needs a force of about 1.5–3 pN. These forces
are quite small, which is consistent with the fact that rouleaux
structures break up at relatively low shear stresses (or equiv-
alently shear rates). A fluid shear stress required for RBC
disaggregation has been measured in shear flow experiments
(Chien et al. 1977) and lies between 0.01 and 0.1 Pa. The anal-
ogous simulations (Fedosov et al. 2011b) resulted in the esti-
mation of the RBC disaggregation stress to be about 0.02 Pa.

4.2 Blood yield stress

Whole blood is believed to require a nonzero threshold shear
stress for flow to begin, which is called a yield stress (Merrill
et al. 1963; Cokelet et al. 1963; Copley et al. 1973). The exis-
tence of yield stress is difficult to confirm both experimentally
and theoretically; this is usually done by an extrapolation of
viscosity data to zero shear rate, as it has been done, for exam-
ple, for blood by Merrill et al. (1966). Following the same
extrapolation method (Merrill et al. 1966), a polynomial is
fitted to the simulated data for Ht = 0.45 (Fedosov et al.
2011b) (see Fig. 11) in coordinates (γ̇ 1/2,τ 1/2

xy ), where γ̇ is
the shear rate and τxy the shear stress (Casson plot). The fitted
curves show that the extrapolated yield stress τy is nonzero
for the aggregating RBC suspension, while it vanishes for a
suspension without cell aggregation.
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Fig. 11 RBC aggregation and yield stress. A Casson plot with a poly-
nomial fit showing the extrapolated intercept τy for simulated sus-
pensions with (dashed lines) and without (solid lines) aggregation at
Ht = 0.45

The yield stress for whole blood has been associated with
the existence of rouleaux structures (Merrill et al. 1963;
Cokelet et al. 1963; Copley et al. 1973); simulations (Fedosov
et al. 2011b) confirm this proposition. In practice, a direct
measurement of yield stress is not feasible and yield stresses
derived from viscometric data may not be consistent with
those derived from non-rheological measurements (Picart et
al. 1998). For human blood, the yield stress was found exper-
imentally to lie between 0.0015 and 0.005 Pa at Ht = 0.45
(Merrill et al. 1963), while the simulations (Fedosov et al.
2011b) predict τy to be about 0.0017 Pa.

4.3 Blood structure and single-cell dynamics

The non-Newtonian viscosity and yield stress in blood arise
from RBC deformability, dynamics, and inter-cell interac-
tions. Simulations allow the examination of the structure and
dynamics of the RBC suspension on the single cell level,
while such information may be difficult or not feasible to
obtain experimentally. The local microstructure of blood can
be characterized by the radial distribution function (RDF)
of RBC centers shown in Fig. 12(a) (Fedosov et al. 2011b).
Except for the “correlation hole” at small distances r � 2 µm
due to excluded volume interactions, no significant structures
are found for the no-aggregation case over a wide range of
shear rates. Only at small shear rates, a noticeable peak in
the red solid curve is observed at r = 8 µm, which corre-
sponds to the long RBC diameter and indicates that neigh-
boring RBCs have a preference for alignment with the flow.
The other solid curves demonstrate that any microstructure
fully disappears at higher shear rates, and therefore the shear-
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suspension’s structure characterized by the radial distribution func-
tion. (b) RBC asphericity distributions to describe cell deformations
through the deviation from a spherical shape. The asphericity is defined
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2]/(2R4
g), where λ1 ≤ λ2 ≤ λ3

are the eigenvalues of the gyration tensor and R2
g = λ1 + λ2 + λ3. The

asphericity for a RBC in equilibrium is equal to 0.154. (c) Orientational
angle distributions for various shear rates. The RBC orientational angle
is defined by the angle between the eigenvector V1 of the gyration ten-
sor and the flow gradient direction (y). The theoretical prediction curve
corresponds to the orientational angle distribution of a single tumbling
RBC in shear flow calculated using the theory by Abkarian et al. (2007).
Plots are reused with permission from Fedosov et al. (2011b)

thinning behavior of a non-aggregating RBC suspension is
not related to microstructural changes. In contrast, the aggre-
gating RBC suspension displays the presence of small RBC
structures (2–4 RBCs) at low shear rates as indicated in the
case of γ̇ = 0.045 s−1 by the large peak at r � 3 µm in
Fig. 12(a). An increase in the shear rate results in the gradual
dispersion of rouleaux, while at high shear rates, observa-
tion indicates that any difference in microstructure has dis-
appeared between the aggregating and non-aggregating RBC
suspension. Thus, it is clear that it is the aggregation interac-

tions between RBCs which lead to the steep increase in blood
viscosity at low shear rates and to yield stress, since larger
rouleaux structures have to be broken apart before blood is
able to flow.

In Sect. 3.2, we discussed the dynamics of a single RBC in
shear flow, which can be described by the tumbling motion
at low shear rates and tank-treading motion at high shear
rates. Similar RBC behavior is expected within a sheared cell
suspension. Figure 12(b, c) illustrate average RBC deforma-
tion and dynamics in a suspension at different shear rates
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(Fedosov et al. 2011b). At low shear rates, RBCs tumble,
which is indicated by the nearly constant RBC asphericity of
about 0.154 (equilibrium value for a discocyte shape) and by
the broad orientation angle (θ ) distribution in Fig. 12(c). Due
to large cell crowding, RBC tumbling is slightly hindered
in non-aggregating suspensions compared to the theoretical
prediction of tumbling of a single RBC. RBC aggregation
leads to a nearly uniform orientation angle distribution at
low shear rates. At high shear rates, γ̇ � 200 s−1, RBCs
transit to tank-treading motion characterized by a narrow θ

distribution in Fig. 12(c). RBCs also strongly elongate, as
indicated by the shift of the asphericity distribution to higher
values in Fig. 12(b).

In the intermediate range of shear rates, between 5 and
200 s−1, RBCs experience strong deformations shown by a
smaller RBC asphericity than that in equilibrium (Fig. 12(b)),
which indicates that RBCs attain on average a more spherical
shape and go through transient folded conformations. Note
that RBC aggregation does not affect blood viscosity in this
range of shear rates, and therefore a more spherical RBC
shape leads to shear thinning through a reduction in shear
stresses due to lower tumbling constraints in comparison
with the biconcave RBC shape. Moreover, the tumbling-to-
tank-treading transition further decreases the shear stresses
resulting in shear thinning.

5 Blood flow and RBC clustering

5.1 Fahraeus–Lindqvist effect

The Fahraeus–Lindqvist effect (Fahraeus and Lindqvist
1931) describes a decrease in the apparent blood viscosity
with decreasing tube diameter found in experiments of blood
flow in glass tubes (Pries et al. 1992). The apparent viscosity
is calculated as follows

ηapp = π�P D4

128QL
= �P D2

32v̄L
, (4)

where D = 2Rcap is the tube diameter, Q is the flow rate,
and �P/L is the pressure drop in a tube of length L . For
higher hematocrit HT, the apparent viscosity increases, since
higher cell crowding leads to a larger flow resistance. For
convenience, we define the relative apparent viscosity as

ηrel = ηapp

ηo
, (5)

where ηo is the plasma viscosity. Figure 13 presents simu-
lation results (Fedosov et al. 2010b) in comparison with the
empirical fit to experiments (Pries et al. 1992) for tube diame-
ters from 10 to 40 µm and HT values in the range 0.15 to 0.45.
Excellent agreement between simulations and experiments
further supports the validity of the blood flow model and
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Fig. 13 Simulated relative apparent viscosity of blood (Fedosov et al.
2010b) in comparison with experimental data (Pries et al. 1992) for
different HT values and tube diameters

numerically verifies the Fahraeus–Lindqvist effect. Similar
results for the Fahraeus–Lindqvist effect were also obtained
in other simulation approaches, see Bagchi (2007), Doddi
and Bagchi (2009), Freund and Orescanin (2011).

5.2 Cell-free layer

The cell-free layer (CFL) is a near-wall layer of blood plasma
void of RBCs. In tube flow, RBCs migrate toward the tube
center due to hydrodynamic interactions (lift force) with the
wall, which results in a near-wall layer free of cells. The
viscosity in the CFL region is nearly equal to the plasma
viscosity, and thus much smaller than in the tube center pop-
ulated with RBCs. The CFL serves as an effective lubrication
layer for the viscous RBC core to flow. The thickness of the
CFL is associated with the Fahraeus–Lindqvist effect such
that in small tubes, the CFL thickness is comparable with
the tube diameter resulting in a smaller relative apparent vis-
cosity, while in larger tubes, the CFL thickness is negligible
with respect to the tube diameter.

To calculate the CFL thickness δ in simulations, the outer
edge of the RBC core is determined as shown in Fig. 14,
which is similar to the experimental CFL measurements
(Maeda et al. 1996; Kim et al. 2007). In this approach, the
cell edge is obtained by projecting the RBC vertices of a
simulation snapshot onto the x–y plane, and the curves of
RBC core were fitted at the bottom and the top using the
projected vertices with the smallest and largest y coordi-
nates. The average distance from the wall to the cell edge
is then taken to be the CFL thickness. Figure 15 presents
CFLs for different tube diameters and HT values in compari-
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experimental data (Maeda et al. 1996; Kim et al. 2007; Reinke et al.
1987; Bugliarello and Sevilla 1970) for various HT values and tube
diameters

son with in vitro experiments (Reinke et al. 1987; Bugliarello
and Sevilla 1970) and in vivo experiments (Maeda et al. 1996;
Kim et al. 2007). The CFL thicknesses δ are consistent with
the Fahraeus–Lindqvist effect. CFLs are wider for lower HT

and larger tube diameters indicating migration of RBCs to
the tube center.

The comparison of CFLs in simulations and experiments
in Fig. 15 shows only partial agreement. An experimental in
vitro study (Bugliarello and Sevilla 1970) of blood flow in
glass tubes for controlled discharge hematocrits HD (corre-

sponding to tube hematocrits HT = 0.14 and HT = 0.31
with the empirical fit by Pries et al. (1992)) yields CFLs in
good agreement with simulation results. Later experiments
(Reinke et al. 1987) at higher hematocrit HD = 0.45 in glass
tubes provide CFL data which also agree well with simula-
tion results. Note that simulations mimic blood flow in rigid
and long tubes, and therefore in vitro data are best for com-
parison. CFLs from in vivo experiments (Maeda et al. 1996;
Kim et al. 2007) display satisfactory agreement with the sim-
ulations for high HT values, while for low HT the comparison
is rather poor. Note that available in vivo measurements of
CFLs show a considerable scatter. The CFL in cat cerebral
microvessels was found to be approximately 4 µm, indepen-
dent of vessel diameter (Yamaguchi et al. 1992). Measure-
ments of CFLs within a rabbit mesentery provide thicknesses
in the range of 1.0–1.8 µm for vessel diameters 10–40 µm at
HT = 0.45 (Maeda et al. 1996). Finally, CFLs in the range of
0.5–3 µm, increasing with the tube diameter at HT = 0.42,
were reported in an experimental study, where a rat cremaster
muscle was perfused (Kim et al. 2007). The scatter of in vivo
CFL measurements and their discrepancies with simulations
may be due to several reasons, such as the existence of the
glycocalyx layer, variations in vessel width, use of a short
vessel, close proximity of the site of CFL measurements to
vessel bifurcations, vessel elasticity, and spatial resolution of
the measurements (Fedosov et al. 2010b; Kim et al. 2007).

5.3 Clustering and alignment of RBCs in microcapillaries

In microcapillaries with diameters of 10 µm or less, the par-
ticulate nature of blood plays a particularly important role,
because the cell and the capillary size are nearly the same.
Therefore, in this regime, small variations of the capillary
radius can lead to drastic changes in the arrangements of the
cells and their flow behavior.

In dense suspensions of RBCs in narrow capillaries with
radii Rcap/R0 = 1.23 and 1.4, which correspond to diame-
ters of 8.4 and 9.6 µm, respectively, three distinct phases are
obtained in simulations (McWhirter et al. 2009, 2012), which
are shown in Fig. 16: (a) Disordered biconcave-disk-shaped
RBCs at low density and low velocity, (b) Parachute-shaped
RBCs aligned in a single file at low density and high velocity,
(c) Slipper-shaped RBCs arranged as two parallel interdigi-
tated rows at high density. At the low density R0/Lves � 0.7,
the RBCs show the transition from discocyte to parachute
similar to the isolated RBCs in Sect. 3.3. At low velocities,
however, the symmetry axes of the RBCs deviate from the
perpendicular orientation to the capillary axis observed for
single cells (see Sect. 3.3), due to the hydrodynamic inter-
action between the RBCs; instead, the RBC positions and
the directions of their symmetry axes are rather randomly
distributed. In contrast, the parachute-shaped RBCs at high
flow velocities are aligned in a single file. This implies that the
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Fig. 16 Phase diagram of RBCs in dense suspension at κ/kBT = 20,
μR2

0/kBT = 110, and Rcap/R0 = 1.4. (a) Disordered-discocyte phase.
(b) Aligned-parachute phase. (c) Zigzag-slipper phase

RBCs move with nearly identical velocity. At high densities
R0/Lves � 0.7, the aligned-parachute phase becomes unsta-
ble and is replaced by the zigzag-slipper phase. The lift force
from capillary wall and hydrodynamic interactions between
neighboring RBCs stabilize the zigzag arrangement. When
a parachute-shaped RBC comes close to the capillary wall
due to thermal fluctuations, the next RBC moves toward the
opposite side. Subsequently, the zigzag alignment propagates
backwards.

For a wider capillary with Rcap/R0 = 1.58, correspond-
ing to a capillary diameter of 10.8 µm, the alignment is less
pronounced and the boundaries between phases with dif-
ferent structural arrangements are blurred (McWhirter et al.
2012). Near a phase boundary, two structural arrangements
often coexist. At high hematocrit, the interlocking rows of
the zigzag alignment are intermittently replaced by an asym-
metric distribution of RBCs in two rows, as shown in Fig. 17.
Thus, a sufficiently small radius of the capillary is required to
form clear aligned phase. The aligned-parachute and zigzag-
slipper phase of RBCs have been observed experimentally
in glass capillaries (Gaehtgens et al. 1980) and in microves-
sels (Skalak 1969).

The hydrodynamic interactions between RBCs can induce
clustering of the parachute-shaped RBCs even at hematocrits
HT < 0.1. Long-lived clusters are observed in simulations—
without attractive interactions between RBCs—when the
flow velocity is large enough to induce parachute shapes of
single RBCs, shown in Fig. 18 (McWhirter et al. 2009, 2011).

Fig. 17 The asymmetric slipper phase of RBCs with κ/kBT = 20
and μR2

0/kBT = 110, in microcapillaries of radius Rcap/R0 = 1.58 at
hematocrit HT = 0.37

Fig. 18 Sequential snapshots of six RBCs in dilute suspension at
κ/kBT = 20, μR2

0/kBT = 110, and Rcap/R0 = 1.58. Clusters of
RBCs are formed

Cluster stability increases with increasing flow velocity. At
velocity close to the threshold of the discocyte–parachute
transition, the front RBC often detaches from the cluster, and
therefore the size of the clusters is strongly fluctuating. It is
interesting to notice that RBCs in a cluster are not touching
each other, but remain at a finite, rather well-defined distance.

Two physical mechanisms are responsible for the forma-
tion and stability of such clusters. First, in the clusters, the
shear stress on a RBC is partially shielded by other RBCs, so
that the RBCs are less deformed than isolated single RBCs.
Thus, a single RBC can move a little faster with the flow,
catch up with a cluster in front, and thereby contribute to
cluster growth. Second, the fluid flow in the microcapillary
induces a fluid vortex (called “bolus”) between neighboring
RBCs (Wang and Skalak 1969; Goldsmith and Skalak 1975),
which keeps the cells at a distance comparable to the RBC
size. The formation of a bolus can be understood most easily
by considering a co-moving reference frame with the RBCs
in the cluster. In the stationary state, the parachute-shaped
RBCs move like solid objects, while the flow near the wall
moves “backwards” with high velocity; this induces a vortex-
like flow between the RBCs—the bolus.

6 White blood cell and platelet margination

White blood cells (WBCs) participate in the organism
defense against various infections. To perform their func-
tion, WBCs are able to adhere to the vascular endothelium
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Fig. 19 A simulation snapshot of WBC margination in tube flow with
diameter D = 20 μm at HT = 0.45. The marginated WBC is plotted
in blue. The flow is from left to right

(Alon et al. 1995) and transmigrate into the surrounding tis-
sue (Springer 1995). WBC adhesion is only possible if they
are in close proximity (a few tens of nanometers) to a vessel
wall. Migration of WBCs to the vessel walls is called mar-
gination (Bagge and Karlsson 1980; Goldsmith and Spain
1984; Firrell and Lipowsky 1989), and this process is facili-
tated by flowing RBCs in blood. As we discussed in Sect. 5,
RBCs migrate to the vessel center due to cell-wall hydrody-
namic interactions (lift force) (Messlinger et al. 2009; Cantat
and Misbah 1999; Sukumaran and Seifert 2001; Abkarian et
al. 2002). The lift force on RBCs is larger than that on WBCs
because of the non-spherical biconcave shape and deforma-
bility of RBCs. These interactions are believed to lead to the
margination of WBCs in microvessels shown in Fig. 19 such
that WBCs remain mostly near a wall (Goldsmith and Spain
1984; Firrell and Lipowsky 1989) in blood flow, and therefore
they have high chances for adhesion whenever necessary.

It is plausible to expect that WBC margination is affected
by various blood flow properties including hematocrit HT,
local flow rate and geometry, and RBC aggregation (Fre-
und 2007; Fedosov et al. 2012; Bagge and Karlsson 1980;
Firrell and Lipowsky 1989; Pearson and Lipowsky 2000;
Abbitt and Nash 2003; Jain and Munn 2009). For instance,
an increase in WBC adhesion (and therefore also margina-
tion) was observed with decreasing flow rate at relatively high
HT > 0.45 in in vivo experiments in mesenteric venules of rat
(Firrell and Lipowsky 1989). However, recent in vitro exper-
iments in microfluidic channels (Jain and Munn 2009) have
identified an intermediate range of HT � 0.2–0.3, where the
strongest WBC margination occurs. In contrast, the experi-
ments on WBC adhesion in glass capillaries (Abbitt and Nash
2003) showed no dependence of WBC adhesion and mar-
gination on HT. It has been also found consistently that WBC
margination and adhesion is enhanced at low flow rates and
due to RBC aggregation interactions (Firrell and Lipowsky
1989; Pearson and Lipowsky 2000; Abbitt and Nash 2003;
Jain and Munn 2009).

Adhesive dynamics of WBCs on a surface have been
studied in simulations (King and Hammer 2001; Khismat-
ullin and Truskey 2005; Jadhav et al. 2005; Korn and
Schwarz 2008) under a flow without RBCs, and therefore

the WBC margination effect was not considered. 2D sim-
ulations (Sun et al. 2003) with rigid discoidal RBCs and a
circular WBC qualitatively showed that flowing RBCs partic-
ipate in WBC margination. In the other 2D numerical study
with deformable, and therefore more realistic, cells (Freund
2007), it was quantitatively shown that WBC margination is
enhanced with decreasing flow rate, in agreement with the
available experiments. However, these simulations claimed
virtually no dependence of WBC margination on HT. In addi-
tion, WBC margination has been found to be relatively insen-
sitive to RBC deformability, which suggests that the RBC
discoidal shape mainly determines the lift force on a RBC
(Freund 2007). Recent 2D simulation study (Fedosov et al.
2012) considered WBC margination for wide ranges of flow
rates and HT values as well as for RBC aggregation. Attenua-
tion of WBC margination with increasing flow rate has been
found to be consistent with previous numerical and exper-
imental studies (Freund 2007; Firrell and Lipowsky 1989;
Pearson and Lipowsky 2000; Jain and Munn 2009); how-
ever, a pronounced effect of HT on WBC margination has
been identified such that it first increases with increasing
hematocrit, but then decreases again at higher hematocrits
(Fedosov et al. 2012). These results are in good agreement
with the experiments on WBC margination in rectangular
microchannels (Jain and Munn 2009), where WBC margina-
tion was optimal in the range HT = 0.2–0.3. The results of
Fedosov et al. (2012) have also provided an explanation for
the seeming independence of WBC margination and adhe-
sion on HT found in previous simulations (Freund 2007)
and experiments (Abbitt and Nash 2003), such that con-
sidered flow rates and Ht values used by Abbitt and Nash
(2003), Freund (2007) were almost entirely within the region
of strong WBC margination. Moreover, WBC deformability
has a strong effect on margination since a deformed WBC
may significantly depart from the spherical shape, and RBC
aggregation enhances WBC margination at high HT values
(Fedosov et al. 2012).

Platelets take part in the hemostasis, a process which stops
bleeding from an injured vessel. This process also requires
platelets to be marginated to the vessel walls such that their
concentration is high enough in the near-wall layer (Tan-
gelder et al. 1985). The platelet margination process is simi-
lar to that for WBCs, where RBCs expel the other cells from
the vessel center to the wall. However, in comparison with
WBCs, platelets are much smaller and relatively rigid; also
they possess an ellipsoid-like shape. Therefore, the phys-
ical mechanisms of margination as well as the margination
dependence on various blood flow properties may be different
for platelets and WBCs. Recent 2D simulations (Crowl and
Fogelson 2010, 2011) found that a near-wall platelet excess
develops more quickly at high flow rates, while platelet con-
centration next to the wall is dependent on HT. Another
theoretical investigation (Tokarev et al. 2011) suggests that
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finite size of platelets may be responsible for the platelet mar-
gination effect due to excluded volume interactions between
platelets and RBCs and to the shear dispersion of platelets
in flow. 3D simulations of platelet margination in microves-
sels (Zhao and Shaqfeh 2011b) demonstrated their migra-
tion toward the vessel walls, which was explained by the
platelet expulsion effect and their enhanced lateral diffusiv-
ity in blood flow.

7 Modeling hematologic diseases and disorders

Hematologic diseases and disorders such as hypertension,
atherosclerosis, malaria, sickle cell anemia may strongly alter
normal blood circulation. One of the most common problems
in hematologic diseases and disorders is a change in shape,
structure, and viscoelastic properties of individual RBCs. For
example, RBCs infected by the Plasmodium falciparum (Pf)
parasite in malaria are subject to a tenfold increase in their
membrane shear modulus and a spherical shape at the later
stages of the intra-cell parasite development (Shelby et al.
2003; Diez-Silva et al. 2010). In addition, infected RBCs in
malaria become adhesive and may bind to endothelium and
other healthy or parasitized cells (Brown et al. 1999) lead-
ing blood flow obstructions in small vessels (Shelby et al.
2003). Another example is sickle cell anemia, which is a
blood disorder where polymerized hemoglobin causes irre-
versible changes to RBC shape and deformability. These
changes may result in blood flow occlusion in the microcir-
culation (Diez-Silva et al. 2010; Higgins et al. 2007). Other
hematologic diseases with similar effects are spherocytosis
and elliptocytosis (Beck 1991).

The mechanics of Pf-RBCs in malaria was simulated by
Fedosov et al. (2011c), Fedosov et al. (2011a), Hosseini and
Feng (2012); the results are in agreement with optical tweez-
ers experiments (Suresh et al. 2005) for different stages of
intra-RBC parasite development. To characterize the increase
in blood flow resistance in malaria, a Poiseuille flow of a
suspension of healthy and Pf-RBCs at the trophozoite stage
(the second stage of intra-cell parasite development with five
times larger membrane shear modulus than that of healthy
RBCs) was simulated by Fedosov et al. (2011c). Margina-
tion of a Pf-RBC and hemodynamic resistance in microves-
sels have been also investigated by Imai et al. (2010, 2011).
Figure 20 shows the relative apparent viscosity of malaria-
infected blood for different parasitemia levels (percentage
of Pf-RBCs with respect to the total number of cells in a
unit volume) and tube diameters. The effect of parasitemia
level on measured flow resistance appears to be more signif-
icant for small diameters and high HT values. For instance,
at HT = 0.45, blood flow resistance in malaria may increase
up to 50 % in vessels with diameters around 10 µm, while
for vessel diameters close to 20 µm, the resistance may
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Fig. 20 Relative apparent viscosity of blood in malaria for various par-
asitemia levels (percentage of Pf-RBCs with respect to the total number
of cells in a unit volume) and tube diameters. The multiplication symbol
denotes the schizont stage (the latest stage of intra-cell parasite devel-
opment) with a nearly spherical shape. Experimental data are from the
empirical fit by Pries et al. (1992) for healthy blood. The inset shows
blood flow in malaria with healthy (red) and Pf-RBCs (blue) in a tube
of diameter 20 µm, HT = 0.45, and parasitemia level 25 %. Reused
with permission from Fedosov et al. (2011c)

go up by not more than about 43 %. These simulations do
not include the effects of cytoadhesion, which may strongly
affect blood flow resistance especially in small vessels. Adhe-
sive dynamics of Pf-RBCs at a coated surface has been inves-
tigated by Fedosov et al. (2011c,d), where a flipping behav-
ior of Pf-RBC was found, similar to the experimental obser-
vations (Antia et al. 2007). In other studies (Quinn et al.
2011; Bow et al. 2011), the flow properties and deforma-
tion of Pf-RBCs within microfluidic devices were investi-
gated.

Recent simulations of RBCs and blood in sickle cell ane-
mia (Lei and Karniadakis 2012a,b) took into account com-
plex changes of RBC shapes. RBC morphology, and the vis-
cosity of sickled blood in shear and tube flows have been
investigated. It has been found that blood flow occlusion
occurs in sickle cell disorder under the condition of inter-
cell and cell-wall adhesive interactions. These results serve
as the first steps in realistic modeling of the processes in
sickle cell anemia.

8 Conclusions and outlook

The models and results presented in this review demonstrate
that state-of-the-art RBC and blood modeling accurately cap-
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tures RBC mechanics, rheology, and dynamics. This compu-
tational framework for the modeling of blood flow on the cel-
lular level is very general and can be employed to investigate
other cell, vesicle, and capsule suspensions with potential
usage in biology, medicine, and engineering. The suspen-
sion properties may be tuned to yield a desired behavior by
changing the solvent viscosity, material properties of sus-
pended cells, and inter-cell interactions.

This opens up the possibility for several new directions
in the future. First, the accurate predictions of the non-
Newtonian behavior of cell suspensions from simulations
allow further explorations of blood rheology and other cell
suspensions. For instance, abnormal rheological behavior of
blood can be associated with many diseases such as deep
venous thrombosis, atherosclerosis, AIDS, myeloma, and
diabetes mellitus, which may appear at various sites of the
cardiovascular system (Dintenfass 1980; Lowe 1998; Robert-
son et al. 2008; Franceschini et al. 2010). Such rheological
measurements had virtually no theoretical guidelines for their
interpretation. Experiments on single cells (Bao and Suresh
2003) are able to provide a base for modeling of various
cells, which would also include abnormal and diseased cells.
Then, simulations of their suspensions in combination with
the inter-cell interactions would allow for quantitative com-
parisons with experimental rheological measurements and
a guidance of clinical measurements for a better diagnosis
(Franceschini et al. 2010). Second, blood mediates many dif-
ferent functions in the body including the transport of oxygen,
many proteins, and cells, which play essential role in various
body processes. These processes do not occur independently
of each other, but they might be intimately connected, as
shown recently for the link between RBC dynamics, shear
viscosity, and ATP release (Forsyth et al. 2011). Cell-level
blood flow simulations can play an important role in under-
standing the intricate interplay between the relevant blood
components. Third, microfluidic devices have been devel-
oped for the sorting of different blood components, in partic-
ular for the separation of pathogens and diseased cells from
healthy cells (Abkarian et al. 2006; Davis et al. 2006; Inglis
et al. 2008; Hou et al. 2010; Holm et al. 2011). The develop-
ment and optimization of new devices will strongly benefit
from modeling and simulations of realistic flow in microflu-
idic channels.

The predictive capability of accurate modeling of cell and
capsule suspensions can readily be extended to a variety of
engineering and material science applications. Such simu-
lations may aid in the development of new soft materials
and may drive the tuning process and optimization of their
properties. Accurate modeling of such suspensions opens up
great opportunities, since simulations are usually more robust
and significantly cheaper than equivalent large sets of exper-
imental tests. Moreover, rapid development of the computa-
tional capacity of modern supercomputers allows to perform

very large and sophisticated simulations, which can closely
mimic, extend, or even replace various experimental systems.

Acknowledgments We would like to acknowledge support by the
German Science Foundation (DFG) through the research unit FOR
1543, “Shear flow regulation of hemostasis—bridging the gap between
nanomechanics and clinical presentation (SHENC)”. We thank the
Jülich Supercomputing Centre (JSC) at the Forschungszentrum Jülich
for providing computer resources. D.A.F. acknowledges funding by the
Alexander von Humboldt Foundation.

References

Abbitt KB, Nash GB (2003) Rheological properties of the blood influ-
encing selectin-mediated adhesion of flowing leukocytes. Am J Phys-
iol 285:H229–H240

Abkarian M, Lartigue C, Viallat A (2002) Tank treading and unbinding
of deformable vesicles in shear flow: determination of the lift force.
Phys Rev Lett 88:068103

Abkarian M, Faivre M, Stone HA (2006) High-speed microfluidic dif-
ferential manometer for cellular-scale hydrodynamics. Proc Natl
Acad Sci USA 103:538–542

Abkarian M, Faivre M, Viallat A (2007) Swinging of red blood cells
under shear flow. Phys Rev Lett 98:188302

Abkarian M, Faivre M, Horton R, Smistrup K, Best-Popescu CA, Stone
HA (2008) Cellular-scale hydrodynamics. Biomed Mater 3:034011

Ahlrichs P, Dünweg B (1999) Simulation of a single polymer chain in
solution by combining lattice Boltzmann and molecular dynamics.
J Chem Phys 111:8225–8239

Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Claren-
don Press, New York

Alon R, Hammer DA, Springer TA (1995) Lifetime of the P-selectin-
carbohydrate bond and its response to tensile force in hydrodynamic
flow. Nature (London) 374:539–542

Antia M, Herricks T, Rathod PK (2007) Microfluidic modeling of cell-
cell interactions in malaria pathogenesis. PLoS Pathogens 3(7):939–
945

Bagchi P, Popel AS, Johnson PC (2005) Computational fluid dynamic
simulation of aggregation of deformable cells in a shear flow. J Bio-
mech Eng 127(7):1070–1080

Bagchi P (2007) Mesoscale simulation of blood flow in small vessels.
Biophys J 92:1858–1877

Bagge U, Karlsson R (1980) Maintenance of white blood cell margina-
tion at the passage through small venular junctions. Microvasc Res
20:92–95

Bao G, Suresh S (2003) Cell and molecular mechanics of biological
materials. Nature Mater 2:715–725

Beaucourt J, Rioual F, Séon T, Biben T, Misbah C (2004) Steady to
unsteady dynamics of a vesicle in a flow. Phys Rev E 69:011906

Beck WS (ed) (1991) Hematology, 5th edn. MIT Press, Cambridge
Biben T, Kassner K, Misbah C (2005) Phase-field approach to three-

dimensional vesicle dynamics. Phys Rev E 72:041921
Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M, Niles JC, Suresh

S, Han J (2011) A microfabricated deformability-based flow cytome-
ter with application to malaria. Lab Chip 11:1065–1073

Brown H, Hien TT, Day N, Mai NTH, Chuong LV, Chau TTH, Loc PP,
Phu NH, Bethe D, Farrar J, Gatter K, White N, Turner G (1999) Evi-
dence of blood-brain barrier dysfunction in human cerebral malaria.
Neuropathol Appl Neurobiol 25(4):331–340

Bugliarello G, Sevilla J (1970) Velocity distribution and other char-
acteristics of steady and pulsatile blood flow in fine glass tubes.
Biorheology 7:85–107

123

176 Biomechanics and Modeling in Mechanobiology, 13:239-258, 2014



256 D. A. Fedosov et al.

Cantat I, Misbah C (1999) Lift force and dynamical unbinding of adher-
ing vesicles under shear flow. Phys Rev Lett 83:880–883

Chien S, Usami S, Taylor HM, Lundberg JL, Gregersen MI (1966)
Effects of hematocrit and plasma proteins on human blood rheology
at low shear rates. J Appl Physiol 21(1):81–87

Chien S, Usami S, Kellenback RJ, Gregersen MI (1970) Shear-
dependent interaction of plasma proteins with erythrocytes in blood
rheology. Am J Physiol 219(1):143–153

Chien S, Sung LA, Kim S, Burke AM, Usami S (1977) Determina-
tion of aggregation force in rouleaux by fluid mechanical technique.
Microvasc Res 13:327–333

Cokelet G, Merrill EW, Gilliland ER, Shin H, Britten A, Wells JRE
(1963) The rheology of human blood-measurement near and at zero
shear rate. Trans Soc Rheol 7:303–317

Copley AL, Huang CR, King RG (1973) Rheogoniometric studies of
whole human blood at shear rates from 1,000–0.0009 sec−1. Part I.
Experimental findings. Biorheology 10:17–22

Crowl L, Fogelson AL (2010) Computational model of whole blood
exhibiting lateral platelet motion induced by red blood cells. Int J
Numer Methods Biomed Eng 26:471–487

Crowl L, Fogelson AL (2011) Analysis of mechanisms for platelet
near-wall excess under arterial blood flow conditions. J Fluid Mech
676:348–375

Dao M, Li J, Suresh S (2006) Molecularly based analysis of deforma-
tion of spectrin network and human erythrocyte. Mater Sci Eng C
26:1232–1244

Davis JA, Inglis DW, Morton KM, Lawrence DA, Huang LR, Chou SY,
Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking
blood apart. Proc Natl Acad Sci USA 103:14779

Deuling HJ, Helfrich W (1976) Red blood cell shapes as explained on
the basis of curvature elasticity. Biophys J 16:861–868

Diez-Silva M, Dao M, Han J, Lim CT, Suresh S (2010) Shape and
biomechanical characteristics of human red blood cells in health and
disease. MRS Bull 35:382–388

Dintenfass L (1980) Molecular rheology of human blood; its role in
health and disease (today and tomorrow). In: Astarita G, Marrucci
G, Nicilais L (eds) Proceedings of 8th international congress on rhe-
ology (Naples), vol 3, pp 467–480.

Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red
cell deformation: hidden elasticity and in situ connectivity. Science
266:1032–1035

Discher DE, Boal DH, Boey SK (1998) Simulations of the erythro-
cyte cytoskeleton at large deformation. II. Micropipette aspiration.
Biophys J 75(3):1584–1597

Doddi SK, Bagchi P (2009) Three-dimensional computational modeling
of multiple deformable cells flowing in microvessels. Phys Rev E
79:046318

Du Q, Liu C, Wang X (2004) A phase field approach in the numerical
study of the elastic bending energy for vesicle membranes. J Comput
Phys 198:450–468

Dupin MM, Halliday I, Care CM, Alboul L, Munn LL (2007) Model-
ing the flow of dense suspensions of deformable particles in three
dimensions. Phys Rev E 75(6):066707

Ermak DL, McCammon JA (1978) Brownian dynamics with hydrody-
namic interactions. J Chem Phys 69:1352–1360

Espanol P, Warren P (1995) Statistical mechanics of dissipative particle
dynamics. Europhys Lett 30(4):191–196

Fahraeus R (1929) The suspension stability of blood. Physiol Rev
9:241–274

Fahraeus R, Lindqvist T (1931) Viscosity of blood in narrow capillary
tubes. Am J Phys 96:562–568

Fedosov DA, Caswell B, Karniadakis GE (2010a) A multiscale red
blood cell model with accurate mechanics, rheology, and dynamics.
Biophys J 98(10):2215–2225

Fedosov DA, Caswell B, Popel AS, Karniadakis GE (2010b) Blood flow
and cell-free layer in microvessels. Microcirculation 17:615–628

Fedosov DA, Caswell B, Karniadakis GE (2010c) Systematic coarse-
graining of spectrin-level red blood cell models. Comput Methods
Appl Mech Eng 199:1937–1948

Fedosov DA, Lei H, Caswell B, Suresh S, Karniadakis GE (2011a)
Multiscale modeling of red blood cell mechanics and blood flow in
malaria. PLoS Comput Biol 7:e1002270

Fedosov DA, Pan W, Caswell B, Gompper G, Karniadakis GE (2011b)
Predicting human blood viscosity in silico. Proc Natl Acad Sci USA
108:11772–11777

Fedosov DA, Caswell B, Suresh S, Karniadakis GE (2011c) Quan-
tifying the biophysical characteristics of plasmodium-falciparum-
parasitized red blood cells in microcirculation. Proc Natl Acad Sci
USA 108:35–39

Fedosov DA, Caswell B, Karniadakis GE (2011d) Wall shear stress-
based model for adhesive dynamics of red blood cells in malaria.
Biophys J 100(9):2084–2093

Fedosov DA, Fornleitner J, Gompper G (2012) Margination of white
blood cells in microcapillary flow. Phys Rev Lett 108:028104

Finken R, Lamura A, Seifert U, Gompper G (2008) Two-dimensional
fluctuating vesicles in linear shear flow. Eur Phys J E 25:309–
321

Firrell JC, Lipowsky HH (1989) Leukocyte margination and defor-
mation in mesenteric venules of rat. Am J Physiol 256:H1667–
H1674

Fischer TM (2004) Shape memory of human red blood cells. Biophys
J 86(5):3304–3313

Fischer TM (2007) Tank-tread frequency of the red cell membrane:
dependence on the viscosity of the suspending medium. Biophys J
93(7):2553–2561

Forsyth AM, Wan J, Owrutsky PD, Abkarian M, Stone HA (2011)
Multiscale approach to link red blood cell dynamics, shear viscosity,
and ATP release. Proc Natl Acad Sci USA 108:10986–10991

Franceschini E, Yu FT, Destrempes F, Cloutier G (2010) Ultrasound
characterization of red blood cell aggregation with intervening atten-
uating tissue-mimicking phantoms. J Acoust Soc Am 127:1104–
1115

Freund JB (2007) Leukocyte margination in a model microvessel. Phys
Fluids 19:023301

Freund JB, Orescanin MM (2011) Cellular flow in a small blood vessel.
J Fluid Mech 671:466–490

Fung YC (1993) Biomechanics: mechanical properties of living tissues,
2nd edn. Springer, New York

Gaehtgens P, Dührssen C, Albrecht KH (1980) Motion, deformation,
and interaction of blood cells and plasma during flow through narrow
capillary tubes. Blood Cells 6:799–812

Goldsmith HL, Skalak R (1975) Hemodynamics. Annu Rev Fluid Mech
7:213–247

Goldsmith HL, Spain S (1984) Margination of leukocytes in blood flow
through small tubes. Microvasc Res 27:204–222

Gompper G, Kroll DM (1996) Random surface discretizations and the
renormalization of the bending rigidity. J Phys I France 6:1305–1320

Gompper G, Kroll DM (1997) Network models of fluid, hexatic
and polymerized membranes. J Phys Condens Matter 9:
8795–8834

Gompper G, Kroll DM (2004) Triangulated-surface models of fluctuat-
ing membranes. In: Nelson DR, Piran T, Weinberg S (eds) Statistical
mechanics of membranes and surfaces, 2nd edn. World Scientific,
Singapore, pp 359–426

Gompper G, Ihle T, Kroll DM, Winkler RG (2009) Multi-particle col-
lision dynamics: a particle-based mesoscale simulation approach to
the hydrodynamics of complex fluids. Adv Polym Sci 221:1–87

Helfrich W (1973) Elastic properties of lipid bilayers: theory and pos-
sible experiments. Z. Naturforschung C 28:693–703

Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination
of the shear modulus of the human erythrocyte membrane using
optical tweezers. Biophys J 76:1145–1151

123

Biomechanics and Modeling in Mechanobiology, 13:239-258, 2014 177



Modeling of blood flow 257

Higgins JM, Eddington DT, Bhatia SN, Mahadevan L (2007) Sickle cell
vasoocclusion and rescue in a microfluidic device. Proc Natl Acad
Sci USA 104(51):20496–20500

Holm SH, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of
parasites from human blood using deterministic lateral displacement.
Lab Chip 11:1326–1332

Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic
hydrodynamic phenomena with dissipative particle dynamics. Euro-
phys Lett 19(3):155–160

Hosseini SM, Feng JJ (2012) How malaria parasites reduce the deforma-
bility of infected RBC. Biophys J 103:1–10

Hou HW, Bhagat AAS, Chong AGL, Mao P, Tan KSW, Han J, Lim
CT (2010) Deformability based cell margination–a simple microflu-
idic design for malaria-infected erythrocyte separation. Lab Chip
10:2605–2613

Imai Y, Kondo H, Ishikawa T, Lim CT, Yamaguchi T (2010) Modeling of
hemodynamics arising from malaria infection. J Biomech 43:1386–
1393

Imai Y, Nakaaki K, Kondo H, Ishikawa T, Lim CT, Yamaguchi T (2011)
Margination of red blood cells infected by Plasmodium falciparum
in a microvessel. J Biomech 44:1553–1558

Inglis DW, Davis JA, Zieziulewicz TJ, Lawrence DA, Austin RH, Sturm
JC (2008) Determining blood cell size using microfluidic hydrody-
namics. J Immunol Methods 329:151–156

Jadhav S, Eggleton CD, Konstantopoulos K (2005) A 3-D computa-
tional model predicts that cell deformation affects selectin-mediated
leukocyte rolling. Biophys J 88:96–104

Jain A, Munn LL (2009) Determinants of leukocyte margination in
rectangular microchannels. PLoS ONE 4:e7104

Janoschek F, Toschii F, Harting J (2010) Simplified particulate model for
coarse-grained hemodynamics simulations. Phys Rev E 82:056710

Kaoui B, Ristow GH, Cantat I, Misbah C, Zimmermann W (2008) Lat-
eral migration of a two-dimensional vesicle in unbounded Poiseuille
flow. Phys Rev E 77:021903

Kaoui B, Biros G, Misbah C (2009) Why do red blood cells have
asymmetric shapes even in a symmetric flow? Phys Rev Lett 103:
188101

Kaoui B, Biros G, Misbah C (2011) Complexity of vesicle microcircu-
lation. Phys Rev E 84:041906

Kaoui B, Krüger T, Harting J (2012) How does confinement affect
the dynamics of viscous vesicles and red blood cells? Soft Matter
8:9246–9252

Kapral R (2008) Multiparticle collision dynamics: simulation of com-
plex systems on mesoscales. Adv Chem Phys 140:89–146

Keller SR, Skalak R (1982) Motion of a tank-treading ellipsoidal parti-
cle in a shear flow. J Fluid Mech 120:27–47

Khismatullin DB, Truskey GA (2005) Three-dimensional numeri-
cal simulation of receptor-mediated leukocyte adhesion to sur-
faces: effects of cell deformability and viscoelasticity. Phys. Fluids
17:031505

Kim S, Long LR, Popel AS, Intaglietta M, Johnson PC (2007) Temporal
and spatial variations of cell-free layer width in arterioles. Am J
Physiol 293:H1526–H1535

King MR, Hammer DA (2001) Multiparticle adhesive dynamics:
Hydrodynamic recruitment of rolling leukocytes. Proc Natl Acad
Sci USA 98:14919–14924

Korn CB, Schwarz US (2008) Dynamic states of cells adhering in shear
flow: from slipping to rolling. Phys Rev E 77(4):041904

Krüger T, Varnik F, Raabe D (2011) Particle stress in suspensions of
soft objects. Philos Trans R Soc A 369:2414–2421

Lei H, Karniadakis GE (2012a) Predicting the morphology of sickle
red blood cells using coarse-grained models of intracellular aligned
hemoglobin polymers. Soft Matter 8:4507–4516

Lei H, Karniadakis GE (2012b) Quantifying the rheological and
hemodynamic characteristics of sickle cell anemia. Biophys J 102:
185–194

Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the
cytoskeleton and optical tweezers stretching of the erythrocyte. Bio-
phys J 88:3707–3719

Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by com-
puter simulation. J Comput Phys 220:139–154

Lowe GDO (1998) Clinical blood rheology, vol I. CRC Press, Boca
Raton, FL, II

Lucy LB (1977) A numerical approach to testing the fission hypothesis.
Astron J 82:1013–1024

MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK (2009) Simulating
deformable particle suspensions using a coupled lattice-Boltzmann
and finite-element method. J Fluid Mech 618:13–39

Maeda N, Suzuki Y, Tanaka J, Tateishi N (1996) Erythrocyte flow and
elasticity of microvessels evaluated by marginal cell-free layer and
flow resistance. Am J Physiol 271(6):H2454–H2461

Malevanets A, Kapral R (1999) Mesoscopic model for solvent dynam-
ics. J Chem Phys 110(17):8605–8613

McWhirter JL, Noguchi H, Gompper G (2009) Flow-induced clustering
and alignment of vesicles and red blood cells in microcapillaries.
Proc Natl Acad Sci USA 106(15):6039–6043

McWhirter JL, Noguchi H, Gompper G (2011) Deformation and cluster-
ing of red blood cells in microcapillary flows. Soft Matter 7:10967–
10977

McWhirter JL, Noguchi H, Gompper G (2012) Ordering and arrange-
ment of deformed red blood cells in flow through microcapillaries.
New J Phys 14:085026

Melchionna S (2011) A model for red blood cells in simula-
tions of large-scale blood flows. Macromol Theory Simul 20:
548–561

Merrill EW, Gilliland ER, Cokelet G, Shin H, Britten A, Wells JRE
(1963) Rheology of human blood near and at zero flow. Biophys J
3:199–213

Merrill EW, Gilliland ER, Lee TS, Salzman EW (1966) Blood rhe-
ology: effect of fibrinogen deduced by addition. Circ Res 18:437–
446

Messlinger S, Schmidt B, Noguchi H, Gompper G (2009) Dynamical
regimes and hydrodynamic lift of viscous vesicles under shear. Phys
Rev E 80:011901

Misbah C (2006) Vacillating breathing and tumbling of vesicles under
shear flow. Phys Rev Lett 96:028104

Mohandas N, Evans E (1994) Mechanical properties of the red cell
membrane in relation to molecular structure and genetic defects.
Annu Rev Biophys Biomol Struct 23:787–818

Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Progress
Phys 68:1703–1759

Noguchi H, Gompper G (2004) Fluid vesicles with viscous membranes
in shear flow. Phys Rev Lett 93:258102

Noguchi H, Gompper G (2005a) Shape transitions of fluid vesicles
and red blood cells in capillary flows. Proc Natl Acad Sci USA
102(40):14159–14164

Noguchi H, Gompper G (2005b) Dynamics of fluid vesicles in shear
flow: effect of the membrane viscosity and thermal fluctuations. Phys
Rev E 72(1):011901

Noguchi H, Gompper G (2007) Swinging and tumbling of fluid vesicles
in shear flow. Phys Rev Lett 98:128103

Noguchi H (2009a) Membrane simulation models from nanometer to
micrometer scale. J Phys Soc Jpn 78:041007

Noguchi H (2009b) Swinging and synchronized rotations of red blood
cells in simple shear flow. Phys Rev E 80:021902

Noguchi H, Gompper G, Schmid L, Wixforth A, Franke T (2010)
Dynamics of fluid vesicles in flow through structured microchan-
nels. Europhys Lett 89:28002

Noguchi H (2010a) Dynamic modes of microcapsules in steady shear
flow: effects of bending and shear elasticities. Phys Rev E 81:056319

Noguchi H (2010b) Dynamics of fluid vesicles in oscillatory shear flow.
Phys Rev E 81:0619201

123

178 Biomechanics and Modeling in Mechanobiology, 13:239-258, 2014



258 D. A. Fedosov et al.

Noguchi H (2010c) Dynamics of fluid vesicles in oscillatory shear flow.
J Phys Soc Jpn 79:024801

Pan W, Caswell B, Karniadakis GE (2010) A low-dimensional model
for the red blood cell. Soft Matter 6:4366–4376

Pan W, Fedosov DA, Caswell B, Karniadakis GE (2011) Predicting
dynamics and rheology of blood flow: a comparative study of multi-
scale and low-dimensional models of red blood cells. Microvasc Res
82:163–170

Pearson MJ, Lipowsky HH (2000) Influence of erythrocyte aggregation
on leukocyte margination in postcapillary venules of rat mesentery.
Am J Physiol 279:H1460–H1471

Picart C, Piau JM, Galliard H (1998) Human blood shear yield stress
and its hematocrit dependence. J Rheol 42:1–12

Pivkin IV, Karniadakis GE (2008) Accurate coarse-grained modeling
of red blood cells. Phys Rev Lett 101(11):118105

Pozrikidis C (1989) A study of linearized oscillatory flow past particles
by the boundary integral method. J Fluid Mech 202:17–41

Pozrikidis C (2005) Axisymmetric motion of a file of red blood cells
through capillaries. Phys Fluids 17:031503

Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube
flow: dependence on diameter and hematocrit. Am J Physiol
263(6):H1770–H1778

Quinn DJ, Pivkin I, Wong SY, Chiam KH, Dao M, Karniadkais GE,
Suresh S (2011) Combined simulation and experimental study of
large deformation of red blood cells in microfluidic systems. Ann
Biomed Eng 39(3):1041–1050

Reasor DA Jr, Clausen JR, Aidun CK (2012) Coupling the lattice-
Boltzmann and spectrin-link methods for the direct numerical simu-
lation of cellular blood flow. Int J Numer Methods Fluids 68:767–781

Reinke W, Gaehtgens P, Johnson PC (1987) Blood viscosity in small
tubes: effect of shear rate, aggregation, and sedimentation. Am J
Physiol 253:H540–H547

Robertson AM, Sequeira A, Kameneva MV (2008) Hemodynamical
flows. Modeling, analysis and simulation. In: Oberwolfach seminars,
vol 37. Birkhauser Verlag, Basel, pp 63–120.

Scheffer L, Bitler A, Ben-Jacob E, Korenstein F (2001) Atomic force
pulling: probing the local elasticity of the cell membrane. Eur Bio-
phys J 30:83–90

Schmidt B, Fraternali F (2012) Universal formulae for the limiting elas-
tic energy of membrane networks. J Mech Phys Solids 60:172–180

Seung HS, Nelson DR (1988) Defects in flexible membranes with crys-
talline order. Phys Rev A 38:1005–1018

Shelby JP, White J, Ganesan K, Rathod PK, Chiu DT (2003) A
microfluidic model for single-cell capillary obstruction by Plas-
modium falciparum-infected erythrocytes. Proc Natl Acad Sci USA
100:14618–14622

Skalak R (1969) Deformation of red blood cells in capillaries. Science
164:717–719

Skalak R, Keller SR, Secomb TW (1981) Mechanics of blood flow. J
Biomech Eng 103:102–115

Skotheim JM, Secomb TW (2007) Red blood cells and other non-
spherical capsules in shear flow: oscillatory dynamics and the tank-
treading-to-tumbling transition. Phys Rev Lett 98:078301

Springer TA (1995) Traffic signals on endothelium for lymphocyte recir-
culation and leukocyte emigration. Annu Rev Physiol 57:827–872

Succi S (2001) The Lattice Boltzmann equation for fluid dynamics and
beyond. Oxford University Press, Oxford

Sukumaran S, Seifert U (2001) Influence of shear flow on vesicles near
a wall: a numerical study. Phys Rev E 64:011916

Sun C, Migliorini C, Munn LL (2003) Red blood cells initiate leuko-
cyte rolling in postcapillary expansions: a lattice Boltzmann analysis.
Biophys J 85:208–222

Sun C, Munn LL (2005) Particulate nature of blood determines
macroscopic rheology: a 2D lattice-Boltzmann analysis. Biophys
J 88:1635–1645

Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M,
Seufferlein T (2005) Connections between single-cell biomechanics
and human disease states: gastrointestinal cancer and malaria. Acta
Biomaterialia 1:15–30

Suzuki Y, Tateishi N, Soutani M, Maeda N (1996) Deformation of ery-
throcytes in microvessels and glass capillaries: effect of erythrocyte
deformability. Microcirciculation 3(1):49–57

Tangelder GJ, Teirlinck HC, Slaaf DW, Reneman RS (1985) Distribu-
tion of blood platelets flowing in arterioles. Am J Physiol 248:H318–
H323

Tokarev AA, Butylin AA, Ermakova EA, Shnol EE, Panasenko GP,
Ataullakhanov FI (2011) Finite platelet size could be responsible for
platelet margination effect. Biophys J 101:1835–1843

Tomaiuolo G, Simeone M, Martinelli V, Rotoli B, Guido S (2009) Red
blood cell deformation in microconfined flow. Soft Matter 5:3736–
3740

Tran-Son-Tay R, Sutera SP, Rao PR (1984) Determination of RBC
membrane viscosity from rheoscopic observations of tank-treading
motion. Biophys J 46(1):65–72

Vaziri A, Gopinath A (2008) Cell and biomolecular mechanics in silico.
Nat Mater 7:15–23

Wang H, Skalak R (1969) Viscous flow in a cylindrical tube containing
a line of spherical particles. J Fluid Mech 38:75–96

Wang T, Pan TW, Xing ZW, Glowinski R (2009) Numerical simulation
of rheology of red blood cell rouleaux in microchannels. Phys Rev
E 79(4):041916

Waugh R, Evans EA (1979) Thermoelasticity of red blood cell mem-
brane. Biophys J 26(1):115–131

Wendt JF (ed) (2009) Computational fluid dynamics, 3rd edn. Springer,
Berlin

Yamaguchi S, Yamakawa T, Niimi H (1992) Cell-free plasma layer in
cerebral microvessels. Biorheology 29:251–260

Yazdani AZK, Kalluri RM, Bagchi P (2011) Tank-treading and tum-
bling frequencies of capsules and red blood cells. Phys Rev E
83:046305

Zhao Q, Durand LG, Allard L, Cloutier G (1998) Effects of a sudden
flow reduction on red blood cell rouleau formation and orientation
using RF backscattered power. Ultrasound Med. Biol. 24:503–511

Zhao H, Isfahani AHG, Olson LN, Freund JB (2010) A spectral
boundary integral method for flowing blood cells. J Comput Phys
229:3726–3744

Zhao H, Shaqfeh ESG (2011a) The dynamics of a vesicle in simple
shear flow. J Fluid Mech 674:578–604

Zhao H, Shaqfeh ESG (2011b) Shear-induced platelet margination in a
microchannel. Phys Rev E 83:061924

123

Biomechanics and Modeling in Mechanobiology, 13:239-258, 2014 179





Journal of Physics: Condensed Matter, 24:464103, 2012 181

P10: Conformational and dynamical
properties of ultra-soft colloids in semi-
dilute solutions under shear flow

S. P. Singh, D. A. Fedosov, A. Chatterji, R. G. Winkler, and G.

Gompper

Journal of Physics: Condensed Matter, 24:464103, 2012.



IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 24 (2012) 464103 (11pp) doi:10.1088/0953-8984/24/46/464103

Conformational and dynamical properties
of ultra-soft colloids in semi-dilute
solutions under shear flow
Sunil P Singh1, Dmitry A Fedosov1, Apratim Chatterji1,2,
Roland G Winkler1 and Gerhard Gompper1

1 Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced
Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
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Abstract
We investigate structural and dynamical properties of ultra-soft colloids in dilute and
semi-dilute solutions by hybrid mesoscale simulations under linear shear flow. In particular,
the influence of functionality on these properties is addressed. Our study combines molecular
dynamics simulations for the solute with the multiparticle collision dynamics approach for the
coarse-grained solvent. The star polymers exhibit large conformational and orientational
changes in shear flow, which we characterize by the radius of gyration tensor and the
alignment angle. These quantities show a universal dependence on a concentration- and
functionality-dependent Weissenberg number with slight deviations at high shear rates.
Moreover, the star polymers display a rotational dynamics with a shear-rate- and
concentration-dependent rotation frequency. We attribute the concentration dependence to the
screening of hydrodynamic interactions in semi-dilute star-polymer solutions.
S Online supplementary data available from stacks.iop.org/JPhysCM/24/464103/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Macromolecular systems are enormously versatile in their
structural and dynamical properties. This has led to their
widespread use as structural and functional materials, as well
as fluids with tailored properties. The origin of the versatility
is that polymer length, polymer architecture, polymer internal
composition (in form of multi-block copolymers) and
polymer interactions can be easily tuned, with a strong impact
on material properties. The large number of variables and
the emergent properties in semi-dilute and dense suspensions
imply that a detailed theoretical understanding is required to
achieve a knowledge-based design of new materials and their
flow properties.

In this article, we focus on a special class of
macromolecular architectures, which consist of several linear

polymers of equal length, tied together at one of their ends to
a common center [1]. These star polymers are technologically
important in several applications, such as viscosity modifiers
in the oil industry [1], or as novel drug-delivery agents [2–4].
Star polymers have very soft interactions, which increase
only logarithmically with decreasing distance between their
centers [5–8]. Therefore, star polymers are also known as
ultra-soft colloids.

The structural, dynamical, and rheological properties
of star-polymer solutions strongly depend on the arm
number—the functionality f —the lengths of the arms, and the
concentration c [9–13]. Experimentally, star polymers have
been investigated over a wide range of functionalities, in
particular for low and intermediate functionalities 4≤ f ≤ 128
in [14–16] and for very large functionality f = 390 in [17].
For concentrations below and moderately above the overlap
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concentration c∗, star-polymer solutions are in the fluid phase,
while for high concentrations the solution (or melt) becomes
glassy [13, 17], in particular for large functionalities. These
studies mainly focus on the rheological properties. In the fluid
regime, the zero-shear viscosity of star-polymer solutions
interpolates between that of linear polymers and hard spheres
at fixed volume fraction—defined by the hydrodynamic radius
of an individual macromolecule [15]; here, the viscosity is
found to strongly depend on the functionality, but only very
weakly on the arm length.

Simulations of star-polymer solutions by mesoscale
hydrodynamics methods with a molecularly resolved polymer
model have mainly focused on the structural and dynamical
behavior of individual stars in dilute solution [18, 19], on the
dynamic friction between two dragged stars [20], and on rheo-
logical behavior of semi-dilute solutions of low-functionality
star polymers (with f = 10) [21]. In a complementary
theoretical description of soft colloids [22–24]—such as
block-copolymer micelles, hairy colloids, and star polymers,
each colloid is represented by just one point particle with
effective, coarse-grained interactions. This approach with an
equilibrium interaction potential has been employed in [22]
to study the nonequilibrium properties of dense solutions
of such ultra-soft colloids by mesoscale hydrodynamics
simulations. Naturally, such an approach does not capture
the flow-induced deformation of the star polymers, and is
therefore suitable in the limit of nearly spherical colloids only.
As will be illustrated in the article, such deformations are quite
pronounced even in concentrated systems and determine the
rheological properties of the solution. Furthermore, the use of
an equilibrium interaction potential does not include the effect
of transient entanglements between the polymer arms [23]
or the time-irreversible deformation of the corona [20]. Such
transient effects can be mimicked by a memory contribution
to the (still spherically symmetric) interaction potential [23];
such an approach has been successfully employed, for
example, to predict the dynamics of star-polymer solutions
with start-up or step-down shear stress [24].

We focus in this paper on the role of concentration
and functionality—with 10 ≤ f ≤ 50—on the structural
and dynamical properties of star polymers in semi-dilute
suspensions. We address the deformation and orientation of
individual star polymers and unravel their universal behavior
in terms of shear rate and functionality. Moreover, we study
the scaling properties of the structure factor of individual
arms under shear flow. Similar studies have been performed
for linear polymers (a star of functionality f = 2) [25].
As shown in [18, 19], star polymers with f & 5 exhibit
a tank-treading-like motion, where individual arms undergo
collapse and stretching cycles. This leads to a rotation of
the whole star, with a frequency which depends upon the
shear rate. Here, the questions arise how the star-polymer
concentration affects the rotational dynamics, and whether the
frequency dependence is similar to the tank-treading motion
of vesicles.

The article is organized as follows. In section 2,
we introduce the star-polymer model and the mesoscopic
hydrodynamics simulation technique, and discuss the choice

of model parameters. In section 3, we present our results for
the conformational properties, the flow alignment, and the
structure factor of star polymers in semi-dilute solution under
shear flow. Results for the flow-induced rotational dynamics
of stars are presented in section 4. Finally, the results are
summarized in section 5.

2. Method and model

2.1. Multiparticle collision dynamics

Multiparticle collision dynamics (MPC) is a particle-based
hydrodynamic simulation technique [26–28]. In the MPC
algorithm, the solvent is modeled by Ns point particles with
positions ri and velocities vi (i = 1, . . . ,Ns). The dynamics
proceeds in discrete time increments h, denoted as collision
time, by alternating streaming and collision steps [27, 28].
In the streaming step, the solvent particles of mass m move
ballistically with their respective velocities and their positions
are updated as

ri(t + h) = ri(t)+ hvi(t). (1)

In the collision step, the simulation box is partitioned in
cubic cells of linear dimension a and the solvent particles are
sorted into these cells. Their relative velocities, with respect
to the center-of-mass velocity of the cell, are rotated around a
randomly oriented axis by an angle α, so that

vi(t + h) = vi(t)+ (R(α)− I)(vi(t)− vcm(t)), (2)

where R is the rotation matrix, I is the unit matrix, and
vcm =

∑Nc
j=1vj/Nc is the center-of-mass velocity of the cell

with Nc particles. In this stochastic process mass, momentum,
and energy are conserved, which ensures that hydrodynamic
behavior emerges on larger length scales.

The transport properties of the solvent depend on the
collision time h, the rotation angle α, and the average
number of particles 〈Nc〉 per cell. Tuning these variables
allows us to attain solvents with a high Schmidt number,
where momentum transport dominates over mass transport.
Here, the Schmidt number is defined as Sc = ν/D, where
ν = η/(m〈Nc〉) is the kinematic viscosity and D is the
diffusion coefficient of a MPC particle. We use the parameters
h/
√

ma2/(kBT)= 0.1, α = 130◦, and 〈Nc〉 = 10, which yields
the solvent viscosity ηs = 8.7

√
mkBT/a4 and the Schmidt

number Sc ≈ 17.

2.2. Star-polymer model

A star polymer consists of f linear polymers with one of their
ends linked to a common center. A polymer has Nm monomers
of mass M, which are connected by harmonic springs with the
potential

Vb =
ks

2
(Ri,i+1 − l)2, (3)

where l is the equilibrium bond length, Ri,i+1 = Ri+1 − Ri is
the bond vector, and Ri,i+1 = |Ri,i+1|. The spring constant ks

2
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is chosen such that even under strong shear flow the change
in the equilibrium bond length remains less than a few per
cent. Excluded-volume interactions between monomers are
taken into account through the repulsive truncated and shifted
Lennard-Jones (LJ) potential

VLJ(r) = 4ε
[(σ

r

)12
−

(σ
r

)6
+

1
4

]
2(21/6σ − r), (4)

where 2(r) is the Heaviside step function (2(r) = 0 for
r < 0 and 2(r) = 1 for r ≥ 0).

The equilibrium bond length of each center-arm
connection lc and LJ diameter of the central monomer σc are
taken to be twice as large as those for a normal monomer,
while the mass of the center monomer is the same as
for any other monomer. Moreover, we set ε = kBT and
a = l. We use the spring constant ks/(kBT/l2) = 103, the
diameter of a monomer σ/l = 0.8 and its mass M = 10m. We
consider polymer arms with Nm = 30 monomers. The velocity
Verlet algorithm is used to integrate Newton’s equations of
motion of the star polymers with the time step hm = 5 ×
10−3

√
ml2/(kBT).

The solute–solvent coupling occurs in the collision step,
where the velocities of the polymer monomers are rotated
according to equation (2) [28–30], but with the center-of-mass
velocity of the cell

vcm(t) =

∑Nc
i=1 mvi(t)+

∑Nm
c

j=1 Mvj(t)

mNc +MNm
c

. (5)

Here, Nm
c is number of the monomers in the considered

cell. Thereby, momentum is redistributed between solvent and
monomers in the same cell.

We apply three-dimensional periodic boundary con-
ditions for the MPC fluid and the star polymers, and
Lees–Edwards boundary conditions to impose shear flow [31,
32]. The latter is a boundary-driven algorithm, where the
primary simulation box is fixed in space along with all
its periodic replicas along the flow direction. Replicated
neighboring boxes in the positive (negative) gradient direction
move with constant velocity vB = Lγ̇ along (opposite to) the
flow direction, where γ̇ is the shear rate. When a particle
enters a moving box along the gradient direction, it acquires
the extra velocity vB. This yields a linear fluid velocity profile
vx = γ̇ y in the flow direction (x-axis) as a function of the
particle positions along the gradient direction (y-axis). A local
cell-based Maxwellian thermostat (MBS) is applied by which
velocities are scaled to maintain the desired temperature of the
system [33].

3. Structural properties of star polymers in shear
flow
We place the star polymers in a cubic simulation box with
linear dimension L = 100l and periodic boundary conditions.
Their number Nsp depends on concentration and is given
in table 1 together with other parameters. We will present
results for the arm length Nm = 30 and the functionalities f =
10, 20, 30, and 50. The polymer concentration is measured
relative to the overlap concentration,

c∗ = [ 43πR3
h]
−1, (6)

Table 1. Simulation parameters for Nsp star polymers of
functionality f . Rg0 and Rh are the equilibrium radius of gyration
and hydrodynamic radius in dilute solution, respectively, and c
indicates the range of considered concentrations, with c∗ denoting
the overlap concentration.

f Nsp Rg0/l Rh/l c/c∗

10 100–750 7.1 7.1 0.15–1.13
20 50–375 7.9 9.1 0.16–2.37
30 34–250 8.5 10.7 0.17–2.57
50 20–150 9.2 13.2 0.19–2.92

where Rh is the hydrodynamic radius, which is obtained
from the diffusion coefficient of a star in dilute solution
extrapolated to infinite system size [34]. The strength of the
shear flow is characterized by the concentration-dependent
Weissenberg number Wic = βγ̇ τz, where τz = ηsN2

ml3/kBT is
the Zimm relaxation time of a polymer arm and β = β(c/c∗)
is a concentration-dependent scale factor. We introduce the
factor β to account for the concentration dependence of the
characteristic relaxation time of a star polymer, i.e., βτz
is—up to a constant—equal to the concentration-dependent
relaxation time. We consider the relative deformation δGxx
(equation (8)) and determine the concentration dependence of
β by calculating the ratio between the shear-rate-dependent
actual δGxx data at a given concentration and the comparable
data for the lowest concentration given in table 1. The
obtained β-function is then also applied to other quantities.
The same idea has been applied in [21, 35] to study
concentration-dependent rheological properties of linear
and star-polymer solutions for stars with f = 10. Several
independent simulation runs are performed for fixed solution
conditions in order to obtain reliable averages of the properties
of interest.

3.1. Conformational properties

Typical conformations of star polymers in semi-dilute solution
under shear flow are shown in figure 1 for f = 10 and
f = 50. Comparison of the two functionalities demonstrates
that large-functionality stars are less deformed and less
aligned with the flow direction than low-functionality star
polymers.

The conformational properties of the star polymers can be
characterized quantitatively by the radius of gyration tensor,
which is defined as

Gγ γ ′ =
1
N

N∑
i=1

1ri,γ1ri,γ ′ , (7)

where 1ri is the position of the ith monomer relative to
the star center of mass, γ , γ ′ ∈ {x, y, z}, and N = fNm + 1
is the total number of monomers in a star. At equilibrium,
all diagonal components of Gγ γ ′ are equal, i.e., 〈Gγ γ 〉 =
〈G0

γ γ 〉, where the superscript indicates the equilibrium value
at a particular concentration. In the dilute regime 〈Gγ γ 〉 =
〈G00

γ γ 〉 = R2
g0/3, where the radius of gyration R2

g0 follows the
scaling relation R2

g0 ∼ l2N2ν
m f 1−ν in terms of arm length and

functionality [5, 9, 36, 37], with the exponent ν ≈ 0.63 for

3
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Figure 1. Simulation snapshots of star-polymer solutions with (a) functionality f = 10 and concentration c/c∗ = 1.13 as well as (b) f = 50
and c/c∗ = 1.46 for the same Weissenberg number Wic ≈ 102. Only star polymers with their centers in a slice of thickness of 3Rg0 parallel
to the flow-gradient plane are shown. Multiple colors are used to distinguish the various star polymers more easily. A movie is provided as
supplemental material (available at stacks.iop.org/JPhysCM/24/464103/mmedia).

our system. Our scaling exponent is slightly larger than that
for polymers in dilute solution due to the relatively short arm
length. Longer arms would lead to the same exponent as for
linear chains (ν ≈ 3/5) [38].

In linear shear flow, polymers become deformed, which
is measured by the relative deformation

δGxx(c/c∗) =
〈Gxx(c/c∗)〉 − 〈G0

xx(c/c
∗)〉

〈G0
xx(c/c∗)〉

(8)

in terms of the gyration tensor. Simulation results of δGxx
for star polymers of various functionalities in dilute solution
are displayed in the inset of figure 2(a). It is clear that δGxx
decreases with increasing functionality at a given shear rate,
or Wic, due to a difference in the shear resistance, which
increases for larger functionalities.

The star-polymer relaxation time depends on its arm
number. The relative dependence of the relaxation time on
the functionality can be estimated by shifting the δGxx curves
to the highest-functionality curve in the inset of figure 2(a).
Figure 2(a) itself shows the scaled curves as a function of
φf Wic, where φf is a f -dependent scale factor. Clearly, the
scaled data follow a common curve within the accuracy of
the simulations, which indicates universal behavior of this
structural property.

Values of the relative deformation ratio for various
concentrations, above and below the overlap concentration,
are displayed in figure 2(b). Evidently, a universal curve is
obtained as a function of φf Wic = φfβWi over a wide range
of Weissenberg numbers. At low φf Wic < 1, a quadratic
dependence of the relative deformation on the Weissenberg
number is found for all concentrations and functionalities [18,
21, 35, 39]. At high shear rates, the deformation of the
polymers saturates and δGxx assumes a maximum value,
which depends on the length of polymer arms as well as on
the functionality. This finite-polymer-length effect breaks the
universality as reflected in the figure. Note that the equilibrium
value of the radius of gyration increases with increasing

Figure 2. Relative deformation δGxx of star polymers along the
flow direction as a function of the functionality-dependent
Weissenberg number φf Wic. (a) Dilute solution data at the lowest
concentrations given in table 1 for f = 10 (bullets), f = 20
(squares), f = 30 (diamonds), and f = 50 (triangles). The inset
presents the relative deformations as a function of Wic only.
(b) Simulation data for all concentrations and functionalities.

functionality, which partially accounts for the decrease of
δGxx at high Weissenberg numbers.

4
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Figure 3. Concentration-dependent scale factor β for the relaxation
time τ(c) = β(c/c∗)τz obtained from the scaling of the radius of
gyration tensor and the alignment along the shear direction. The
inset shows the functionality dependence of the scale factor φf . The
line indicates the power-law dependence φf ∼ f−2/3.

Figure 3 displays the concentration dependence of the
scale factor β(c/c∗). We find a universal curve for the
various considered functionalities [21]. As emphasized, β
measures the concentration dependence of the star-polymer
characteristic relaxation time. Evidently, this time increases
significantly with concentration. The inset of figure 3 shows
the functionality dependence of φf , which decreases with
increasing f in a power-law manner, with an exponent
of −2/3. This is surprising, because it implies that
the relaxation time of a star polymer determining the
Weissenberg number decreases with increasing functionality.
This is in contradiction with the relaxation time of an
individual polymer arm, which is predicted [10] to follow
the dependence f (2−3ν)/2, with (2 − 3ν)/2 ' 0.1 for ν =
0.6, i.e., this relaxation time increases with increasing
functionality.

The radii of gyration tensor components along the
gradient direction are displayed in figure 4 for dilute systems
and star-polymer concentrations well above c∗ as a function of
φf Wic. The star-polymer size 〈Gyy〉 decreases with increasing
shear rate. Thereby, a weak dependence on functionality
is revealed—beyond the effect captured by φf . At large
Weissenberg numbers, higher-functionality star polymers
exhibit a somewhat smaller deformation. More importantly,
low- and high-concentration systems show a qualitatively
different dependence on shear rate, expressed by the different
slope of the corresponding data sets. Dilute systems exhibit
a stronger shrinkage than concentrated systems at the same
value of φf Wic. This might be explained by the fact that
the equilibrium radius of gyration of star polymers in
concentrated systems is smaller than that of dilute systems.
The associated denser packing of monomers of individual
stars is maintained even at high shear rates and leads to
smaller deformations compared to the dilute case. Along the
vorticity direction, the conformations of the star polymers are
less affected by the flow, as already shown in [18] for dilute
systems.

Figure 4. Normalized radius of gyration tensor along the gradient
direction 〈Gyy〉/〈G0

yy〉 as a function of φf Wic for dilute systems of
the lowest concentrations (bottom set of curves) and the highest
concentrations (upper set of curves) given in table 1. The symbols
are the same as in figure 2.

In equilibrium, a star polymer is a spherically symmetric
object on average. As evident from the above results, this
symmetry is broken under shear flow. We characterize the
shear-induced asphericity of a star polymer by the ratio of
the largest and smallest eigenvalues of the average gyration
tensor 〈G1〉 and 〈G3〉. Here, the average gyration tensor is
obtained by averaging the gyration tensor first and then by
diagonalizing it to calculate the eigenvalues 〈G1〉, 〈G3〉. For
a spherically symmetric object, 〈G1〉/〈G3〉 − 1 is zero and
increases as the object becomes asymmetrically deformed,
and diverges for a thin rod. Similarly, for star polymers the
asphericity is small at low shear rates, while it increases with
increasing shear rates, as displayed in figure 5(a). For low
and moderate φf Wic, a universal curve for all functionalities
and concentrations is obtained, indicating that the f and
c/c∗ dependence is absorbed in φf Wic. At large φf Wic � 1,
the asphericity curves split for the various concentrations
and functionalities. At high concentrations, the asphericity is
smaller. Higher concentrations lead to a slower decrease of
〈Gyy〉 (see figure 4) and to a larger 〈G3〉.

In addition, we present in figure 5(b) the instantaneous
asphericity Ḡ1/Ḡ3 − 1, where the Ḡi are the averages of
the eigenvalues of the diagonalized instantaneous radius
of gyration tensor. At high shear rates the instantaneous
asphericity is equal to the average one, while at low shear rates
plateau values are obtained, which depend on functionality
and arm length. These shear-independent values characterize
the deviation of a star polymer from a perfectly spherical
object in equilibrium. Thus, stars of low functionality are
more aspherical in comparison to those with high f . This
property reflects a change in the star structure as functionality
increases, namely the inner compact region of a star swells,
while the outer soft region is reduced, leading to smaller
variations in the star’s instantaneous shape.

The inset of figure 5(b) shows the instantaneous
asphericity for the highest considered concentrations. Here,
we also find a universal behavior of stars with different

5
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Figure 5. (a) Ratios of the largest-to-smallest eigenvalues of the
average gyration tensor as a function of the concentration- and
functionality-dependent Weissenberg number φf Wic. The data are
for the functionalities f = 10 (bullets), 20 (squares), 30 (diamonds),
and 50 (triangles) and all concentrations. (b) Ratios of the averaged
largest and smallest eigenvalues of the gyration tensor for dilute
systems (see table 1). The inset shows data for the highest
considered concentrations at the various functionalities (see table 1).

functionalities over a wide range of Weissenberg numbers.
Only at large φf Wic do curves for the various values of
f split. This could be related to the fact that the packing
of monomers increases with increasing functionality. The
difference between the various curves seems to decrease with
increasing concentration and we expect an asymptotic curve
for sufficiently high concentrations.

As a measure of the asphericity of star polymers in
equilibrium and in dilute solution, we use the quantity [28,
40]

A =

〈
(Ḡ1 − Ḡ2)

2
+ (Ḡ1 − Ḡ3)

2
+ (Ḡ2 − Ḡ3)

2

(Ḡ1 + Ḡ2 + Ḡ3)2

〉
. (9)

Results for the various functionalities are presented in
figure 6. As expected [41–43], the asphericity decreases with
increasing functionality and shows a strong dependence on
f . We find a stronger decrease with f than the theoretically
predicted power law f−1 [41, 42]; at large functionalities,
our data decay approximately as A ∼ f−3/2. However, our
data are in good agreement with the Monte Carlo simulations

Figure 6. Asphericity A of star polymers in equilibrium and in
dilute solution calculated according to equation (9) (squares). The
bullets represent Monte Carlo simulation results of [43]. The
straight line indicates the power law A ∼ f−3/2.

of [43] for small functionalities. Note that these simulations
predict a very weak dependence of A on polymer length
only for the considered low-functionality stars polymers. The
discrepancy between our simulation data and theory could be
related to the relative short length N = 30 of the polymer
arms and the high monomer packing at large functionalities.
The length-independent regime might be accessible for longer
polymers only.

3.2. Flow alignment

Aside from being deformed, star polymers under shear are
also aligned with the flow field. The extent of alignment can
be characterized by the angle χG between the eigenvector
corresponding to the largest eigenvalue of the average radius
of gyration tensor and the flow direction. It is obtained as

tan(2χG) =
2〈Gxy〉

〈Gxx〉 − 〈Gyy〉
. (10)

In figure 7, alignment angles are plotted as a function of φf Wic
for various concentrations and functionalities. In the linear
response regime 〈Gxy〉 ∼ φf Wic and 〈Gxx〉−〈Gyy〉 ∼ (φf Wic)2,
which implies that at low Weissenberg numbers tan(2χG) ∼

Wi−1
c [44, 45]. This power-law dependence is approached

for φf Wic < 5. At higher φf Wic, star polymers assume an
approximately ellipsoidal shape, and the angle χG decreases
with increasing shear rate. Again, we obtain a universal curve
for different concentrations and functionalities over a certain
φf Wic range, where φfβ(c/c∗) absorbs any functionality and
concentration dependences. The alignment angle at high shear
rates follows the scaling law tan(2χG) ∼ (φf Wic)−δ with
the exponent δ ≈ 0.43. As for other properties discussed in
section 3.1, the alignment angle data split at high shear rates
due to the finite size of the polymers. For φf Wic > 50, star
polymers with a smaller number of arms are slightly more
aligned with the flow direction than those with a larger number
of arms. We would like to emphasize that for tan(2χG) only
the shear rate can be scaled to obtain a universal curve,

6
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Figure 7. Alignment angle of star polymers tan(2χG) as a function
of φf Wic for various concentrations and functionalities f = 10
(bullets), f = 20 (squares), f = 30 (diamonds), and f = 50
(triangles).

since tan(2χG) is dimensionless. The obtained universality
for φf Wic . 50 confirms that φf Wic is a suitable combination
of the functionality and concentration dependence of the
relaxation time.

3.3. Static structure factor

Structural changes of a star polymer under flow at different
length scales are reflected in its static structure factor

S(q) =
1
N

N∑
i=1

N∑
j=1

〈e−iq(ri−rj)〉. (11)

Figure 8(a) displays equilibrium structure factors along the
flow direction for various functionalities in dilute solution. At
small wavevectors qxl � 1, S(qx) is approximately constant.
It then decays very rapidly for qxRg0 > 1 according to the
power law q−4 for large functionalities, corresponding to the
behavior of a spherical particle. In the range 4l/Rg0 < qxl <
π , the internal structure of the ultra-soft polymer is reflected.
For low functionality, we find the approximate power-law
decay S(qx) ∼ q−1/ν with ν ≈ 0.63. At higher functionalities,
additional features appear and no clear power-law regime is
visible. The decrease of S(q) with increasing functionality at
qxl ≈ 1 indicates a stretching of the polymers due to increased
packing at larger functionalities. At qxl ≈ 2π , a peak appears
by scattering from nearest neighbor monomers.

Figure 8(b) presents the structure factors Sa of the
individual arms within a star. The curves for the various
functionalities show small differences at qxRg0 ≈ 1 caused
by the increase of the radius of gyration with increasing
functionality. In the range 6l/Rg0 < qxl < π , we find a
universal, self-similar behavior with a power-law regime
corresponding to the scaling behavior of an individual
polymer of similar length.

The deformation of a star polymer under shear flow is
also reflected in the structure factor. Since a star is anisotropic,
we determine the structure factors along the flow, gradient,

Figure 8. (a) Equilibrium structure factors S(qx) of star polymers
and of (b) individual arms Sa(qx) for the functionalities f = 10
(black), 20 (red), 30 (green), and 50 (blue). The straight lines
indicate the power law q−1/ν with ν = 0.63.

and vorticity direction separately. An example of structure
factors along the flow direction for various shear rates is
provided in figure 9. The increase of the radius of gyration
〈Gxx〉 leads to a shift of the curves to smaller qx values.
More importantly, the power-law exponent ν in S(qx) ∼

q−1/ν
x depends on shear rate. The inset of figure 9 shows

the exponents ν for various functionalities as a function
of the Weissenberg number. ν increases with increasing
Weissenberg number and seems to saturate at large Wic, which
indicates a stretching of the individual polymers. Since some
of the polymers are stretched and others are in a coiled
state, we expect the exponent to be always smaller than
unity. Evidently, there is only a very weak dependence on
functionality. As shown in figure 4, the polymers shrink along
the gradient direction. Here, we find a very minor change of
the power-law exponent ν toward smaller values. A similar
behavior is observed along the vorticity direction.

A comparable change in the scaling behavior of the
structure factor of linear polymers under shear flow has been
found in [25] by molecular dynamics simulations. In contrast
to our star polymers, however, a significantly modified scaling
behavior is obtained for linear polymers along the minor axis.
The exponent ν along this axis decreases significantly below
the equilibrium value.

7
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Figure 9. Structure factors of polymer arms under shear flow for
q-values along the flow direction for the Weissenberg numbers
Wic = 0 (black), Wic = 7.8 (green), Wic = 78 (blue), and Wic = 196
(red). The functionality is f = 10. The solid black line corresponds
to power law Sa ∼ q−1/ν

x with ν = 0.8. The inset shows the
shear-rate dependence of the exponent ν for the various
functionalities.

4. Rotational dynamics of star polymers in shear
flow

4.1. Angular rotation frequency and tank-treading

Under linear shear flow the vorticity is non-zero, which
implies a rotational motion of a star with a non-zero rotational
frequency. The dynamics of a star polymer is quite different
from that of a linear polymer. A linear polymer exhibits
tumbling motion [39, 45–48], whereas star polymers show a
tank-treading-like rotation for functionalities f & 5 [18, 19],
where individual arms are subject to a cyclic stretching and
collapse motion. The rotational dynamics can be characterized
by the rotational frequency ω of the star, which is obtained
from the angular momentum [19, 49, 50]

L =
N∑

i=1

M1ri ×1ṙi (12)

and the inertia tensor Θ, with its components

2γ γ ′ =

N∑
i=1

M(1r2
i δγ γ ′ −1ri,γ1ri,γ ′), (13)

via the relation L = 2ω. For a rigid body, this yields the
average frequency

ωz =

〈∑
γ

2−1
γ z Lγ

〉
(14)

for a rotation around the vorticity axis. Since a star polymer
is not a rigid body, we neglect terms containing fluctuations
in ωi of the individual monomers around the mean value ω. If
we neglect the off-diagonal elements of the inertia tensor (13)
and replace 2zz by its average, we find

〈Lz〉 ≈ 〈2zz〉ω
L
z = M(〈Gxx〉 + 〈Gyy〉)ω

L
z . (15)

Figure 10. Shear-rate dependence of angular frequencies |ωz| of
star polymers with f = 50 and the concentrations c/c∗ = 0.19 (full
triangles) and c/c∗ = 2.92 (open triangles). Results are compared
for the definitions (14) (black), (17) (red), and (18) (green).

Another approximation for the angular momentum is
obtained when the local velocity of a particle is replaced by
the flow field, i.e., 1ṙi ≈ v(ri). With v(ri) = (γ̇1yi, 0, 0)T

follows

〈LG
z 〉 = −γ̇ 〈Gyy〉, (16)

where the superscript indicates an approximation in terms of
the radius of gyration tensor component Gyy. Hence, we obtain
the frequencies

ωL
z =

〈Lz〉

M(〈Gxx〉 + 〈Gyy〉)
, (17)

ωG
z = −γ̇

〈Gyy〉

M(〈Gxx〉 + 〈Gyy〉)
. (18)

Figure 10 shows an example of rotational frequencies
obtained by the various definitions at low and high star-
polymer concentrations. The data obtained by equations (14)
and (17) are hardly distinguishable, whereas equation (18)
yields somewhat larger frequencies |ωG

z | at large shear rates.
Remarkably, the differences between the various definitions
are smaller at larger concentrations.

Figure 11(a) presents reduced rotational frequencies
|ωz|/γ̇ calculated according to equation (14) for systems in
dilute solution and various functionalities. For weak flow
strengths φf Wic � 1, the expected dependence |ωz| = γ̇ /2
is recovered. At higher shear rates, the reduced frequency
decreases with increasing Weissenberg number according
to the power law |ωz|/γ̇ ∼ (φf Wic)−1, which implies that
the angular frequency is independent of γ̇ . The figure also
demonstrates that the reduced frequency essentially follows
a universal curve. Figure 11(b) shows |ωz|/γ̇ for various
concentrations and the functionality f = 50. Interestingly, a
strong concentration dependence is obtained, with reduced
slopes for frequency curves at higher concentrations. Starting
from the power law Wi−1

c at low concentrations, the
rotational frequency curves approach a Wi−2/3

c dependence
for high concentrations. Such a dependence has also been

8
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Figure 11. Reduced rotational frequency |ωz|/γ̇ of star polymers
according to equation (14). (a) Dilute solutions of the functionalities
f = 10 (bullets), 20 (squares), 30 (diamonds), and 50 (triangles).
(b) Concentration dependence for star polymers with f = 50 for
c/c∗ = 0.19 (black), 0.49 (red), 0.68 (green), 0.98 (blue), 1.46
(purple), and 2.92 (orange).

found in [19] in flow simulations of individual stars
without hydrodynamic interactions. Hence, we attribute the
concentration dependence to the screening of hydrodynamic
interactions at concentrations c/c∗ > 1. A similar screening
of hydrodynamic interactions was found for semi-dilute
solutions of linear polymers in [35, 48]. The comparison
in figure 10 shows that the dynamical quantity ωz can be
equally well obtained by any of the proposed definitions
at high concentrations. Since equation (18) uses stationary
state properties only, this might be expected to be applicable
when correlations in the fluid are negligible, which is the
case at high concentrations where hydrodynamic interactions
are screened. At low concentrations, we expect dynamical
quantities to be governed by hydrodynamic interactions
beyond a simple rescaling of relaxation times, although the
effect may be small as for linear polymers in shear flow [48].

4.2. Comparison of star polymer and vesicle rotational
dynamics

The tank-treading dynamics of star polymers in shear flow has
a striking resemblance to the tank-treading behavior of lipid

Figure 12. Comparison of the reduced angular frequency |ωz|/γ̇
calculated according to equation (14) (full symbols) of star
polymers at low concentration with the predictions by the
Keller–Skalak model (open symbols) for a tank-treading ellipsoid in
shear flow. The ratio of inner-to-outer viscosity is assumed to be
λ = 4 for all cases.

vesicles [51]. To describe the tank-treading motion of a vesicle
in shear flow, Keller and Skalak [51] proposed a model (KS
model) for a viscous tank-treading ellipsoid. The details of the
model are presented in the appendix. The KS model predicts
the time dependence of the angle φ between a material point
on the ellipsoid and the x-axis to describe tank-treading, and of
the inclination angle θ between the main ellipsoidal axis and
the x-axis. To compare the predictions of the KS model for
tank-treading with our results on star polymers, we identify
the ellipsoidal axes ai (i = 1–3) to be the main axes of the star
radius of gyration tensor, i.e., ai =

√
〈Gi〉. The only unknown

parameter is the inner-to-outer fluid viscosity ratio λ in the
KS model, which slows down the rotational tank-treading
frequency as it increases for a fixed shear rate. It is plausible
to expect λ to be greater than unity, because polymer arms in
a star contribute to the star inner viscosity. We vary λ in the
range λ = 1–6 in order to fit the relative rotational frequency
of star polymers at low concentration and the functionality
f = 10, and achieve the best fit for λ = 4. The ratio λ

expresses the viscosity difference of the fluids inside and
outside of a vesicle. For a star polymer, the inside viscosity
is the effective viscosity of a polymer solution, with a strong
contribution from intramolecular interactions. Similarly, the
ratio ηG/η of the viscosity coefficient ηG of a polymer
globule in bad solvent and the solvent viscosity η has been
determined in [52] by Brownian dynamics simulations. ηG is
also determined by intramolecular interactions, but arises here
from volume-exclusion and effective attractive interactions
between the monomers. Thus, a direct comparison of the
viscosity ratios of these two systems is not possible.
Nevertheless, it is interesting to note that the simulations of
polymer globules yield ηG/η = 2.6, a value of the same order
as our λ value.

Figure 12 shows the comparison of the reduced angular
frequency of star polymers according to equation (14) at low
concentration with the KS model using λ = 4. The KS model

9
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predictions agree very well with the simulation data at small
and intermediate shear rates. However, at high shear rates a
deviation is clearly observed. It is not fully clear whether the
star-polymer dynamics at high shear rates becomes dissimilar
to that of vesicles or the KS approximation breaks down. The
KS theory assumes surface-incompressibility of the flow on
the ellipsoid, which is not the case for star polymers. Also, our
previous work [21]—where we measured monomer density
distribution around the star center for f = 10—shows that the
star-polymer shape at high shear rates resembles a rhombus
rather than an ellipsoid. This shape information is not taken
into account in the KS model. In addition, at high shear
rates the monomer density within a star is inhomogeneous
and the assumption of a constant λ ratio may be too crude.
Nevertheless, the KS model confirms the similarity of the
star and vesicle dynamics for small and intermediate shear
rates.

5. Conclusions

We have studied the conformational and dynamical properties
of star polymers under shear flow for various functionalities
and concentrations. With increasing functionality, star
polymers become more spherical and less deformable.
Therefore, high-functionality stars are less elongated and
less aligned with the flow direction at a given shear rate.
The main result of our simulations is that the dependence
of many static and dynamic properties of semi-dilute
star-polymer solutions on concentration and functionality can
be absorbed into an effective Weissenberg number, which can
be factorized into a Weissenberg number Wi = γ̇ τ of a single
polymer arm, a concentration-dependent factor β(c/c∗), and
a functionality-dependent factor φf .

Interestingly, the factor φf is found to be a decreasing
function of f . In contrast, the equilibrium relaxation time
τf of an individual star polymer in solution has been
predicted [9]—based on the Daoud–Cotton approach—to
display a power-law dependence f (2−3ν)/2, with (2− 3ν)/2 =
0.1 for ν = 0.6; this would imply an effective Weissenberg
number which slowly increases with f . There is an
obvious contradiction between these two results. A possible
explanation for the discrepancy is that our simulation results
are derived for moderate arm lengths and functionalities,
while the scaling arguments apply to very long arms and large
functionalities. It would certainly be interesting to investigate
star-polymer relaxation times in equilibrium in more detail to
clarify this issue.

The second intriguing result is that a comparison of the
star-polymer rotation dynamics with the dynamics of fluid
vesicles shows a very similar tank-treading behavior for small
and intermediate shear rates. This comparison can be used
to extract an effective internal viscosity of a star, which
is about a factor four larger than the solvent viscosity. It
will be interesting to see whether it is possible to predict
the viscosity of a dilute star-polymer solution based on this
effective internal viscosity.

Acknowledgments

We thank J K G Dhont, D Richter, M Ripoll, J Stellbrink
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Appendix. Keller–Skalak theory

The Keller–Skalak (KS) theory [51] describes tank-treading
motion of a vesicle membrane in shear flow. The membrane
is assumed to move along a fixed ellipsoidal path. The
tank-treading motion is defined by the equations

∂φ

∂t
= −

γ̇ cos(2θ)
z1(z2(λ− 1)+ 2)

,

∂θ

∂t
= −

γ̇

2
− z0

∂φ

∂t
+
γ̇

2
z0z1 cos(2θ),

(19)

where φ is the angle between a material point on the ellipsoid
and the x-axis to describe tank-treading, θ is the inclination
angle between the main ellipsoidal axis and the x-axis to
define orientation of the ellipsoid, t is time, and λ is the
inner-to-outer fluid viscosity ratio. The parameters zi (i =
0–2) are determined by the geometrical characteristics of the
ellipsoid and are given by

z0 =
2a1a2

a2
1 + a2

2
, z1 =

a2
1 − a2

2
2a1a2

,

z2 = g
(
α2

1 + α
2
2

)
, αi =

ai

(a1a2a3)1/3
,

g =
∫
∞

0
(α2

1 + s)−3/2(α2
2 + s)−3/2(α2

3 + s)−1/2 ds,

(20)

where the ai (i = 1–3) are the semiaxes of the ellipsoid. This
model predicts tank-treading motion of a viscous ellipsoid
(vesicle) with the inclination angle

cos(2θ) =
z1

z0

(
z2

1 +
2

z2(λ− 1)+ 2

)−1

(21)

and the angular frequency

ω/γ̇ =
cos(2θ)

z1(z2(λ− 1)+ 2)
. (22)

The dependence of ω/γ̇ on shear rate, which is displayed in
figure 12, arises from the implicit dependence of the zi on γ̇ .
Note that at low λ values the ellipsoid shows tank-treading,
while at high λ the ellipsoid may exhibit tumbling dynamics.
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We study semidilute star-polymer solutions under shear flow by hybrid mesoscale simulations.

Hydrodynamic interactions are modeled by two particle-based simulation techniques, multiparticle

collision dynamics (MPC) and dissipative particle dynamics (DPD). Star polymers are considered as

a paradigmatic model for ultra-soft colloids with variable softness. The influence of concentration and

shear rate on their structural and rheological properties is investigated. Under flow, a star polymer

elongates and displays a well-defined alignment angle with respect to the flow direction. Moreover, the

structural and rheological properties exhibit a universal behavior as a function of a concentration-

dependent Weissenberg number for various concentrations at a given arm length. The rheological

properties are characterized by the shear viscosity and the normal-stress coefficients. In dilute solution,

the zero-shear viscosity follows the Einstein relation with an effective radius given by the hydrodynamic

radius of a star polymer. At high shear rates, the solutions exhibit shear-thinning behavior, where the

viscosity decreases faster with increasing shear rate at higher concentrations. We demonstrate that the

results obtained fromMPC and DPD agree in all scaling properties, with minor quantitative deviations

in the numerical values.

1 Introduction

The flow properties of solutions of macromolecules and colloids

are of enormous importance for the behavior of many complex

fluids, ranging from motor oils and drilling fluids to blood and

the cytosol of living cells.1 In many colloidal dispersions, the

suspended particles are solid, but a much larger class of complex

fluids contains deformable particles such as flexible synthetic

polymers, semiflexible biopolymers, droplets, vesicles, capsules,

and cells.

Linear and star polymers are particularly interesting model

systems, because their size and architecture can be tailored in

many different ways.2 Studies of such systems are essential to

obtain a detailed understanding of the rheological properties of

complex fluids containing soft particles, which is required to

design and control the flow behavior of fluids in technological or

medical applications.

Star polymers consist of f identical linear polymer chains,

which are linked at one of their ends to a common center. Each

polymer arm contains Nm segments. By changing the arm length

L ¼ Nml, where l is the bond length, and the functionality f, star-

polymer properties can be varied between linear polymers

(for f ¼ 2) to nearly hard-sphere colloids (large functionality,

short arms) and ultra-soft colloids (intermediate functionality,

long arms).2–5

The equilibrium properties of star polymers have been studied

in considerable detail.3,5–8 The architecture of star polymers

implies that the monomer density is high in the core region and

decreases toward the corona. A consequence of this architecture

and of the inhomogeneous density distribution is that the inter-

action is ultra-soft for sufficiently long chains, with a logarithmic

dependence on the distance between two stars.3–5 The ultra-soft

interaction gives rise to an unusual phase diagram, for example

with body-centered cubic (bcc) phases, which are not stable in

systems of hard spheres,9–12 reentrant melting,5,13 and fcc-to-bcc

transitions.5,10,14

Much less is known about the dynamical and rheological

behavior of star-polymer solutions. Experiments show that self-

diffusion decreases with increasing polymer concentration c

according to a power law.2,15 The diffusion coefficient of a star

polymer in solution is larger than the diffusion coefficient of

a hard-sphere colloid at equivalent volume fractions (defined by

the hydrodynamic radius Rh in the case of star polymers). This is

a direct consequence of the deformability and ultra-soft inter-

actions of star polymers, which allow them to squeeze through

gaps between other particles more easily. The same mechanism is

responsible for the slower increase of the zero-shear viscosity

with concentration for soft compared to hard particles.2,15

In particular, it is observed that the viscosity of star-polymer

solutions is finite even above the overlap concentration.15,16 In
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a related system of single DNA-grafted colloids, a strong

dependence of the effective hydrodynamic radius on the

conformation of the grafted polymer chains has been found.17

Theory and simulations have focused on the shape, orienta-

tion, and rotation of individual stars in shear flow,18,19 on the

dynamical frictional interactions between two stars20 (both by an

explicit bead-spring model of polymer chains), and on the

rheology of concentrated solutions21,22 (by a coarse-grained

description with transient forces23 between star centers).

The aim of the present study is to bridge the gap between the

configurational and dynamical properties of individual star

polymers, their hydrodynamic and steric interactions and the

macroscopic flow behavior of semidilute solutions. So far, such

systems have not been studied by simulations. Our investigations

will help to establish a relation between the molecular architec-

ture and microscopic deformation of individual soft colloids, and

the macroscopic rheological behavior. Computer simulations of

linear polymers in semidilute solutions show large deformations

and a strong alignment of polymers along the flow direction in

simple shear flow.24,25 More importantly, in the stationary state,

the conformational and rheological properties for various

concentrations are universal functions of the Weissenberg

number Wic ¼ _gs(c), where _g is the shear rate and s(c) the

concentration-dependent polymer end-to-end vector relaxation

time at equilibrium. Hence, with decreasing concentration,

hydrodynamic interactions affect the conformational and rheo-

logical properties only by decreasing relaxation time s(c).
Experiments on DNA in shear flow26 and simulations of polymer

brushes27 lead to a similar conclusion. We investigate here

whether ultra-soft colloids in solution display a similar universal

behavior in shear flow.

We use a standard bead–spring model to construct a polymer

star. In order to account for hydrodynamic interactions, we

employ two particle-based mesoscale simulation techniques,

multiparticle collision dynamics (MPC)28–30 and dissipative

particle dynamics (DPD),31,32 which are introduced in Sec. 2.

This serves two purposes. On the one hand, we want to elucidate

to what extend the two methods provide quantitatively equiva-

lent results, and thereby test the suitability of these methods for

predicting the non-equilibrium behavior of complex fluids; on

the other hand, we want to establish method-independently the

flow properties of ultra-soft colloids.

We will present and discuss in Sec. 3 several structural prop-

erties of star polymers in solutions under shear flow—such as

the radius-of-gyration tensor and the alignment angle—as well

as the corresponding bulk rheological properties of these solu-

tions—such as shear-dependent viscosity and normal-stress

coefficients. Finally, the results obtained by the two simulation

techniques are compared with each other and with available

experimental data in Sec. 4.

2 Methods and models

To model star-polymer solutions we employ two different

mesoscopic simulation techniques: (i) multiparticle collision

dynamics (MPC), also called stochastic rotation dynamics

(SRD),29,30 and (ii) dissipative particle dynamics (DPD).31,32 Both

methods implement proper hydrodynamic interactions and have

been used in simulations of various soft matter and biological

systems.30,33

2.1 Star-polymer model

We consider Nsp star polymers, where each star consists of f

flexible linear polymer arms with one of their ends attached to

a common center, which is illustrated in Fig. 1. Consecutive

monomers of a polymer chain (arm) are connected by harmonic

springs with the potentials

Vb ¼ ks

2
ðRi;iþ1 � lÞ2; (1)

where Ri, i + 1 ¼ Ri+1 � Ri is the bond vector, Ri, i + 1 ¼ |Ri, i + 1|,

and l is the equilibrium bond length. The spring constant ks is

chosen such that even under strong shear stress the change in the

equilibrium bond length remains less than a few percent.

Excluded volume interactions between star monomers are

implemented through the repulsive (truncated and shifted)

Lennard-Jones (LJ) potential34

VLJðrÞ ¼ 43

"�
s

r

�12

�
�
s

r

�6

þ 1

4

#
Qð21=6 � rÞ; (2)

where Q(r) is the Heaviside step function (Q(r) ¼ 0 for r < 0 and

Q(r)¼ 1 for r$ 0). Since many polymer arms are attached to the

center particle, the equilibrium bond length lc of each center-arm

connection and the LJ diameter sc of the central bead are

taken to be twice as large as those for a normal monomer. We

employ l as the unit of length, 3 ¼ kBT as the unit of energy, and

ms, the solvent particle mass, as the unit of mass. The unit of

time is defined as s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
msl2=ðkBTÞ

p
. The parameters for star

polymers for both MPC and DPD are listed in Table 1. The

velocity Verlet algorithm is used to integrate Newtons’ equations

of motion of the star polymers with time step hm ¼ 5 � 10�3s in
MPC and hm ¼ 8 � 10�3s in DPD.

2.2 Multiparticle collision dynamics

In the MPC algorithm, the solvent is modeled by Ns point

particles with positions ri and velocities vi (i ¼ 1, ., Ns). The

dynamics of these particles proceeds in discrete time increments

Fig. 1 A star polymer represented by a bead–spring model with f ¼ 10

linear-polymer arms, connected to a common central (black sphere). The

length of each arm is Nm ¼ 10. The arms are colored for better visual

differentiation.

4110 | Soft Matter, 2012, 8, 4109–4120 This journal is ª The Royal Society of Chemistry 2012
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h, denoted as collision time, by alternating streaming and colli-

sion steps.29,30 In the streaming step, the solvent particles of mass

ms move ballistically with their respective velocities, and their

positions are updated as

ri(t + h) ¼ ri(t) + hvi(t). (3)

After each streaming step, solvent particles are sorted into the

cells of a simple cubic lattice with lattice constant a. Their relative

velocities, with respect to the center-of-mass velocity of the cell,

are rotated around a randomly oriented axis by an angle a, so that

vi(t + h) ¼ vi(t) + (R(a) � I)(vi(t) � vcm(t)), (4)

where R is the rotation matrix, I is the unit matrix,

and vcm ¼ 1

Nc

XNc

j¼1
vj is the center-of-mass velocity of the cell

with Nc particles. The collision step is a stochastic process, where

mass, energy, and momentum are conserved, which ensures that

hydrodynamic behavior emerges on larger length scales.

The star polymers are coupled to the solvent during the collision

step, where their monomers are included in the collisions together

with the solvent particles.35,36 Thereby, momentum is redis-

tributed between solvent and monomers in the same cell.

Transport properties of the solvent depend on the collision

time h, the rotation angle a, and the average number density per

cell. Tuning these variables allows us to attain solvents with

a high Schmidt number, where momentum transport dominates

over mass transport. Some of the simulation parameters for

MPC system are summarized in Table 2. These parameters

correspond to the solvent viscosity hs ¼ 8:7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms3=l4

p
and the

Schmidt number Sc z 17.

Lees–Edwards boundary conditions are applied for the solvent

particles and the monomers in order to impose shear flow.37 This

yields a linear fluid velocity profile vx ¼ _gy in the flow direction

(x-axis) as a function of their position along the gradient direc-

tion (y-axis), where _g is the shear rate. A local cell-wise Max-

wellian thermostat is applied to maintain the desired temperature

of the fluid.38

2.3 Dissipative particle dynamics

Similar to MPC, a DPD system consists of a collection of Ns

point particles. DPD particles interact through simple pairwise-

additive forces corresponding to a conservative force FC
ij ,

a dissipative force FD
ij , and a random force FR

ij . The total force

exerted on a particle i by particle j consists of the three terms

given by

FC
ij ¼ b

�
1� rij

rC

�
r̂ij ;

FD
ij ¼ �guD

�
rij
��
vij$r̂ij

�
r̂ij;

FR
ij ¼ sranu

R
�
rij
� xijffiffiffi

h
p r̂ij;

(5)

where rij¼ ri� rj, r̂ij¼ rij/rij, and vij¼ vi� vj. The coefficients b, g,

and sran determine the strength of conservative, dissipative, and

random forces, respectively. uD and uR are weight functions and

xij is a symmetric normally-distributed random variable with zero

mean and unit variance. All forces act within a sphere of cutoff

radius rc. The random and dissipative forces must satisfy the

fluctuation-dissipation theorem32 in order for the DPD system to

maintain the equilibrium temperature T, which is enforced

through the two conditions uD(rij) ¼ [uR(rij)]
2 and s2ran ¼ 2gkBT.

The usual choice for the weight function is uR(rij) ¼ (1 � rij/rc)
p,

where p ¼ 1 for the original DPD method. However, other

choices (e.g., p ¼ 0.25) for these envelopes have been used39,40 in

order to increase the viscosity of the DPD fluid and bring the

Schmidt number in DPD to values representative of real liquids.

The time evolution of velocities and positions of particles is

determined by Newton’s second law of motion, which is inte-

grated using the velocity–Verlet algorithm.

The simulation parameters for the DPD system are listed

in Table 3. With these parameters, we obtain a Schmidt number

Sc ¼ 1011. The time step is set to h ¼ hm ¼ 8 � 10�3s.
Star polymers are constructed similarly to that described in

Sec. 2.1 and are coupled to the fluid through DPD forces with

bpsl/3 ¼ 0, gpss/ms ¼ 7.5, and pps ¼ 0.25, where the subscript

ps denotes polymer–solvent interactions. Lees–Edwards

boundary conditions are employed to model steady shear flow, as

described above in Sec. 2.2.

3 Results and discussion

A list of parameters of star-polymer solutions for both mesoscale

hydrodynamic simulation techniques is given inTable 4; it provides

information about the size of simulation box Lx � Ly � Lz,

the range of number of star polymers Nsp, and the ranges of

simulated shear rates _g and concentrations c. All results

are obtained for functionality f¼ 10, with arm lengths in the range

Nm ¼ 10–30. Specifically, MPC simulations are performed for

Nm ¼ 10 and 30, DPD simulations for Nm ¼ 10 and 20. The

simulations forNm¼ 10areperformedwithbothMPCandDPDin

order tocompare the results and to showthat thepredictions for the

properties of star-polymer solutions are independent of the

Table 1 Star-polymer parameters in MPC and DPD simulations, where
subscripts ‘m’ and ‘c’ denote arm monomers and central bead,
respectively

ksl
2/kBT lc/l sm/l sc/l Mm/ms Mc/ms

MPC 1000 2.0 0.8 1.6 10 10
DPD 125 2.0 0.8 1.6 2 10

Table 2 MPC fluid parameters in the simulations. hNci is the average
number of solvent particles per cell

a/l a <Nc> h/s hs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mskBT=l4

p
1.0 130� 10.0 0.1 8.7

Table 3 DPD fluid parameters in simulations. The subscript ss denotes
the corresponding parameters for solvent–solvent interactions. n is the
solvent number density

bssl/3 gsss/ms pss rc/l nl3 hs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mskBT=l4

p
20.0 5.0 0.15 3.0 0.375 8.21
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employed method. In the other set of simulations withNm ¼ 20 in

DPD and Nm ¼ 30 in MPC, we intend to obtain the solution

properties for a wider range of arm lengths Nm. We measure

concentration relative to the overlap concentration

c* ¼
�
4

3
pR3

h

��1

(6)

where Rh is the hydrodynamic radius.

The applied shear flow is characterized by the dimensionless

Weissenberg number Wi ¼ _gsz, where sz ¼ hsN
2
ml

3=kBT is the

Zimm relaxation time of a polymer arm in dilute solution. At low

shear rates or small Wi � 1, star polymers are close to their

equilibrium structure. However, at large Wi [ 1, they are

strongly deformed and aligned with the flow as shown by the

snapshots in Fig. 2. The relaxation time of a star polymer

increases with concentration, which suggests to use the concen-

tration-dependent Weissenberg numberWic ¼ b (c/c*)Wi to take

this change into account. As has been shown recently for semi-

dilute solutions of linear polymers, the concentration dependence

of structural and rheological properties are captured very well in

this way and universal curves are obtained.24,25

The lengths of typical simulation runs were at least several tens

of times the equilibrium polymer relaxation time s, and up to

several hundred times s for low shear rates.

3.1 Radius-of-gyration tensor

Two characteristic conformations of star polymers in solution at

intermediate and high shear rates are shown in Fig. 2. To

quantitatively characterize the effect of shear flow on the struc-

tural properties of star polymers we calculate the radius of

gyration tensor of a star polymer according to

Gab ¼ 1

N

*XN
i¼1

Drai Dr
b
j

+
; (7)

whereN¼ fNm + 1 is the total number of monomers in a star, Dri
is the position of the ith monomer relative to the star center of

mass, and a, b ˛ {x, y, z}. In equilibrium, all diagonal compo-

nents of Gab are equal, i.e., Gaa ¼ G00
aa ¼ R2

g0=3, where Rg0 is the

radius of gyration. In the dilute regime, the radius of gyration

follows the scaling relation R2
g0�l20N

2v
m f

1�v in terms of arm length

and functionality,3,6–8 with the exponent n z 0.63 for our

system.

Under shear flow, polymers along the flow direction become

elongated; their relative deformation in this direction is calcu-

lated as

dGxx

�
c=c*

� ¼ Gxxðc=c*Þ � G0
xxðc=c*Þ

G0
xxðc=c*Þ

; (8)

Table 4 List of simulation parameters. Lx, Ly, and Lz denote the dimensions of the simulation box and _g is the shear rate. Rg0 and Rh are the equi-
librium radius of gyration and hydrodynamic radius in dilute solution, respectively, and sz is the Zimm relaxation time

Method Nm Nsp Lx/l � Ly/l � Lz/l Rg0/l Rh/l sz/s c/c* _gs

MPC 10 20–200 30 � 30 � 30 3.54 3.74 870 0.17–1.65 10�5–5 � 10�2

MPC 30 100–750 100 � 100 � 100 7.14 7.10 7830 0.15–1.13 10�5–2.5 � 10�2

DPD 10 23–299 50 � 34 � 36.2 4.06 4.10 821 0.1–1.3 5 � 10�5–1.6 � 10�2

DPD 20 30–390 76 � 52 � 51.8 5.80 5.46 3285 0.1–1.3 5 � 10�5–1.6 � 10�2

Fig. 2 Simulation snapshots of star-polymer solutions with function-

ality f ¼ 10, arm length Nm ¼ 30, and concentration c/c* ¼ 0.75 (where c*

is the overlap concentration, see Sec. 3). (a) Intermediate shear rate with

concentration-dependent Weissenberg number Wic ¼ 15, and (b) high

shear rate with Wic ¼ 153 (for definition of Wic see Sec. 3). Only star

polymers with their centers in a slice of thickness of twice the radius of

gyration Rg0 parallel to the flow-gradient plane are shown. The multiple

colors serve to make different star polymers easily distinguishable. Cor-

responding movies are shown in the ESI.†
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where G0
xx is the radius of gyration at equilibrium for a given

concentration. A comparison of simulation data of dGxx for

various concentrations and arm lengths at the same Weissenberg

number Wi shows that stars at higher concentrations exhibit

a stronger stretching than those at lower c/c*. This is due to

differences in the relaxation times, which increase with increasing

concentration.24 We can estimate the concentration dependence

of the relaxation time by scaling the Weissenberg number by

a factor b (c/c*), in order to shift dGxx for high concentrations to

the lowest concentration curve. A universal curve is

then obtained for the relative deformation dGxx as function of

Wic ¼ b (c/c*) Wi for the various polymer lengths and both

simulation methods, as shown in Fig. 3. At large shear rates, the

extension of star polymers saturates at a maximum value, which

depends on the length of the polymer arms. At low Wic < 1,

a quadratic dependence of the relative deformation (solid black

line) as a function of shear rate is observed, which has also been

seen in previous MPC simulations of single star polymers18 and

of semidilute solutions of linear polymers,24 as well as in

experiments.41

The scale factors b (c/c*) are displayed in Fig. 4 as a function of

concentration. The values of b (c/c*) from the MPC simulations

for Nm ¼ 10 and 30 and DPD simulations for Nm ¼ 10 and 20

are nearly independent of arm length. In Fig. 3, the scaling of

dGxx with Wic and the functional dependence are in very good

agreement for both methods; there is a small difference in the

absolute values, which will be discussed in more detail in

Sec. 4. Since the scale factor is proportional to the ratio of star

relaxation times for different concentrations, the characteristic

relaxation time on the star concentration appears to be nearly

independent of the arm length.

Along the shear-gradient and vorticity directions, star poly-

mers shrink at high Wic. Fig. 5 displays the scaled curves for the

gyration tensor Gyy=G
00
yy as a function of Wic, where G00

yy corre-

sponds to the y component of the radius of gyration in equilib-

rium and in the dilute limit. The differences in the plateau values

of Gyy=G
00
yy at low Wic are associated with the change in star-

polymer size at various concentrations indicating that the stars

become more compact due to their crowding. Compression in the

vorticity direction is quite small in comparison with the gradient

direction, consistent with previous results for single star

polymers.18

3.2 Star-polymer alignment

Flow-induced alignment of star polymers can be characterized by

the angle cG, which is the angle between the eigenvector of the

gyration tensor with the largest eigenvalue and the flow direction.

It can be computed from the components of the gyration

tensor as

tanð2cGÞ ¼
2Gxy

Gxx � Gyy

: (9)

Fig. 6 shows the alignment angle of star polymers as function

of Wic for various concentrations and both simulation methods.

Fig. 3 Relative deformation dGxx of star polymers along the flow

direction as function of the concentration-dependent Weissenberg

numberWic. (a) MPC simulation results, with arm lengthsNm¼ 10 (filled

symbols) and Nm ¼ 30 (open symbols), and various concentrations c/c*,

as indicated. (b) DPD simulation results for various star-polymer

concentrations, as indicated, and Nm ¼ 10 (filled symbols) and Nm ¼ 20

(open symbols). The black solid lines indicate a quadratic dependence of

the relative deformation onWic at low shear rates; these lines are identical

in (a) and (b).

Fig. 4 Concentration-dependent scale factor for the relaxation time

(s (c)¼ b (c)sz) obtained from the scaling of the radius-of-gyration tensor

along the shear direction. MPC and DPD results are shown for various

arm lengths Nm, as indicated.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 4109–4120 | 4113

Pu
bl

is
he

d 
on

 2
6 

Ja
nu

ar
y 

20
12

. D
ow

nl
oa

de
d 

by
 F

or
sc

hu
ng

sz
en

tr
um

 J
ul

ic
h 

G
m

bh
 o

n 
15

/0
4/

20
14

 1
3:

12
:1

5.
 

View Article Online

198 Soft matter, 8:4109-4120, 2012



At low shear rates the alignment angle cG is close to the

equilibrium value p/4. For 0 <Wic < 1, the data in Fig. 6(a) obey

the expected scaling behavior42,43 tan(2cG) � Wic
�1, which

follows from the fact thatGxy�Wic andGxx�Gyy�Wic
2 in that

regime. At high Wic, star polymers deform into an ellipsoidal

shape, and the angle cG decreases due to alignment of the star

along the flow direction. Again, a universal curve is obtained for

different star-polymer concentrations and both MPC and DPD

methods as a function of Wic. At high Wic, the alignment angle

follows the scaling law

tan(2cG) � (Wic)
�d (10)

with the exponent of d z 0.43. The master curve obtained for

different arm lengths is almost independent of Nm for Wic < 20.

At higher Wic, effects of finite arm length may play a role, as in

systems of linear polymers.24 Stars with longer arms appear to be

more aligned with the flow direction than those with shorter arms

at Wic > 20. This is due to the fact that the crossover from the

behavior tan(2cG) � Wic
�1 to the asymptotic behavior tan(2cG)

� Wic
�1/3, predicted by theory for linear polymers,43 appears at

smaller Wic for longer polymers.

The shear-induced structural deformation and alignment of

star polymers can be visualized in terms of their monomer

density distribution in the flow-gradient plane. In Fig. 7, such

distributions of individual stars are presented forWic¼ 0.78, 7.8,

and 78. At very low shear rates, the stars are close to their

equilibrium shape and the density distribution is spherically

symmetric. An increase of the shear rate leads to the alignment of

star polymers along the flow direction. For Wic[1, star arms

are highly stretched along the flow and compressed in the

gradient direction. Particularly at high shear rates, the density

distribution is not of elliptical but rather of rhombic shape, with

nearly flat parts along the flow direction.

3.3 Rheology

To characterize the rheological properties of the star-polymer

solutions, we determine various components of the stress tensor,

Fig. 5 Star-polymer deformation along the gradient direction, Gyy=G
00
yy ,

as function ofWic. (a) MPC simulation results, with arm lengthsNm ¼ 10

(filled symbols) and Nm ¼ 30 (open symbols), and various concentrations

c/c*, as indicated. (b) DPD simulation results for various star-polymer

concentrations, as indicated, and Nm ¼ 10 (filled symbols) and Nm ¼ 20

(open symbols).

Fig. 6 Orientation of star polymers tan(2cG) as function of Wic. (a)

MPC simulation results, with arm lengths Nm ¼ 10 (filled symbols) and

Nm ¼ 30 (open symbols), and various concentrations c/c*, as indicated.

(b) DPD simulation results for various star-polymer concentrations, as

indicated, andNm¼ 10 (filled symbols) andNm ¼ 20 (open symbols). The

dashed black lines indicate a scaling behavior tan(2cG) � Wic
�1 and the

solid black lines correspond to tan(2cG) � Wic
�0.43. Note that lines in (a)

and (b) are identical.
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in particular sxy, sxx, syy, and szz, using the Irving–Kirkwood

formula for the virial.44,45 We consider only the star-polymer

contributions to the virial, which includes their bond and

excluded-volume contributions. The shear viscosity as a function

of shear rate follows from hð _gÞ ¼ sxyð _gÞ= _g. In addition, we

compute the corresponding first and second normal-stress coef-

ficients J1 and J2 defined as

J1

�
_g
� ¼ sxxð _gÞ � syyð _gÞ

_g2
; J2

�
_g
� ¼ syyð _gÞ � szzð _gÞ

_g2
: (11)

For many polymeric fluids, the viscosity function and normal-

stress coefficients display zero-shear rate plateaus at low shear

rates, which is often referred to as low-shear-rate Newtonian

regime.

Fig. 8 shows shear stresses sxy normalized by s0xy for different

arm lengths and concentrations as a function of Wic. s
0
xy follows

from the relation sxy ¼ s0xy Wic in the limit of small shear rates;

its dependence on concentration is presented in Fig. 9.

Evidently, the shear stress is a linear function of shear rate for

Wic < 1 independent of concentration. At larger Weissenberg

numbers, a crossover can be observed to a weaker dependence on

Wic. In that regime, we observe a non-universal concentration

dependence; sxy=s
0
xy is larger at smaller concentrations, but the

data seem to converge toward a common limiting behavior with

increasing concentration. Both, MPC and DPD simulations

exhibit the same behavior.

The dimensionless stress scale factors s0xyR
3
h=ðkBTÞ in Fig. 9

are virtually independent of the star-polymer arm length. This

demonstrates that the characteristic relaxation time of a star

polymer exhibits a similar length dependence as R3
h. A slight

deviation is found between the stress scale factors for MPC and

DPD simulations. We attribute this deviation to differences in

the way a star polymer is coupled to the solvent in the two

approaches.

The viscosities of the star-polymer solutions are displayed in

Fig. 10 for various arm lengths and concentrations. The curves

are scaled by the corresponding zero-shear viscosity h0 in order

to verify and find a scaling behavior. The values of h0 for the

systems withNm ¼ 10 can directly be extracted from simulations.

However, for the systems of longer chains, the zero-shear plateau

appears only at extremely low shear rates, which is difficult to

Fig. 7 Monomer density distributions of individual star polymers in the flow-gradient plane for variousWeissenberg numbers, (a)Wic¼ 0.78, (b)Wic¼
7.8, and (c)Wic ¼ 78.0. The arm length is Nm ¼ 30 and the polymer concentration is c/c* ¼ 0.15. The density distributions are indistinguishable between

the two simulation approaches. The strip-like density modulations in (c) reflect the monomer-density modulations of the strongly stretched and aligned

polymers.

Fig. 8 Normalized shear stress sxy=s
0
xy of star-polymer solutions with

respect to Wic, where sxy ¼ s0xyWic as _g/0, see Fig. 9. (a) MPC simu-

lation results, with arm lengths Nm ¼ 10 (filled symbols) and Nm ¼ 30

(open symbols), and various concentrations c/c*, as indicated. (b) DPD

simulation results for various star-polymer concentrations, as indicated,

and Nm ¼ 10 (filled symbols) and Nm ¼ 20 (open symbols). Only polymer

contributions to the virial are included.
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access in simulations, since thermal fluctuations overwhelm

average flow properties and reliable statistics are difficult to

obtain. An additional simulation complexity for star systems

with long arms is related to the characteristic relaxation time of

such stars, which becomes very long in comparison to that of the

stars with relatively short arms and leads to demanding simula-

tion times. Therefore, the various viscosity curves for Nm ¼ 20

and 30 in Fig. 10 were scaled to match the lowest available

concentration results at low shear rates, which may not neces-

sarily be within the zero-shear plateau, but are likely within the

transition region to the power-law regime.

At Wic > 1, the viscosities exhibit a power-law decay with

increasing shear rate (Fig. 10). An interesting feature is that the

power-law exponent appears to dependent on the star-polymer

concentration, a dependence already visible for the shear stress in

Fig. 8. At low concentrations, the exponent is equal to approx-

imately �0.3, while at high star concentrations c=c*x1:3 it is

about �0.4. Such a dependence has not been predicted by any

theory and appears to be independent of arm length, but is

consistently obtained with both simulation techniques. The

concentration dependence results in a poor scaling of the

viscosity curves, suggesting that a common master curve for the

shear viscosity behavior may not exist. This is in contrast to

simulations results for linear polymers, where the viscosities

hardly exhibit a concentration dependence when data are plotted

as a function of Wic.
24 It is not evident what causes the differ-

ences in the behavior of linear and star polymers, keeping in

mind that the stress tensor is in essence determined by the virial

term of the polymer-bond contributions. We would like to point

out, however that the star-polymer dynamics under flow is

distinctly different from that of a linear polymer—a linear

polymer undergoes tumbling motion,25 whereas star polymers

show a tank-treading-like rotation18 for functionalities f > 5.

Fig. 11 presents the zero-shear viscosity values for various arm

lengths with respect to star concentration extracted from the

scaling of the polymer contribution hp to the viscosity. For the

star solutions with Nm ¼ 10, in DPD simulations we have also

used an alternative method, called reverse Poiseuille flow (RPF),

in order to estimate the zero-shear viscosity.46 The RPF is

generated from two Poiseuille flows driven by uniform body

forces in opposite directions along two halves of a periodic

computational domain. The zero-shear viscosities computed

with RPF are in excellent agreement with those values obtained

by proper scaling of the viscosity curves as done in Fig. 10.

Evidently, the star-polymer concentrations exceed the linear

regime, where h0/hs ¼ 2.5f applies as predicted by Einstein47 for

colloids of volume fraction f—in our case f ¼ c/c*. The MPC

data follow the dependence h0/hs ¼ 2.5f + 6.2f2 proposed for

Brownian solutions.48 The DPD simulations yield somewhat

larger viscosity ratios h0/hs, but the dependence on c/c* is very

similar. In addition, the dependence ð1� f=fmÞ�2:5fm is plotted,

which is valid for a colloidal solution.49

It is clear that there is only a weak dependence of the zero-

shear viscosity on the arm length Nm. This is again an indication

that certain properties of star-polymer solutions may be absor-

bed in the star hydrodynamic radius Rh, which determines the

Fig. 9 Scaling factors s0xy (normalized by kBT=R3
h) for the shear stress of

star-polymer solutions at different concentrations. s0xy values are

computed as sxy/Wic at low shear rates ( _g/0).

Fig. 10 Shear-rate-dependent viscosity of simulated star-polymer solu-

tions for various arm lengths and concentrations as a function ofWic. (a)

MPC simulation results, with arm lengths Nm ¼ 10 (filled symbols) and

Nm ¼ 30 (open symbols), and various concentrations c/c*, as indicated.

(b) DPD simulation results for various star-polymer concentrations, as

indicated, and Nm ¼ 10 (filled symbols) and Nm ¼ 20 (open symbols).

Only polymer contributions to the viscosity are shown. The viscosity

curves are scaled with the corresponding values of the zero-shear viscosity

h0 for different concentrations. The solid lines indicate the power-law

dependence hp � Wic
�0.36; they are identical in (a) and (b).
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solution concentration. In contrast to these results are experi-

mental measurements of h0 for star solutions with different

functionalities,15 which show a strong dependence of h0 on f such

that the star solution viscosity approaches the viscosity curve for

a colloidal solution at high f. This is likely a consequence of the

increasing monomer concentration around the star center, which

is altered substantially for varying f. Thus, star functionality

would be directly associated with star softness, while Nm effec-

tively changes the size of a star polymer.

We have introduced three scale factors, b, s0xy, and h0, which

are not independent. They are rather related and the ratio

h0=ðs0xybÞ is approximately constant.

Fig. 12 shows the normalized first normal-stress coefficientJ1.

The curves ofJ1 for various concentrations are scaled by factors

c0
1, which are displayed in Fig. 14. As expected, we find a plateau

at low Wic < 1. At high Wic, the shear-dependent J1 exhibit

a power-law behavior with an exponent of approximately �1,

independent of the arm length and the employed simulation

method. Note that the power-law exponent becomes slightly

larger for high c/c* values in comparison with the solutions at low

star concentrations; however, the differences in the exponents

seem to be less pronounced than those for the viscosity curves in

Fig. 10. We expect that in the asymptotic limit of large c/c* the

exponent approaches �4/3, as predicted by theory and observed

for polymers.24,43,50–54

The corresponding normalized second normal-stress coeffi-

cientsJ2 are presented in Fig. 13 as a function ofWic. The values

of J2 are noticeably noisier than the values of J1 and it is not

fully clear if the zero-shear plateau can be reliably estimated from

the simulation data. The power-law region at high Wic corre-

sponds to the exponent of about �1.4 for all simulated Nm, close

to the theoretically expected value for c1. Finally, the simulated

normal-stress coefficients agree very well for both, the MPC and

DPD method.

The scale factors c0
1 and c0

2 normalized by h2sR
3
h=ðkBTÞ are

shown in Fig. 14. These factors were obtained by scaling

the normal-stress coefficients for various concentrations to the

lowest available concentration for a given Nm. Under the

assumption of a universal scaling of J1 and J2 for various

concentrations, the factors c0
1 and c0

2 are proportional to the

corresponding zero-shear-rate plateau values of the normal-

stress coefficients. The factors c0
1 and c0

2 are rather similar for

a given arm length, for both, the MPC and DPD calculations.

Moreover, the MPC and DPD values agree very well for

Nm ¼ 10. The decrease of the values with increasing chain

length is due to scaling by the hydrodynamic radius R3
h�N2

m.

The factors c0
1, c0

2 themselves exhibit a weak arm-length

dependence only. The magnitude of the scale factors for both,

the first and second normal-stress coefficients seem to be

nearly identical, which points to a similar dependence of

the zero-shear-rate plateau values on concentration for both

J1 and J2.

Fig. 11 Zero-shear viscosity normalized by hs as a function of star-

polymer concentration c/c*, for various Nm as indicated. Several theo-

retical predictions for a colloidal solution are also plotted. The solid black

line corresponds the linear regime h0/hs¼ 2.5f predicted by Einstein47 for

colloids, where f ¼ c/c*. The cyan dashed curve displays the dependence

of h0/hs ¼ 2.5f + 6.2f2 for Brownian solutions.48 The black dashed curve

indicates the dependence of ð1� f=fmÞ�2:5fm , which is valid for a solu-

tion of colloids.49

Fig. 12 First normal-stress coefficient J1, normalized by a concentra-

tion-dependent factor c0
1 (see Fig. 14), as a function of Wic. (a) MPC

simulation results, with arm lengthsNm¼ 10 (filled symbols) andNm¼ 30

(open symbols), and various concentrations c/c*, as indicated. (b) DPD

simulation results for various star-polymer concentrations, as indicated,

andNm ¼ 10 (filled symbols) andNm ¼ 20 (open symbols). The solid lines

indicate a power-law dependence c1 � Wic
�1; they are identical in (a)

and (b).

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 4109–4120 | 4117

Pu
bl

is
he

d 
on

 2
6 

Ja
nu

ar
y 

20
12

. D
ow

nl
oa

de
d 

by
 F

or
sc

hu
ng

sz
en

tr
um

 J
ul

ic
h 

G
m

bh
 o

n 
15

/0
4/

20
14

 1
3:

12
:1

5.
 

View Article Online

202 Soft matter, 8:4109-4120, 2012



4 Summary and conclusions

We have investigated the flow behavior of dilute and semidilute

solutions of star polymers in shear flow by two mesoscale

hydrodynamics simulation techniques. The simulations show

that many structural, dynamical, and rheological properties of

star-polymer solutions can be described very well in terms of

a concentration- and arm-length-dependent Weissenberg

number Wic ¼ _gs(c). This implies that the main effect of steric

and hydrodynamic interactions on the star dynamics in dilute

and semidilute solutions can be absorbed in the concentration-

and arm-length-dependent relaxation time s(c). Furthermore, we

find that the behavior in the regime of small or large Weissenberg

numbers is often well described by power laws, similar to those of

semidilute solutions of linear polymers.24

An important aspect of our study is a detailed comparison of

the predictions obtained by two frequently used particle-based

hydrodynamics simulation techniques, MPC and DPD. As

mentioned several times in Sec. 3, the agreement of the results for

relaxation time, data collapse with concentration-dependent

Weissenberg number, and power-law behavior is excellent. This

is not self-evident, but requires that the parameters are chosen in

the appropriate regime; here, it is particularly important to

guarantee a sufficiently high Schmidt number (the ratio between

momentum and mass transport). The good agreement between

the two approaches strongly indicates that our results allow

quantitative predictions and comparison with experimental

results.

A careful look at corresponding figures for MPC and DPD

reveals that there are small differences in the absolute values of

several quantities. This can be seen most easily by comparing the

simulation data to the lines indicating the power laws, because

these lines are identical in corresponding figures. We attribute

these differences mainly to small discrepancies in the star relax-

ation times of the two simulation approaches. We used the Zimm

time to define a Weissenberg number, which appropriately

captures the arm-length dependence, but is not necessarily

identical to the relaxation time governing the dynamical prop-

erties of a star. Our simulation results suggest that the ratio of the

Zimm time sz and the characteristic relaxation time of a star

polymer is somewhat larger in MPC than in DPD simulations.

Scaling of conformational and dynamical properties of dilute

and semidilute solutions with a concentration-dependent Weis-

senberg number Wic was obtained previously for linear poly-

mers.24 This raises the question about the similarities and

differences in the flow behavior of linear and star-polymer

solutions. Not unexpectedly, the qualitative behavior is similar in

the two systems. It is also clear that the absolute values of

deformation and orientation, viscosity and normal-stress coeffi-

cients are different. In general, star polymers seem to be less

stretched and less aligned with the flow direction than linear

polymers at a comparable Wic, and have a higher zero-shear

viscosity—because stars resist stretching more than linear poly-

mers due to the repulsive entropic and enthalpic interactions

between their arms. Interestingly, similar power-law regimes are

obtained for the various quantities for both, linear polymers and

Fig. 13 Second normal-stress coefficient J2, normalized by a concen-

tration-dependent factor c0
2 (see Fig. 14), as a function of Wic. (a) MPC

simulation results, with arm lengthsNm¼ 10 (filled symbols) andNm¼ 30

(open symbols), and various concentrations c/c*, as indicated. (b) DPD

simulation results for various star-polymer concentrations, as indicated,

and Nm ¼ 10 (filled symbols) and Nm ¼ 20 (open symbols).

Fig. 14 Scaling factors c0
1 and �c0

2 (normalized by h2sR
3
h=ðkBTÞ) for

the normal-stress coefficients of star-polymer solutions for various

concentrations. These factors are obtained by scaling the normal-

stress coefficient curves for various concentrations (Fig. 12 and 13)

to a reference curve, which corresponds to the lowest available

concentration for a fixed Nm.
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star polymers of functionality f ¼ 10. This suggests that the star

properties are determined to a considerable extent by the poly-

mer arms. To what extent the asymptotic behavior predicted for

linear polymers is reached by the star-polymer systems remains

to be investigated.

Finally, we can compare our simulation results with

experimental studies of rheological properties.15 The zero-

shear viscosity increases more rapidly with concentration

(with h0/hs ¼ 2.5f + 6.2f2) than for linear polymers24 (where

h0/hs ¼ 2.5f + 6.25kHf
2 with the Huggins coefficient55,56

kHx0.3), but less strongly than for hard-sphere colloids.

Furthermore, the zero-shear viscosity as a function of c/c*

depends only very weakly on the arm length. A comparison of

the experimental data for f ¼ 34, f ¼ 62, and f ¼ 124 with the

simulation results for f ¼ 10 and f ¼ 2 (linear polymers) is shown

in Fig. 15. This shows a very consistent trend of an increase of the

zero-shear viscosity with increasing functionality at constant

concentration c/c*, and demonstrates the crossover of star-

polymer properties from ultra-soft to hard-sphere colloids with

increasing functionality. A more detailed comparison requires

simulations for larger functionalities and arm lengths.

The viscosity of star-polymer solutions of very high func-

tionality f x 390 has also been measured experimentally at

concentrations in the fluid and glassy phases.16 In the semidilute

regime, the shear stress shows a linear increase at low shear rates,

followed by a less pronounced growth with effective exponent of

approximately 0.5; this effective exponent decreases with

increasing concentration.16 Both observations are consistent with

our simulation results. The exponent of the power law of the

shear stress for intermediate Weissenberg number is important,

because a value larger than unity signals shear banding. Such

a behavior has indeed been predicted for concentrated solu-

tions.22 On the basis of our simulations, no shear banding is

predicted for f¼ 10 stars in the investigated concentration range.

We expect that considerably larger functionalities are necessary

to observe shear banding.
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Margination of white blood cells (WBCs) towards vessel walls is an essential precondition for their

efficient adhesion to the vascular endothelium. We perform numerical simulations with a two-dimensional

blood flow model to investigate the dependence of WBC margination on hydrodynamic interactions of

blood cells with the vessel walls, as well as on their collective behavior and deformability. We find WBC

margination to be optimal in intermediate ranges of red blood cell (RBC) volume fractions and flow rates,

while, beyond these ranges, it is substantially attenuated. RBC aggregation enhances WBC margination,

while WBC deformability reduces it. These results are combined in state diagrams, which identify WBC

margination for a wide range of flow and cell suspension conditions.

DOI: 10.1103/PhysRevLett.108.028104 PACS numbers: 87.19.U�, 83.50.Ha, 83.80.Lz, 87.16.D�

Introduction.—Leukocytes or white blood cells (WBCs)
are part of our immune system, performing various organ-
ism defense functions. In order to reach the sites of action
(e.g., inflammation), WBCs have to migrate to the vessel
walls through a process called margination [1–3], adhere
efficiently to vascular endothelium (mediated by adhesion
proteins [4,5]), and further transmigrate into the surround-
ing tissues [6]. The efficiency of WBC adhesion in blood
flow is correlated with the contact frequency ofWBCs with
the vessel walls, and thus with margination.

The mechanism forWBCmargination in microvessels is
related to the presence of red blood cells (RBCs) in blood.
RBCs in microvessels migrate to the vessel center [7,8].
This process is governed by cell-wall hydrodynamic inter-
actions [9] (often called lift force), which drive the cells
away from the wall, and by cell-cell interactions, which
tend to disperse RBCs [10]. WBC margination is believed
to be a consequence of the competition between lift forces
on RBCs and WBCs, where the lift force on a RBC is
larger than that on a WBC due to the nonspherical dis-
cocyte shape and high deformability of RBCs. These in-
teractions result in WBC margination (i.e., segregation),
such that their concentration becomes higher near a vessel
wall [2,3].

Several blood and flow properties may contribute to
WBC margination, which include hematocrit Ht (i.e.,
RBC volume fraction), flow rate, vessel geometry, and
RBC aggregability [1,3,11–14]. In vivo experiments on
WBC margination in the mesenteric venules of rats [3]
showed a substantial increase of the WBC adhesion rate
(and consequently margination), with the decreasing flow
rate at relatively highHt > 0:45. A different dependence of
WBC margination on Ht was reported in recent in vitro
experiments on blood flow in microfluidic channels [14],
where the strongest margination effect was found at inter-
mediate Ht ’ 0:2–0:3, while, at lower or higher Ht values,
WBCmargination was attenuated. In contradiction to these

experiments, recent results on WBC adhesion in glass
capillaries [12] show no dependence of WBC adhesion,
and therefore margination, on hematocrit. The effect of
flow rate on WBC margination and adhesion seems to be
consistent across the various studies [3,11,14] which
showed a significant enhancement at low flow rates com-
parable with those in venular blood flow. In addition, RBC
aggregation has been found to result in an increased WBC
margination and adhesion [3,11,12,14] at the vessel walls.
Simulations of a two-dimensional blood model in

Ref. [13] showed increasing margination with decreasing
flow rate, in agreement with experiments, but only a weak
dependence on hematocrit. WBC margination is found to
be insensitive to RBC deformability, which suggests that
the RBC biconcave shape is the main governing parameter
for the lift force on a RBC [13].
In order to integrate these various, sometimes apparently

contradicting, observations into a coherent picture, a more
extensive study of the dependence of WBC margination on
hematocrit, flow rate, WBC deformability, and RBC ag-
gregation is clearly necessary. We focus here on a two-
dimensional (2D) model of blood flow; see Fig. 1 and

(a)

(b)

FIG. 1 (color online). Simulation snapshots of the flow (from
left to right) at Ht ¼ 0:35 and dimensionless shear rate
(a) _�� ¼ 1:59 and (b) _�� ¼ 19:68. The large quasispherical
particle is the WBC [15].
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Ref. [15]. In particular, we show that there is a pronounced
effect of hematocrit on WBC margination and provide new
insights into the physical mechanism. We find a reentrant
behavior, where margination first increases with increasing
hematocrit but then decreases again at higher hematocrits.
Furthermore, changes in WBC deformability strongly af-
fect margination, since a deformed WBC may significantly
depart from the spherical shape.

Models and methods.—We employ the dissipative par-
ticle dynamics method [16], a particle-based mesoscopic
simulation technique, to model blood cells suspended in a
fluid. A dissipative particle dynamics system consists of N
point particles, which interact through pairwise soft forces
and move according to Newton’s second law of motion.
Both two-dimensional cell types are modeled by a collec-
tion of Nv particles (50 for RBCs and 100 for WBCs) [15]
connected by Ns ¼ Nv springs with the potential [17]

Vsp ¼ X

j21...Ns

�kBTlmð3x2j � 2x3j Þ
4pð1� xjÞ þ kp

lj

�
; (1)

where lj is the length of the spring j, lm is the maximum

spring extension, xj ¼ lj=lm, p is the persistence length,

kBT is the energy unit, and kp is the spring constant. A

balance between the two force terms in Eq. (1) determines
a nonzero equilibrium spring length l0. The cell model also
incorporates a bending energy

Vbend ¼
X

j21...Nv

kb½1� cosð�jÞ�; (2)

where kb is the bending constant and �j is the instanta-

neous angle between two adjacent springs having the
common vertex j. In addition, a constraint to maintain a
constant cell area is imposed on each cell by the potential
Varea ¼ kaðA� A0Þ2=2, where ka is the area constraint
coefficient, A is the instantaneous cell area, and A0 is the
specified (target) area. The combination of A0 and the cell
perimeter Nsl0 determines the shape of a cell. The RBC

diameter is chosen to beDr � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
A0=�

p ¼ 0:417Dw, where
Dw is the WBC diameter in equilibrium. The RBC equi-
librium spring length is l0 ¼ 0:0384Dw and lm=l0 ¼ 2:2.
The RBC shape is biconcave, while WBCs have a circular
shape in equilibrium. In all simulations, kb ¼ 50kBT for
RBCs and kb ¼ 500kBT for WBCs. The blood cells (72
RBCs and one WBC at Ht ¼ 0:45) are suspended in
plasma, which is modeled by a collection of solvent
particles.

We consider Poiseuille flow in the channel of width
W ¼ 2Dw, which is driven by a constant force applied to
the solvent particles equivalently to a constant pressure
gradient. To characterize the flow, we define a dimension-
less shear rate as

_� � ¼ �D3
r
�_�

�r

¼ � �_�; (3)

where �_� ¼ Q=W2 is the average shear rate, Q is the flow
rate, � is the solvent viscosity, �r ¼ kbl0 is the RBC
bending rigidity, and � ¼ �D3

r=�r is a characteristic re-
laxation time. The other important nondimensional
number, which characterizes the ratio of cell elasticity
to bending rigidity, is � ¼ YD2=�, where Y ¼
ð�@2Vsp=@l

2Þjl0 is the stretching modulus. �r ¼ 1340 for

RBCs, which was roughly estimated to mimic a RBC
stretching experiment [18], while �w is assumed to be
about 10 times larger. In addition, to make a WBC less
deformable, A0;w is set to be 2% larger than the area of a

circle with diameter Dw, which implies that the springs of
WBCs are initially under a small strain. For comparison in
physical units in three dimensions (3D), we assume
that Dw ¼ 10 �m, Dr ¼ 4:17 �m, W ¼ 20 �m,
� ¼ 10�3 Pa � s, T ¼ 37 �C, �r ¼ 50kBT, and Y ¼
18:9 �N=m.
Results and discussion.—Figure 2 presents the WBC

center-of-mass distributions for various Ht values. The
flow rate is approximately constant for different Ht with
_�� � 3:34. The correspondingWBC distributions are aver-
aged over the two halves of the channel and indicate WBC
margination towards the wall (y ¼ 0) with a peak around
y=W ¼ 0:25. The strongest margination effect is observed
for a range of Ht ¼ 0:25–0:35 (see also Fig. 1 and
Ref. [15]), while WBC margination is attenuated at both
lower and higher Ht values. As expected at low Ht, WBC
margination is weak due to a low concentration of RBCs.
However, at high Ht values, the simulated results seem to
contradict the main hypothesis for WBC margination: a
higher RBC concentration is expected to lead to more RBC
crowding in the channel center, and therefore to stronger
WBC migration towards the wall. Also, we notice that the
peak position is slightly closer to the wall for higher Ht

values; this shift is due toWBC deformability, such that the
force on a WBC from flowing RBCs is stronger at a higher
Ht, resulting in a more compressed WBC shape.
To identify the physical mechanism responsible for this

observation, we examined the RBC distribution around a
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FIG. 2 (color online). WBC center-of-mass distribution for
various Ht values at _�� ¼ 3:34.
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marginated WBC. Figure 3 shows RBC center-of-mass
distributions for various Ht and _�� ¼ 3:34, computed in
a comoving coordinate system of the WBC center of mass
and with the condition that the WBC center is less than
0:55Dw away from one of the walls. This condition is
equivalent to the WBC nearly touching the wall. At Ht ¼
0:45, the region downstream of the WBC near the wall is
virtually void of RBCs and it remains free of RBCs during
most of the simulated time of about 845�. As hematocrit is
increased to Ht ¼ 0:55, RBCs are found to often enter the
region downstream of the WBC due to high RBC crowd-
ing. RBCs in that region move slower than the WBC next

to the wall, so that a RBC may enter the gap between the
WBC and the wall and force the WBC to move away from
the wall. This ‘‘lift-off’’ mechanism for the WBC is differ-
ent from the lift force [19] due to cell-wall hydrodynamic
interactions and is governed by the particulate nature of
blood. The RBC distributions in Fig. 3 show that such lift-
off events occur frequently at Ht ¼ 0:55 and lead to the
attenuation of WBC margination illustrated in Fig. 2 and
Ref. [15].
Next, the effects of flow rate and WBC deformability on

WBC margination are explored. In addition to the previ-
ously described setup referred to as ‘‘hard’’ WBCs, we
consider both solid (nondeformable) WBCs and ‘‘soft’’
WBCs. The stretching modulus of a soft WBC is 3.2 lower
than that of a hard WBC, and the specified area A0 is set
exactly to �D2

w=4. The investigated average shear rates are
_�� 2 f1:57; 3:34; 5:41; 9:34; 18:68g. Such a thorough study
of WBC margination allows us to construct WBC margin-
ation diagrams with respect to flow rate and hematocrit, as
shown in Fig. 4. The probability of WBC margination is
defined as the probability of the WBC center of mass being
not further than 0:55Dw away from the channel walls.
From these plots, we can see that the strongest WBC
margination occurs within a certain range of Ht values
and flow rates. For example, in the case of solid WBCs,
WBC margination occurs with high probability for the
ranges of Ht ¼ 0:2–0:5 and _�� ¼ 1–10. As the WBC
becomes softer, the region of high probability for WBC
margination shrinks considerably. Specifically, there is a
pronounced dependence of WBC margination on flow rate,
since a WBC may substantially deform at high flow rates
and thus experience a strong lift force from the wall.
Our simulation results are also consistent with experi-

mental observations that WBC adhesion occurs mainly in
venules (not in arterioles) in the organism. The character-
istic values of _�� in venules of a comparable diameter are
approximately in the range of _�� ¼ 1–25, while, in arterio-
les, _�� * 30 [20,21]. This estimation is based on the
physiological parameters stated above; for example, _�� ¼
10 corresponds to the pseudoshear rate of 30 s�1 and the
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average flow velocity of 0:6 mm=s. Thus, efficient WBC
margination and consequent adhesion are mainly expected
in the venular part of a microvascular network. Our results
for the cases of soft and hard WBCs [Figs. 4(b) and 4(c)]
show a more narrow range of _��, where a WBC is margi-
nated in comparison with the range of _�� ¼ 1–25. Thus,
we conclude that our rigid WBCs in 2D [Fig. 4(a)] provide
the most realistic description of WBC margination phe-
nomena in 3D. Of course, predictions of 2D simulations for
3D flows can only be semiquantitative and it is likely that
the _�� range for WBC margination is slightly shifted or
expanded in 3D. However, our results are in good agree-
ment with the experiments on leukocyte margination in
rectangular microchannels [14], where the optimal hema-
tocrit for WBC margination was identified to be in the
range Ht ¼ 0:2–0:3. They are also able to explain discrep-
ancies with previous simulations [13] and experiments
[12], which found WBC margination and adhesion to be
independent of Ht, because studied flow rates and Ht

values in Refs. [12,13] almost entirely fell into the region
of strong WBC margination.

RBC aggregation is believed to enhance WBC margin-
ation in blood flow. In our model, aggregation interactions
between RBCs are described by a Morse potential, with a
strength adjusted to a force in the range of 3–7 pN, as
estimated in recent 3D simulations on blood rheology [22].
Figure 5 shows the effect of RBC aggregation on WBC
margination for the case of hard WBCs. In comparison
with Fig. 4(b), the strong WBCmargination region extends
now to higher flow rates and Ht values. This is likely a
consequence of a tighter RBC packing due to the aggrega-
tion forces, which result in a less-dispersed RBC core. The
computed RBC distributions around the WBC for various
Ht have confirmed that the region downstream of the WBC
remains virtually free of RBCs even for high Ht > 0:45
values due to RBC aggregation, which substantially re-
duces the displacing effect of RBCs at high Ht, as illus-
trated in Fig. 3. Finally, no significant effect of RBC

aggregation on WBC margination is found at high _��
because RBC aggregates are completely dispersed at
high shear rates [22,23].
WBC margination is closely related to WBC flow ve-

locities. Results for the average WBC velocity normalized
by the average flow velocity �u ¼ Q=W as a function of Ht

are presented in Fig. 6 at _�� � 3:34. When margination
occurs and the WBC moves near the wall, its velocity is
significantly reduced in comparison with a WBC flowing
near the center of the channel. In our simulations, the ratio
W=Dw ¼ 2 is relatively small, and therefore the velocity
difference shown in Fig. 6 is only approximately
30%–40%. For larger channel widths, this difference is
expected to increase quadratically with W=Dw. The re-
duced velocity of marginated WBCs compared to the
average blood flow results in a many-fold increase of
the WBC concentration in microcirculation (determined
by the ratio of the average RBC and WBC velocities). This
reduced velocity for marginated WBCs could also play an
important role in an efficient adhesion [24,25] because it
reduces the required adhesion forces accordingly.
In conclusion, WBC margination strongly depends on

flow hydrodynamics (e.g., lift force), as well as on particu-
late properties of blood, including hematocrit, elasticity
characteristics of blood cells, and their interactions. These
2D simulation results will be used to guide realistic 3D
simulations in the future, which are able to quantitatively
explore the WBC margination phenomena.
D.A. F. acknowledges funding by the Humboldt
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The viscosity of blood has long been used as an indicator in the
understanding and treatment of disease, and the advent of mod-
ern viscometers allows its measurement with ever-improving clin-
ical convenience. However, these advances have not been matched
by theoretical developments that can yield a quantitative under-
standing of blood’s microrheology and its possible connection to
relevant biomolecules (e.g., fibrinogen). Using coarse-grained
molecular dynamics and two different red blood cell models, we
accurately predict the dependence of blood viscosity on shear rate
and hematocrit. We explicitly represent cell–cell interactions and
identify the types and sizes of reversible rouleaux structures that
yield a tremendous increase of blood viscosity at low shear rates.
We also present the first quantitative estimates of the magnitude
of adhesive forces between red cells. In addition, our simulations
support the hypothesis, previously deduced from experiments, of
yield stress as an indicator of cell aggregation. This non-Newtonian
behavior is analyzed and related to the suspension’s microstruc-
ture, deformation, and dynamics of single red blood cells. The most
complex cell dynamics occurs in the intermediate shear rate regime,
where individual cells experience severe deformation and transient
folded conformations. The generality of these cell models together
with single-cell measurements points to the future prediction of
blood-viscosity anomalies and the corresponding microstructures
associated with various diseases (e.g., malaria, AIDS, and diabetes
mellitus). The models can easily be adapted to tune the properties
of a much wider class of complex fluids including capsule and
vesicle suspensions.

blood rheology ∣ blood modeling ∣ shear thinning ∣ aggregation force ∣
dissipative particle dynamics

Rheological and material properties of cell, capsule, and vesicle
suspensions have many applications in medicine, biology,

engineering, and materials science. One of the main examples of
such suspensions is blood, which consists of RBCs, predominant
by volume, and a small fraction of other cells and proteins sus-
pended in the plasma. Understanding blood flow and its relation
to cellular properties and interactions may lead to advances in
biomedical applications (e.g., drug delivery, blood substitutes).
Moreover, a change in blood rheological and flow properties is
often associated with hematological diseases or disorders (e.g.,
sickle-cell anemia, malaria), and therefore the viscosity of blood
has long been used as an indicator in the understanding and treat-
ment of disease.

Modern rheometry techniques and instruments yield reliable
measurements of macroscopic properties of cell suspensions with
ever-improving convenience—for example, the bulk properties of
blood measured in various laboratories (1–6). Virtually all blood-
viscosity measurements are necessarily in vitro, and before newly
drawn blood is introduced into a viscometer it must at least be
stabilized with an anticoagulant, which is then called “whole
blood.” Under flow conditions at small deformation rates, the
RBCs in whole blood have been observed to aggregate into struc-
tures called “rouleaux,” which resemble stacks of coins (1, 7–9).
The aggregation process appears to be strongly correlated to the
presence of the plasma proteins (7, 9). Experiments with washed
RBCs resuspended in pure saline, to which fibrinogen was added
progressively (7), showed a tremendous viscosity increase at low

deformation rates with respect to fibrinogen concentration. In
addition, such suspensions exhibit a yield stress (1, 10, 11)—
i.e., a threshold stress for flow to begin.

However, these advances have not been accompanied by the-
oretical developments that can yield quantitative predictions of
rheological and flow properties of blood. Recent theoretical
and numerical studies focused mostly on the behavior of a single
RBC in various flows (12–16). Several studies have been per-
formed to simulate a suspension of multiple cells (16–19) in tube
flow. So far, the connection between the rheology of a cell sus-
pension and its microscopic properties on a single-cell level, such
as structure or arrangement, cell viscoelastic properties, and local
dynamics, is not well understood. In addition, cell suspensions are
often further complicated by intrinsic cell interactions (e.g., RBC
aggregation; refs. 1, 7–9). In this paper, we will establish such a
link between bulk properties and microstructure, and will focus
on the quantitative prediction of rheological properties and dy-
namics of blood flow by employing multiscale modeling of inter-
acting red blood cells.

Results and Discussion
We consider suspensions of RBCs to mimic the experimental set
up of washed RBCs suspended in pure saline, to which fibrinogen
was added progressively (7), and we will refer to them as erythro-
cyte suspensions (ES). We simulate them with dissipative particle
dynamics (DPD), a coarse-grained version of molecular dynamics
suited to the seamless modeling of liquids and soft matter (14, 20,
21). Two different cell models are employed. The first, a multi-
scale RBCmodel (MS-RBC) (15) represents the RBCmembrane
with a few hundred DPD particles connected by viscoelastic
springs into a triangular network in combination with out-of-
plane elastic bending resistance, similar to the mesoscopic model
in Refs. 12, 18, and 22. The characteristic biconcave RBC shape is
achieved by imposition of constraints for constant membrane area
and constant cell volume. Fitting of the model parameters is per-
formed through a number of static and dynamic experiments on
single real RBCs (15) and no further adjustment is made for the
RBCs in suspension. Because simulations with MS-RBC are com-
putationally expensive, we also employ a low-dimensional model
(LD-RBC) of an RBC (23) for efficiency in parametric studies.
LD-RBC is constructed as a closed torus-like ring of only 10 large
hard colloidal particles, see Methods for more details. LD-RBC
allows exploration of simulated blood flows over a wide range
of hematocrits at computational costs considerably below those
for their multiscale counterparts. In addition to the LD-RBC
and MS-RBC models, we developed an aggregation model to
reproduce the reversible rouleaux formation and destruction,
which is essential to capture blood flow behavior, especially at
low shear rates. Next, we present results for the ES viscosity with
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and without aggregation, rouleaux formation and magnitude of
aggregation forces, yield stress, and themicro-to-macro link in ES.

In Silico Versus in Vitro Blood Viscosity. The experimental bulk visc-
osities of well-prepared nonaggregating ES and of whole blood
were measured for various hematocrit values (H) at physiological
temperature 37 °C in refs. 1–3. The blood viscosity in our work
was derived from simulations of plane Couette flow using the
Lees–Edwards periodic boundary conditions for both the MS-
RBC and the LD-RBC suspensions. The shear rate and the cell
density in our simulations were verified to be spatially uniform on
average over time, and the viscosities were computed, with and
without aggregation, as functions of the shear rate over the range
0.005–1;000.0 s−1 (this corresponds to the range of dimensionless
shear rate or capillary number η_γD∕Y between 2.5 × 10−6 and 0.5,
where η is the solvent viscosity, D is the RBC diameter, and Y is
the membrane Young’s modulus). Fig. 1A shows the relative visc-
osity (RBC suspension viscosity normalized by the viscosity of the
suspending media) against shear rate at hematocrit H ¼ 45%.
The MS-RBC model predictions are in excellent agreement with
the blood viscosities measured in three different laboratories
(1–3). The ES model, consisting only of RBCs in suspension,
clearly captures the effect of aggregation on the viscosity at low
shear rates and suggests that cells and molecules other than RBCs
have little effect on the viscosity, at least under healthy condi-
tions. The LD-RBC model underestimates somewhat the experi-
mental data, but is generally in good agreement over the whole
range of shear rates, and again demonstrates the effect of aggre-
gation. The agreement is remarkable in view of the simplicity and
economy of that model. Errors in simulated viscosities shown in
Fig. 1A are approximately 30% for the shear rate _γ ¼ 0.014 s−1
and decrease rapidly with the increase of _γ, becoming about 1–3%
at high shear rates.

The dependence of whole blood and ES viscosity on hemato-
crit is demonstrated in Fig. 1B. The curves are measured viscos-
ities as a function of H at constant shear rate by Chien et al. (2),
and the points are calculated with the LD-RBC model. The plot
clearly shows how the latter captures the (hematocrit) H depen-
dence on viscosity, and that the model again demonstrates aggre-
gation to be crucial for a quantitative account of the difference
between the viscosity of whole blood and that of washed ES.

Recent attempts in modeling (24, 25) of two-cell and multiple-cell
aggregates (17) simulated only their flow behavior. Specifically, in
ref. 17, the link of viscosity to RBC aggregation was investigated,
but the viscosity predictions failed to capture the steep rise of that
function at low shear rates.

Reversible Rouleaux Formation.The formation of rouleaux in blood
occurs in equilibrium and at sufficiently small shear rates,
whereas large shear rates result in immediate dispersion of fragile
RBC structures. Experimentally, aggregation is observed (1, 4,
26) to be a two-step process: the formation of a few RBCs into
short linear stacks, followed by their coalescence into long linear
and branched rouleaux. As the shear rate increases, the large
rouleaux break up into smaller ones, and at higher values, the
suspension ultimately becomes one of monodispersed RBCs (27).
This process then reverses as the shear rate is decreased.

This typical formation–destruction behavior of rouleaux is con-
sistent with the results of our simulations using both the LD-RBC
and the MS-RBC models as shown in Fig. 2 (see SI Text). At low
shear rates (left frames), the initially dispersed RBCs aggregate
into large rouleaux of up to about 20 RBCs; as the shear rate is
increased to moderate values (middle frames), these structures
are reduced in size until at high rates (right frames) they are dis-
persed almost completely into individual RBCs. Reversibility is
demonstrated by reduction of the shear rate to the formation
value, at which point individual RBCs begin to reaggregate.

Yield Stress and Aggregation. Whole blood is believed to exhibit a
yield stress (i.e., a threshold stress for flow to begin) (1, 10, 11),
but this has been difficult to confirm experimentally or theoreti-
cally. The most reproducible yield stresses for whole blood are
those extrapolated to zero shear rate from viscometric data on
the basis of Casson’s equation given by (28)

τ1∕2xy ¼ τ1∕2y þ η1∕2 _γ1∕2; [1]

where τy is a yield stress and η is the suspension viscosity at large _γ.
Note that when the yield stress τy vanishes, Eq. 1 reduces to the
Newtonian liquid. The assumptions of Casson’s relation appear
to hold at least at low shear rates, which was successfully demon-
strated for pigment-oil suspensions (28), Chinese ovary hamster

A B 2
2

Fig. 1. Validation of simulation results for whole blood and Ringer ES. (A) Plot of non-Newtonian relative viscosity (the cell suspension viscosity normalized by
the solvent viscosity) as a function of shear rate at H ¼ 45% and 37 °C. Simulated curves of this work, as indicated and experimental points as follows: Whole
blood: green crosses, Merril et al. (1); black circles, Chien et al. (2; black squares, Skalak et al. (3). Ringer ES: red circles, Chien et al. (2); red squares, Skalak et al.
(3). Error bars on the MS-RBC viscosity curves reflect one standard deviation and each point on the simulated curves corresponds to a single simulation. (B) Plot
of relative viscosity as a function of hematocrit (H) at shear rates 0.052 (black) and 5.20 (blue) s−1: simulated (LD-RBC points), and Chien et al. (2) experimental
fits for whole blood (solid lines), and Ringer ES (dashed lines).
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cell suspensions (29), and blood (7). Following the extrapolation
method in ref. 7, we fit a polynomial in Casson coordinates (_γ1∕2,
τ1∕2xy ) to the simulated data for a H ¼ 45% suspension shown in
Fig. 3A. The fitting clearly indicates the extrapolated τy to be non-
zero for the aggregating RBC suspension and zero without cell
aggregation.

The yield stress for blood has previously been attributed to the
presence of rouleaux in experiments reported in refs. 1, 10 and 11.
In practice, the measurement of yield stress is complicated by the
nature of suspension and type of instrument used (30). As an ex-
ample, at the lowest shear rates sedimentation and viscometer
wall effects are complicating factors, and yield stresses derived
from viscometric data are not consistent with those derived from
nonrheological measurements (6). Merrill et al. (1) found τy of
healthy human blood to lie between 0.0015 and 0.005 Pa at
H ¼ 45%, and to vary as H1∕3, similar to the dependence Thur-
ston (31) described for the elastic modulus of blood. Copley et al.
(11) measured blood properties at very low shear rates down to
0.001 s−1, and still found evidence for a yield stress. Fig. 3B shows
that the simulated τy obtained by the extrapolation in Casson co-
ordinates are in good agreement with viscometric data, consistent
with the agreement between the computed and the measured
viscosities.

Micro-to-Macro Link. The non-Newtonian nature of blood (e.g.,
shear thinning, yield stress) emerges from the interactions be-
tween cells and from their properties and dynamics. Therefore,
we examined the structure and dynamics of the modeled suspen-
sions on the level of single cells. We found null pair correlations
of RBC centers of mass for each direction ðx;y;zÞ, which indicates
that the cell suspensions do not self-assemble or order themselves
in any direction at H ¼ 45%. This finding contradicts with sus-
pensions of spherical colloids, which have been shown (32) to
self-assemble near the close-packing concentration. To examine
the cell suspension’s local microstructure, we calculate the radial
distribution function (RDF) of RBC centers shown in Fig. 4A. An
equivalent isotropic structure factor can be found in SI Text. For
the no-aggregation case, we find that no significant structures
formed over the entire range of shear rates. At the lowest shear
rate (red solid line), several small peaks in RDF indicate the pre-
sence of infrequent intermediate structures because RBCs may
have enough time to relax locally at very low shear rates. A larger
peak of the red solid curve at r ¼ 8 μm, which is equal to the cell
diameter, indicates that neighboring RBCs are often aligned with
each other in the flow. As seen from the other solid curves (blue,
green, and black), the correlations completely disappear at higher
shear rates, and therefore the shear thinning behavior of a non-
aggregating suspension is clearly not due to a change in micro-
structure. In contrast, several large peaks in the RDF function
for the aggregating case at the lowest shear rate _γ ¼ 0.045 s−1
(red dashed line) indicate the formation of rouleaux of two to
four RBCs. An increase of the shear rate leads to the dispersion
of rouleaux shown by the blue dashed curve in Fig. 4A, where
predominant RBC aggregates are formed by only two RBCs.
At shear rates above approximately 5–10 s−1, no difference in mi-
crostructure is detected between aggregating and nonaggregating
cell suspensions. As a conclusion, the steep increase in viscosity
of the aggregating blood at low shear rates is mainly due to the
cell aggregation into rouleaux. In addition, rouleaux formation
also provides a plausible explanation for the existence of yield
stress, because with decrease of shear rate, larger rouleaux struc-
tures are formed resulting in an eventual “solidification” of the
suspension.

The dynamics of a single RBC in shear flow is characterized by
the tumbling motion at low shear rates and membrane tank-
treading at high shear rates (13–15). The tumbling-to-tank-tread-
ing transition occurs within a certain range of intermediate shear
rates, where an RBC may experience high bending deformations

Fig. 2. Visualization of aggregation. Simulated reversible rouleaux are
formed by LD-RBC model (Upper) and MS-RBC model (Lower) with
H ¼ 10%. The left column corresponds to low shear rates, center column
to moderate share rates, and right column to high shear rates as indicated
on the plots; see SI Text.
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(15). The deformation, orientation, and dynamics of cells within
the suspension is illustrated in Fig. 4 B–D. These plots show that
cells in the suspension mostly tumble and retain their biconcave
shape at low shear rates below 5 s−1, which is confirmed by es-
sentially no change in RBC bending energy and in its standard
deviation (Fig. 4B), by the extremely narrow asphericity distribu-
tion around the equilibrium value of 0.154 (Fig. 4C), and by the
wide orientational angle (θ) distribution in Fig. 4D. Cell tumbling
at low shear rates is slightly hindered in nonaggregating suspen-
sions in comparison to tumbling of a single RBC in shear flow due
to cell crowding, which results in sliding of cells over each other;
this is shown by a higher peak in the orientational angle distribu-
tion (green curve) in Fig. 4D with respect to the theoretical pre-
diction (blue curve). In contrast, RBC tumbling in aggregating
suspensions appears to be nearly uniform because RBCs tumble
within multiple-cell rouleaux structures. At high shear rates,
larger than about 200 s−1, individual RBCs are subject to tank-
treading motion illustrated by a narrow θ distribution (black line)
in Fig. 4D. At yet higher shear rates, RBCs become strongly elon-
gated as indicated by the RBC asphericity distribution in Fig. 4C.

The most interesting and complex cell dynamics, however,
occurs in the broad intermediate regime of shear rates between
5 and 200 s−1, where RBC aggregation interactions can be ne-
glected. This range also corresponds to the main region of shear
thinning for the nonaggregating cell suspension. In this range of
shear rates, RBCs within the suspension experience severe defor-
mations documented by a pronounced increase in the membrane
bending energy and in its variation shown in Fig. 4B. The aspheri-
city distribution for _γ ¼ 45 s−1 in Fig. 4C shows that RBCs attain
on average a more spherical shape, indicating transient folded
conformations. These deformations may result in a reduction
of shear stresses due to collisional constraints of cell tumbling,
and therefore in shear thinning. In addition, the transition of
some cells to the tank-treading motion further reduces the shear
stresses contributing to the viscosity thinning.

Tunable Properties of Cell Suspensions. The computational frame-
work presented herein is general and can be employed to inves-
tigate other cell, vesicle, and capsule suspensions with potential
usage in biology, medicine, and engineering. The suspension
properties may be tuned to yield a desired behavior by changing
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the solvent viscosity, material properties of suspended cells, and
intercell aggregation interactions. Fig. 5 shows several examples
of the tunable properties of cell suspensions. Results for cells with
10 and 100 times higher Young’s modulus than healthy RBCs
(blue and green curves) show a considerable increase of viscosity.
Hardened RBCs are known (33, 34) to increase their suspension
viscosities, and they are highly relevant in many hematologic dis-
orders and diseases, e.g., malaria, sickle-cell anemia, spherocyto-
sis. In addition, aggregating suspensions of stiffer cells show a
steeper rise in viscosity at low shear rates resulting in a substan-
tially higher yield stress. Fig. 5 also illustrates the expected de-
crease, relative to whole blood, in the suspension viscosity at low
shear rates (red curve) due to a twofold reduction in the aggrega-
tion strength (De, seeMethods). The significant change in viscosity
observed above implies a strong dependence of flow properties on
cell deformability and adhesive cell interactions.

Magnitude of Aggregation Forces. The predictions of Fig. 1 show
that a suspension of modeled RBCs captures the viscosity of
healthy whole blood with cell aggregation. The plausibility of the
aggregation strength was checked by calculation of the maximum
force needed to break up two aggregated RBCs (see SI Text). The
breakup pulling force in the normal direction is about 3.0–7 pN,
where the lower value corresponds to a peeling breakup. Tangen-
tial or sliding breakup requires a force in the range of 1.5–3 pN.
These forces are much smaller than those imposed on single
RBCs in stretching tests with optical tweezers (35), and they
are consistent with observations of rouleaux, which do not show
any large cell deformations. In addition, measurements of a dis-
aggregation force in shear flow by Chien et al. (36) indicate that
the shear stress required to break up a rouleaux structure lies
approximately between 0.01 and 0.1 Pa, whereas the analogous
simulations with the MS-RBC model yield about 0.02 Pa (see
SI Text).

Conclusions. The accurate prediction of the non-Newtonian beha-
vior from simulations of cell suspensions suggests a new paradigm
for rheology of cell suspensions and blood in particular. As an
example, an abnormal increase in RBC aggregation is a patholo-
gical state associated with many diseases, such as deep venous
thrombosis, atherosclerosis, AIDS, myeloma, and diabetes mel-
litus, which may afflict many different sites of the human arterial
tree (37–40). However, such correlations have had few theoreti-
cal guidelines for their interpretation. The modeling of cells
whose parameters are determined from experiments on single
cells (41) can be extended to abnormal and diseased cells, and
in combination with the aggregation model, their suspensions
can be simulated to allow quantitative comparison with rheolo-
gical measurements and to guide in vivo ultrasonic measurements
to yield a more precise diagnosis of the aforementioned diseases
(40). The predictive capability of accurate modeling of cell and
capsule suspensions can be readily extended to a variety of engi-
neering and material science applications. Such simulations may
aid in the development of new soft materials and may drive the
tuning process and optimization of their properties.

Methods
Simulation Method. The DPD method (20, 21) is a particle-based mesoscopic
simulation technique. A DPD system is represented by N point particles,
which interact through pairwise soft potentials and move according to
the Newton’s second law of motion; see also SI Text.

RBC Models. An MS-RBC (15) is constructed by a collection of discrete points
(500 in this work), which are the vertices of a triangular network of springs
with a “dashpot” on the membrane surface. The network assumes fixed
connectivity and supplies the elastic and the viscous response of an RBC
membrane. To mimic membrane bending rigidity, a bending resistance is
implemented between all neighboring triangular plaquettes. In addition,
area and volume constraints are enforced to model incompressibility of
an RBC membrane and the cytosol, respectively. The LD-RBC model (23) is
constructed as a closed torus-like ring of 10 overlapping colloidal particles
connected by springs. Each colloidal particle is represented by a single DPD
particle with a repulsive core. A bending resistance between two neighbor-
ing springs is also incorporated. More details on the RBCmodels can be found
in the SI Text.

Aggregation Models. For a blood suspension, the attractive cell–cell interac-
tions are crucial for simulation of aggregation into rouleaux. These forces are
approximated using the Morse potential UðrÞ ¼ De½e2βðr0−rÞ − 2eβðr0−rÞ�, where
r is the separation distance, r0 is the zero force distance, De is the well depth
of the potential, and β characterizes the interaction range. For the MS-RBC
model, the Morse potential interactions are implemented between every
pair of vertices of separate RBCs if they lie within a defined potential cutoff
radius. For the LD-RBC model, the aggregation force acts between centers of
mass of different RBCs if the cells are properly aligned. Thus, the Morse
potential is applied only if the angle between the normals of two cells does
not exceed a critical angle. The aggregation forces for blood were calibrated
for a single shear rate and no further adjustments were made in the subse-
quent computation of suspension viscosity. More details on the aggregation
models can be found in the SI Text.
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